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REVISITING THE CANONICITY OF CANONICAL
TRIANGULATIONS

MORITZ GROTH

Abstract. Stable derivators provide an enhancement of triangulated categories as
is indicated by the existence of canonical triangulations. In this paper we show that
exact morphisms of stable derivators induce exact functors of canonical triangulations,
and similarly for arbitrary natural transformations. This 2-categorical refinement also
provides a uniqueness statement concerning canonical triangulations.

These results rely on a more careful study of morphisms of derivators and this study
is of independent interest. We analyze the interaction of morphisms of derivators with
limits, colimits, and Kan extensions, including a discussion of invariance and closure
properties of the class of Kan extensions preserved by a fixed morphism.

1. Introduction

Abstract stable homotopy theories arise in various areas of pure mathematics such as
algebra, geometry, and topology. One typical class of examples is provided by homological
algebra. More specifically, associated to a Grothendieck abelian category A there is the
stable homotopy theory Ch(A) of unbounded chain complexes in A. Another typical
example of an abstract stable homotopy theory is given by the stable homotopy theory
Sp of spectra in the sense of topology and, in a certain precise sense, this yields the
universal example of an abstract stable homotopy theory [Fra96, Hel97, Lur14].

There are various ways of making precise what one means by an abstract stable homo-
topy theory, and one of the more classical approaches is provided by triangulated categories
as introduced by Verdier in [Ver67, Ver96] (see also [Pup67]). In the above two specific sit-
uations, this leads to Verdier’s classical triangulations on derived categories D(A) and to
Boardman’s classical triangulation on the stable homotopy category SHC [Boa64, Vog70].
The basic idea behind the structure of a triangulation is that distinguished triangles

X
f→ Y

g→ Z
h→ ΣX (1)

on additive categories (such as D(A) or SHC) encode ‘certain shadows of iterated derived
cokernel constructions on the models in the background (such as Ch(A) or Sp)’. And
this idea is for instance made precise in [Gro16].
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Correspondingly, there is the notion of an exact functor F : T → T ′ of triangulated
categories, which is roughly defined as an additive functor which sends distinguished
triangles to distinguished triangles. To make this precise, exact functors T → T ′ are
defined as pairs consisting of an additive functor F : T → T ′ and a natural transformation

σ : FΣ→ ΣF (2)

such that for every distinguished triangle (1) in T the image triangle

FX
Ff→ FY

Fg→ FZ
σ◦Fh→ ΣFX

is distinguished in T ′. It follows that the exact structure σ : FΣ → ΣF is a natural
isomorphism (see Remark 10.3), and the existence of such an exact morphism expresses
the idea that ‘on the models in the background there is a morphism of stable homotopy
theories which preserves sufficiently finite derived or homotopy (co)limits’.

In this paper we make this second idea precise in the language of derivators [Gro,
Hel88, Fra96]. It is known that the values of a (strong) stable derivator can be turned into
triangulated categories [Fra96, Mal01, Gro13], and here we investigate the 2-functoriality
of these triangulations. More precisely, if F : D → E is a pointed morphism of pointed
derivators, then there is a canonical natural transformation

ψ : ΣF → FΣ (3)

which is compatible with all natural transformations of derivators. These canonical trans-
formations (3) are invertible for right exact morphisms, i.e., for morphisms which preserve
initial objects and pushouts, and in the stable case the inverse transformation σ = ψ−1

is shown to define an exact structure (2) with respect to canonical triangulations.
Specializing this to identity morphisms it follows that canonical triangulations are

unique in a certain precise sense, thereby justifying the terminology. Moreover, if we spe-
cialize our results to restriction morphisms and induced transformations, then this shows
that (strong) stable derivators admit lifts to the 2-category of triangulated categories,
exact functors, and exact transformations. (It is fairly straightforward to adapt the tech-
niques from this paper in order to establish variants for canonical higher triangulations
[BBD82, Mal05, GŠ16a].)

A detailed proof of these results turns out to be more lengthy than suggested by the
sketch proof of the author in [Gro13]. Hence, by popular demand, such proofs are provided
in this paper (a more conceptual perspective on such results will be provided elsewhere).
Since many of the other enhancements of triangulated categories (such as stable cofibra-
tion categories [Sch13], stable model categories [Hov99], and stable∞-categories [Lur14])
have underlying homotopy derivators (at least of suitable types), the results obtained
here also have implications for these other approaches. In the case of stable cofibration
categories a 1-categorical version of our results was established by Schwede in [Sch13].

To the opinion of the author, the techniques developed here and leading to the above
results are at least as interesting as the results themselves. In §§2-9 we collect various
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tools related to morphisms and natural transformations of derivators which we need for
our applications here and which will also prove useful elsewhere. While some facts are
already spread out in the literature, to the best of the knowledge of the author most of
these results have not appeared elsewhere. In the few cases where we reprove a known
result, the author claims that the proof given here is simpler than the existing one(s).
The reader who prefers to take for granted the existence of a well-behaved formalism of
morphisms and natural transformations of derivators is suggested to first focus on §§8-10
only.

One of the goals in §§2-9 is to study in more detail the interaction of morphisms
and natural transformations of derivators with limits, colimits, and Kan extensions. This
includes a discussion of invariance and closure properties of classes of colimits and left Kan
extensions preserved by fixed morphisms of derivators. It turns out that the interaction
with left Kan extensions along fully faithful functors is conceptually simpler than the
general case. Hence, in this paper we stress that a discussion of the interaction with
colimits can be reduced to the conceptually simpler situation by means of the cocone
construction.

To mention an additional specific result, we recall from [PS14] that a right exact
morphism of derivators, i.e., a morphism which preserves initial objects and pushouts,
already preserves homotopy finite colimits. Having established the basic theory of mor-
phisms of derivators, it is straightforward to conclude that right exact morphisms also
preserve left homotopy finite left Kan extensions. The point of this result is that many
constructions arising in nature are combinations of such Kan extensions (see for example
[GŠ14, GŠ16b, GŠ16a, GŠ15]).

This paper belongs to a project aiming for an abstract study of stability, and the
paper can be thought of as a sequel to [Gro13, GPS14] and as a prequel to [GS17a].
This abstract study of stability was developed further in the series of papers on abstract
representation theory [GŠ14, GŠ16b, GŠ16a, GŠ15] and this will be continued in [GŠ17b].

The content of the sections is as follows. In §2 we study colimiting cocones in deriva-
tors. In §§3-5 we discuss colimit preserving morphisms and establish some closure proper-
ties. In §6 we study the compatibility of colimit preserving morphisms and the passage to
parametrized versions. In §7 we show that coproducts and homotopy coproducts agree in
derivators and we obtain a similar result for morphisms of derivators. In §8 we note that
pointed morphisms allow for canonical comparison maps related to suspensions, cones,
cofiber sequences, and similar constructions, which we show in §9 to be invertible for right
exact morphisms. In §9 we also deduce that right exact morphisms preserve left homo-
topy finite left Kan extensions. In §10 we show that exact morphisms of strong stable
derivators yield exact functors between canonical (higher) triangulations and similarly for
arbitrary natural transformations. This leads to 2-functoriality and uniqueness results for
canonical (higher) triangulations.

Prerequisites. We assume that the reader is familiar with the basic language of
derivators. Derivators were introduced independently by Grothendieck [Gro], Heller [Hel88],
and Franke [Fra96], and were developed further by various mathematicians including
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Maltsiniotis [Mal01, Mal07, Mal12] and Cisinski [Cis03, Cis04, Cis08] (see [Gro] for many
additional references). In this paper we continue using the notation and conventions from
[GPS14] which together with [Gro13] provides some basic background. In particular,
the axioms of a derivator are referred to by the names (Der1) (‘coproducts are sent to
products’), (Der2) (‘isomorphisms are pointwise’), (Der3) (‘left and right Kan extensions
exist’), and (Der4) (‘pointwise formulas for Kan extensions’). For a more detailed account
of the basic theory we refer the reader to [Gro16].

2. Colimiting cocones in derivators

In this section we discuss colimiting cocones in derivators and the construction of canonical
comparison maps from colimiting cocones to arbitrary cocones. These notions and results
will be used in later sections and also in the sequel [GS17a].

The cocone AB of a small category A is obtained by adjoining a new final object
∞ ∈ AB to A, while the cone AC contains a new initial object −∞ ∈ AC. Related to
these categories there are obvious fully faithful inclusion functors

iA : A→ AB and iA : A→ AC.

2.1. Definition. Let D be a derivator and let A ∈ Cat.

1. A diagram X ∈ D(AB) is a cocone (with base i∗AX ∈ D(A)).

2. A cocone X ∈ D(AB) is colimiting if it lies in the essential image of (iA)! : D(A)→
D(AB).

Cones and limiting cones in a derivator are defined dually, and the following duality
principle allows us often to focus on (colimiting) cocones.

2.2. Lemma. Let D : Catop → CAT be a derivator and let A be a small category. A
cocone X ∈ D(AB) is colimiting if and only if the cone X ∈ Dop((Aop)C) is limiting.

Proof. This is immediate from the definitions.

Recall that the calculus of Kan extensions in derivators is governed by the formalism
of homotopy exact squares; see [Mal12] or [Gro13, §1.2].

2.3. Proposition. For A ∈ Cat the following squares are homotopy exact,

A id //

πA

��
}�

A

iA
��

A id //

πA

��

A

iA
��

1 ∞
// AB, 1 −∞

// AC.

=E
(4)

Proof. As slice squares these squares are homotopy exact ([Gro13, Prop.1.26]).
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More explicitly, the proposition says that for a derivator D and X ∈ D(A) there are
canonical isomorphisms

colimAX
∼−→ (iA)!(X)∞ and (iA)∗(X)−∞

∼−→ limAX.

Such isomorphisms characterize colimiting cocones and limiting cones, as made precise
by the following proposition, in which we consider the squares

A
iA //

πA
��

}�

AB

id
��

A
iA //

πA
��

AC

id
��

1 ∞
// AB, 1 −∞

// AC.

=E
(5)

2.4. Proposition. Let D be a derivator and let A ∈ Cat. The left Kan extension functor
(iA)! : D(A)→ D(AB) is fully faithful and X ∈ D(AB) lies in the essential image of (iA)!

if and only if the canonical mate

colimA i
∗
AX → X∞ (6)

associated to the left square in (5) is an isomorphism.

Proof. Since iA is fully faithful, so is (iA)! : D(A) → D(AB) and the essential image
consists by [Gro13, Lem. 1.21] precisely of those X such that ε : (iA)!i

∗
A(X) → X is an

isomorphism at ∞. Note that the left square in (5) can also be written as the pasting

A
id //

πA

��
}�

A
iA //

iA
��

~� id

AB

id
��

1 ∞
// AB

id
// AB.

Since the left square in this pasting is homotopy exact (Proposition 2.3), the functoriality
of mates with pasting allows us to conclude that X lies in the essential image of (iA)! if
and only if the canonical mate (6) is an isomorphism.

Thus, a cocone is colimiting in the sense of Definition 2.1 if and only if the apex of it
is canonically the colimit of the restriction to the base, justifying the terminology.

The canonical morphism (6) also admits a different description which is inspired by
the following trivial observation from ordinary category theory. Let C be a cocomplete
category and let G : AB → C be a cocone on F = GiA : A → C. It is immediate from
the definition of a colimit as an initial cocone, that there is always a comparison map
from the colimiting cocone on F to G and that this comparison map is an isomorphism if
and only if G is a colimiting cocone. To extend this to derivators we make the following
construction.
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2.5. Construction. We note that the cocone construction A 7→ AB is functorial,
thereby defining (−)B : Cat → Cat , and that the fully faithful functors iA : A → AB

for A ∈ Cat define a natural transformation

i : idCat → (−)B : Cat → Cat . (7)

If A is a small category, then we can iterate the cocone construction and obtain the
category (AB)B. This category is obtained from AB by adding a new terminal object
∞+ 1. In particular, there is thus a morphism ∞→∞+ 1. (Similarly, in (AC)C there is
a morphism −∞− 1 → −∞.) The category (AB)B corepresents morphisms of cocones.
In more detail, related to this category there are the following two functors.

1. The functor sA = iAB : AB → (AB)B is the component of the natural transformation
i at AB. Thus, the behavior of sA on objects is given by a 7→ a and ∞ 7→ ∞ and,
given a morphism of cocones, restriction along sA yields the source of this morphism.

2. In a similar way we also have the functor tA = iBA : AB → (AB)B obtained from
iA : A → AB by an application of the cocone functor. On objects the functor tA
is given by a 7→ a and ∞ 7→ ∞ + 1 and, given a morphism of cocones, restriction
along tA yields the target of this morphism.

(An alternative description of the category (AB)B is as the join A ∗ [1] of A and [1] =
(0 < 1). In that description, the above functors are induced by 0, 1: 1→ [1], i.e., we have
sA = idA ∗ 0 and tA = idA ∗ 1.)

If D is a derivator, then we refer to D((AB)B) as the category of morphisms of
cocones (with base A). The category comes with source and target functors

s∗A, t
∗
A : D((AB)B)→ D(AB).

We now show that (tA)! forms the intended comparison maps. Related to Construction
2.5 there are the naturality squares

A
iA //

iA
��

�� id

AB

tA
��

A
iA //

iA
��

AC

tA
��

AB sA
// (AB)B, AC sA

// (AC)C.

@Hid (8)

2.6. Lemma. [GŠ14, Lem. 8.6] For every A ∈ Cat the squares (8) are homotopy exact.

Proof. We take care of the square on the left. Since the square commutes and since the
vertical functors are fully faithful, it suffices by Lemma 2.7 to show that the canonical
mate is an isomorphism at ∞ ∈ AB. To reformulate this we consider the pasting on the
left in

A
id //

��

A
iA //

iA
��

AB

tA
��

A
iA //

��

AB

tA
��

1 ∞
// AB sA

// (AB)B, 1 ∞
// (AB)B.
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As the above two pastings agree, the compatibility of mates with pasting and the homo-
topy exactness of the square to the left (Proposition 2.3) imply that it suffices to show
that the square to the very right is homotopy exact. As this square is isomorphic to a
slice square we are done by [Gro13, Prop.1.26].

To conclude the proof of Lemma 2.6 it remains to establish the following lemma which
is also of independent interest. In that lemma we consider a natural isomorphism living
in a square of small categories

A′
j
//

u′

��
}� ∼=

A

u

��

B′
k
// B.

(9)

The point of the following result is that it suffices to check objects in B′-u′(A′).

2.7. Lemma. Let (9) be a natural isomorphism in Cat such that u and u′ are fully faithful.
The square (9) is homotopy exact if and only if for all derivators the canonical mate
βb′ : (u′!j

∗)b′ → (k∗u!)b′ is an isomorphism for all b′ ∈ B′-u′(A′).

Proof. By axiom (Der2) of a derivator we have to show that, under the above assump-
tions, the canonical mate is always an isomorphism at objects of the form u′(a′), a′ ∈ A′.
To this end, we consider the pasting on the left in

1 //

id
��

�	 id

(u′/u′(a′)) //

π
��

�	

A′
j
//

u′
��
|� ∼=

A

u
��

1 //

id
��

�	 id

(u/uj(a′)) //

π
��

�	

A

u
��

1
id

// 1
u′(a′)

// B′
k
// B, 1

id
// 1

uj(a′)
// B,

in which the square in the middle is a slice square and hence homotopy exact by axiom
(Der4). The morphism 1 → (u′/u′(a′)) classifies the terminal object (a′, id) (since u′ is
fully faithful, this is a terminal object), and the square on the left is hence also homotopy
exact ([Gro13, Prop. 1.18]). The functoriality of mates with pasting implies that βu′(a′) is
an isomorphism if and only if the canonical mate associated to the pasting on the left is
an isomorphism.

In the pasting on the right, the square on the right is a slice square and the left square is
induced by the functor 1→ (u/uj(a′)) classifying the terminal object (j(a′), id : uj(a′)→
uj(a′)) (using this time that u is fully faithful). Up to a vertical pasting with the com-
ponent of the isomorphism (9) at a′, the above two pasting agree. Similar arguments as
above hence show that the pasting on the right and thus also the pasting on the left is
homotopy exact, thereby concluding the proof.

Thus, by Lemma 2.6 the source s∗A(tA)!(X) of the morphism of cocones (tA)!(X) is a
colimiting cocone, and this already characterizes the essential image of (tA)!.

2.8. Proposition. Let D be a derivator and let A ∈ Cat. The left Kan extension
(tA)! : D(AB)→ D((AB)B) is fully faithful and Y ∈ D((AB)B) lies in the essential image
if and only if the source cocone s∗AY ∈ D(AB) is colimiting.
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Proof. Since tA is fully faithful, so is (tA)! : D(AB)→ D((AB)B) and the essential image
consists by [Gro13, Lem. 1.21] precisely of those Y such that the counit ε : (tA)!t

∗
A(Y )→ Y

is an isomorphism at ∞. To reformulate this we consider the pasting on the left in

A
iA //

πA

��

~�

AB
tA //

tA

��
�	 id

(AB)B

id
��

A
id //

πA

��

{�

A
iA //

iA

��

|� id

AB
sA //

id

��
�� id

(AB)B

id
��

1 ∞
// (AB)B

id
// (AB)B, 1 ∞

// AB
id
// AB sA

// (AB)B.

(10)

In this pasting the square on the left is a slice square and hence homotopy exact ([Gro13,
Prop.1.26]). Thus, the functoriality of mates with pasting implies that Y lies in the
essential image of (tA)! if and only if the canonical mate of this pasting is an isomorphism
on Y . Since the above two pastings agree, similar arguments including Proposition 2.3
show that the canonical mate of the pasting on the right is an isomorphism if and only if
the source cocone s∗AY is colimiting.

2.9. Definition. Let D be a derivator, A ∈ Cat, and X ∈ D(AB). The (cocone)
comparison map is the coherent morphism

(tA)!(X)∞ → (tA)!(X)∞+1. (11)

2.10. Proposition. [GŠ14, Lem. 8.7] Let D be a derivator and let A be small category. A
cocone X ∈ D(AB) is colimiting if and only if the comparison map (11) is an isomorphism.

Proof. Since the functors iA : A→ AB and tA : AB → (AB)B are fully faithful, it suffices
to note that the pastings

A id //

πA

��

A

iA
��

iA // AB

id

��

id // AB

tA
��

=

A
iA //

πA

��

AB

tA
��

1 ∞
// AB

id
// AB

tA
// (AB)B 1 ⇓

∞
((

∞+1
66 (A

B)B

agree, to observe that with the exception of the second square from the left all squares
in the above diagrams are homotopy exact and to apply the functoriality of mates with
pasting.

The proof of this proposition shows that for X ∈ D(AB) the canonical mate (6) and
the comparison map (11) sit in a commutative square

colimA i
∗
A(X) //

∼=
��

X∞

∼=
��

(tA)!(X)∞ // (tA)!(X)∞+1.
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3. Preservation of colimits

Recall that a morphism of derivators F : D → E is a pseudo-natural transformation,
thereby coming with structure isomorphisms. We can use these structure isomorphisms
γ−1
u : FAu

∗ → u∗FB and γu : u∗FB → FAu
∗,

D(A)
FA // E (A) D(A)

FA // E (A)
V^
∼=

D(B)
FB
//

u∗

OO

��
∼=

E (B),

u∗

OO

D(B)
FB
//

u∗

OO

E (B),

u∗

OO

in order to talk about morphisms of derivators which preserve Kan extensions. In fact,
associated to these natural transformations there are the canonical mates

u!FA
η→ u!FAu

∗u!
γ−1
u→ u!u

∗FBu!
ε→ FBu!, (12)

FBu∗
η→ u∗u

∗FBu∗
γu→ u∗FAu

∗u∗
ε→ u∗FA. (13)

3.1. Definition. Let F : D → E be a morphism of derivators and let u : A → B be in
Cat.

1. The morphism F preserves left Kan extensions along u if the canonical mate
(12) is an isomorphism. The morphism is cocontinuous if it preserves left Kan ex-
tensions along all u. The morphism preserves colimits of shape A if it preserves
left Kan extensions along πA : A→ 1.

2. The morphism F preserves right Kan extensions along u if the canonical
mate (13) is an isomorphism. The morphism is continuous if it preserves right
Kan extensions along all u. The morphism preserves limits of shape A if it
preserves right Kan extensions along πA : A→ 1.

By duality, we allow ourselves to state and prove results only for morphisms which
preserve certain colimits or left Kan extensions. The dual statements follow from the
following duality principle.

3.2. Lemma. The following are equivalent for a morphism of derivators F : D → E and
a functor u : A→ B in Cat.

1. F : D → E preserves left Kan extensions along u : A→ B.

2. F op : Dop → E op preserves right Kan extensions along uop : Aop → Bop.

Proof. We leave it to the reader to unravel definitions in order to verify that the canonical
mate (13) for F op and (uop)∗ can be chosen to be the opposite of the canonical mate (12)
for F and u!. Since the passage to opposite natural transformations preserves and reflects
natural isomorphisms this concludes the proof.
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3.3. Lemma. [Gro13, Prop. 2.3] A morphism of derivators is cocontinuous if and only if
it preserves colimits.

3.4. Remark. The proof of [Gro13, Prop. 2.3] establishes the following more precise
statement which will be useful later. Let F : D → E be a morphism of derivators and
let u : A → B be a functor between small categories. If F preserves colimits of shape
(u/b), b ∈ B, then F preserves left Kan extensions along u.

We defined a morphism of derivators to preserve colimits of shape A if it preserves left
Kan extension along πA : A → 1. The next goal is to relate this to the preservation of
colimiting cocones. To this end, we collect the following more general results concerning
left Kan extensions along fully faithful functors which are also of independent interest.

3.5. Lemma. Let F : D → E be a morphism of derivators and let u : A → B be fully
faithful. The morphism F preserves left Kan extensions along u if and only if Fu!(X), X ∈
D(A), lies in the essential image of u! : E (A)→ E (B).

Proof. If F preserves left Kan extensions along u, then the mate u!F (X) → Fu!(X)
is an isomorphism, so Fu!(X) lies in the essential image of u! : E (A) → E (B). Let us
conversely assume that Fu!(X) lies in the essential image of u!. Since u! is fully faithful,
this is the case if and only if the counit ε : u!u

∗ → id is an isomorphism on Fu!(X). But
this implies that the canonical mate (12) given by

u!F (X)
η→ u!Fu

∗u!(X) ∼−→ u!u
∗Fu!(X)

ε→ Fu!(X)

is an isomorphism. In fact, the second morphism is the pseudo-naturality isomorphism
γ−1
F,u belonging to F , η is an isomorphism since u! is fully faithful, and ε was just observed

to be an isomorphism.

The point of the following lemma is that it suffices to control the objects in B−u(A).
Thus, in the case of fully faithful functors, similar to homotopy exactness (Lemma 2.7),
also (co)continuity can checked outside of fully faithful functors.

3.6. Lemma. Let F : D → E be a morphism of derivators, let u : A→ B be fully faithful,
and let X ∈ D(A). The canonical mate β : u!F (X)→ Fu!(X) (12) is an isomorphism in
E (B) if and only if βb : (u!F )(X)b → (Fu!)(X)b is an isomorphism for all b ∈ B − u(A).

Proof. Since isomorphisms in E are detected pointwise by axiom (Der2), it is enough
to show that u∗β : u∗u!F (X) → u∗Fu!(X) is always an isomorphism. This restricted
canonical mate u∗β is given by

u∗u!F (X)
η→ u∗u!Fu

∗u!(X) ∼−→ u∗u!u
∗Fu!(X)

u∗ε→ u∗Fu!(X).

Since u is fully faithful, the unit η : id→ u∗u! is an isomorphism. Finally, the triangular
identity

id = u∗ε ◦ ηu∗ : u∗ → u∗u!u
∗ → u∗

shows that also u∗ε is an isomorphism, and u∗β is hence always a natural isomorphism.
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3.7. Proposition. Let F : D → E be a morphism of derivators and let A ∈ Cat . The
following are equivalent.

1. The morphism F preserves colimits of shape A.

2. The morphism F preserves left Kan extensions along iA : A→ AB.

3. The functor F : D(AB)→ E (AB) preserves colimiting cocones.

Proof. We begin by showing that the first two statements are equivalent. The morphism
F preserves left Kan extensions along the fully faithful functor iA if and only if the
canonical mate (iA)!F → F (iA)! is an isomorphism at ∞ ∈ AB (Lemma 3.6). To express
this differently, let us consider the pasting on the left in

D(A)
FA // E (A) id // E (A)

D(AB)
FAB

//

i∗A

OO

��

E (AB)
∞∗
//

i∗A

OO

��

E (1),

π∗
OO

D(A) id // D(A)
FA // E (A)

D(AB)
∞∗
//

i∗A

OO

��

D(1)
F1
//

π∗
OO

��

E (1),

π∗
OO

(14)

The homotopy exactness of the square (4) and the functoriality of mates with pasting,
imply that F preserves left Kan extensions along iA if and only if the canonical mate of the
pasting on the left is an isomorphism. Since the above two pastings agree up to a vertical
pasting by the pseudo-naturality isomorphism γ∞, we can again invoke Proposition 2.3 and
the functoriality of mates with pasting to conclude that F preserves colimits of shape A
if and only if it preserves left Kan extensions along iA. Finally, Lemma 3.5 establishes
the equivalence of the second and the third statement.

By the very definition, a morphism of derivators F : D → E preserves A-shaped
colimits if a certain canonical mate is an isomorphism. This proposition allows us instead
to simply verify that colimiting cocones are preserved.

The following compatibility of the mates (12) with adjunction (co)units will be useful
later. Of course there is a dual statement concerning the mates (13).

3.8. Lemma. For a morphism of derivators F : D → E and u : A → B in Cat the
following diagrams commute for every X ∈ D(A), Y ∈ D(B),

F (X)
Fη

//

ηF

��

Fu∗u!(X)

γ−1

��

u!Fu
∗(Y ) //

γ−1

��

Fu!u
∗(Y )

Fε
��

u∗u!F (X) // u∗Fu!(X), u!u
∗F (Y )

εF
// F (Y ).

Proof. Plugging in the definition of the canonical mate u!F → Fu! (12), in the first case
it suffices to consider the following diagram,

F
Fη

//

ηF

��

Fu∗u!
γ−1

//

ηF

��

u∗Fu!

ηu∗

��

id

&&

u∗u!F Fη
// u∗u!Fu

∗u!
γ−1
// u∗u!u

∗Fu! u∗ε
// u∗Fu!.
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The two squares commute as naturality squares and the triangle commutes by a triangular
identity. For the second claim, it is enough to consider the diagram

u!Fu
∗ ηu∗

//

id
&&

u!Fu
∗u!u

∗

u∗ε
��

γ−1
// u!u

∗Fu!u
∗

Fε
��

εF // Fu!u
∗

Fε
��

u!Fu
∗

γ−1
// u!u

∗F
εF

// F,

which commutes for similar reasons.

We conclude this section by the following compatibility of the mates (12) and (13)
with natural transformations.

3.9. Lemma. Let F,G : D → E be morphisms of derivators, let α : F → G be a natural
transformation, and let u : A→ B. The following diagrams commute

u!FA //

αA
��

FBu!

αB
��

FBu∗ //

αB
��

u∗FA

αA
��

u!GA
// GBu!, GBu∗ // u∗GA.

Proof. By duality it suffices to take care of the first statement, and unraveling definitions
this amounts to showing that the diagram

u!FA
η
//

αA
��

u!FAu
∗u!

γ−1
//

αA
��

u!u
∗FBu!

αB
��

ε // FBu!

αB
��

u!GA η
// u!GAu

∗u!
γ−1
// u!u

∗GBu! ε
// GBu!

commutes. Here, the outer two squares commute as naturality squares, while the remain-
ing one commutes by the coherence properties of a modification.

4. Commutativity of limits and colimits

In this short section we consider colimit and limit morphisms of derivators and their
compatibility with limits and colimits. This leads to the question if limits and colimits in
unrelated variables commute.

4.1. Lemma. Let D be a derivator, let u : A→ B, v : B → C be in Cat, and let X ∈ D(A).
There are canonical isomorphisms

(v ◦ u)!(X) ∼= v!(u!(X)) and (idA)!(X) ∼= X.

Proof. This is immediate from the uniqueness of left adjoints and the relation

(v ◦ u)∗ = u∗v∗ : D(C)→ D(A).

In the same way we obtain a canonical isomorphism (idA)!
∼= idD(A).
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There are the following immediate consequences.

4.2. Corollary. Let D be a derivator, let u : A→ B in Cat, and let X ∈ D(A). There
are canonical isomorphisms

colimAX ∼= colimB u!(X).

Proof. We simply apply Lemma 4.1 to πA = πB ◦ u : A→ 1.

A variant is the following Fubini theorem, saying that left Kan extensions in unre-
lated variables commute.

4.3. Corollary. Let D be a derivator, let u : A → A′ and v : B → B′, and let X ∈
D(A×B). There are canonical isomorphisms

(u× id)!(id× v)!X ∼= (u× v)!X ∼= (id× v)!(u× id)!X.

Proof. Considering the naturality square

A×B u×id
//

id×v
��

A′ ×B
id×v
��

A×B′
u×id

// A′ ×B′,

this is immediate from Lemma 4.1. Alternatively, in order to obtain a canonical iso-
morphism between the two outer expressions it suffices to note that the Kan extension
morphism u! : DA → DA′ is a left adjoint and hence cocontinuous.

Using suggestive notation, the Fubini theorem specializes as follows.

4.4. Corollary. Let D be a derivator, let A,B ∈ Cat , and let X ∈ D(A × B). There
are canonical isomorphisms

colimA colimBX ∼= colimA×BX ∼= colimB colimAX.

Proof. This is a special case of Corollary 4.3.

Thus, colimits in unrelated variables commute in every derivator. A classical reference
for such a result can already be found in [Vog77]. The results of this section of course
dualize to yield similar statements for right Kan extensions.

The mixed situation, i.e., the question whether limits and colimits in unrelated vari-
ables commute, is more subtle. Given two small categories A and B, a derivator D and
X ∈ D(A×B), we consider the canonical mate

(πA)!(πB)∗X → (πA)!(πB)∗(πA)∗(πA)!X (15)
∼−→ (πA)!(πA)∗(πB)∗(πA)!X (16)

→ (πB)∗(πA)!X (17)
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4.5. Definition. Let D be a derivator and let A,B ∈ Cat. We say that colimits of
shape A and limits of shape B commute in D if for every X ∈ D(A × B) the
canonical mate colimA limBX → limB colimAX (15) is an isomorphism.

In a similar way, given functors u : A → A′ and v : B → B′, we define that left Kan
extension along u and right Kan extension along v commute by asking that the
canonical mate

(u× id)!(id× v)∗ → (u× id)!(id× v)∗(u× id)∗(u× id)! (18)
∼−→ (u× id)!(u× id)∗(id× v)∗(u× id)! (19)

→ (id× v)∗(u× id)! (20)

is an isomorphism. For less cumbersome terminology, we also say that u! and v∗ commute
in D .

To relate this to §3 we make the following trivial observation.

4.6. Lemma. Let D be a derivator and let u : A→ A′, v : B → B′ be in Cat. The following
are equivalent.

1. u! and v∗ commute in D .

2. The morphism v∗ : DB → DB′ preserves left Kan extensions along u.

3. The morphism u! : DA → DA′ preserves right Kan extensions along v.

Proof. Unraveling definitions, we see that the canonical mate expressing that u! preserves
right Kan extensions along v is precisely the canonical mate (18). In the case of the
morphism v∗ it suffices to conjugate with restrictions along the symmetry constraints in
(Cat ,×, 1).

4.7. Lemma. The following are equivalent for a derivator D and A,B ∈ Cat.

1. Colimits of shape A and limits of shape B commute in D .

2. Left Kan extensions along iA : A→ AB and right Kan extensions along iB : B → BC

commute in D .

Proof. This is immediate from Lemma 4.6 and Proposition 3.7.

In general, left and right Kan extensions in unrelated variables do not commute (as
one observes by noting that this notion reduces to the usual one in represented derivators).
As an additional illustration, in the sequel [GS17a] we characterize pointed and stable
derivators, respectively, by the commutativity of certain left and right Kan extensions.

5. Some closure and invariance properties

In this section we collect some closure and invariance properties of morphisms of derivators
preserving certain (co)limits or Kan extensions (see [AK88] for a reference in the context
of ordinary category theory). We again focus on left Kan extensions, and corresponding
results for right Kan extensions follow by duality.
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5.1. Definition. Two morphisms of derivators F1 : D1 → E1 and F2 : D2 → E2 are
equivalent, if there are equivalences of derivators ϕ : D1 ' D2, ψ : E1 ' E2 and a natural
isomorphism α : ψ ◦ F1

∼= F2 ◦ ϕ,

D1
F1 //

ϕ '
��

∼=

E1

ψ'
��

D2 F2

// E2.

The triple (ϕ, ψ, α) is an equivalence F1 → F2.

5.2. Proposition.

1. Equivalences and left adjoint morphisms of derivators are cocontinuous.

2. If F and G preserve left Kan extensions along u, then so does G ◦ F .

3. If F1, F2 : D → E are naturally isomorphic, then F1 preserves left Kan extensions
along u if and only if F2 does.

4. If F1 : D1 → E1 and F2 : D2 → E2 are equivalent, then F1 preserves left Kan exten-
sions along u if and only if F2 does.

Proof. The first statement is [Gro13, Prop. 2.9] while the second and the third statements
are [Gro13, Prop. 2.4]. The fourth statement follows immediately from the first and the
third one.

This proposition has a variant if we fix a morphism of derivators and let the functors
in Cat vary. As a preparation we make the following construction.

5.3. Construction. Let D be a derivator, let u, v : A→ B be functors, and let α : u→ v
be a natural transformation. The restriction functors u∗, v∗ : D(B) → D(A) are related
by the natural transformation α∗ : u∗ → v∗. Since u∗, v∗ both admit left adjoints and right
adjoints, we can hence consider the associated total mates or conjugate transformations

α! : v!
η→ v!u

∗u!
α∗→ v!v

∗u!
ε→ u!, (21)

α∗ : v∗
η→ u∗u

∗v∗
α∗→ u∗v

∗v∗
ε→ u∗. (22)

The natural transformations (21) and (22) are compatible with the canonical mor-
phisms (12) and (13), respectively.

5.4. Lemma. Let F : D → E be a morphism of derivator, let u, v : A → B, and let
α : u → v be a natural transformation. The morphisms (12) and (21) are compatible in
that the following diagram commutes,

u!FA // FBu!

v!FA

α!

OO

// FBv!.

α!

OO
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Proof. Let us consider the following two pastings which agree by the coherence properties
of pseudo-natural transformations,

D(A)
FA // E (A) id // E (A) D(A) id // D(A)

FA // E (A)

D(B)
FB
//

u∗

OO

��

E (B)
id
//

u∗

OO

��

E (B),

v∗

OO

D(B)
id
//

u∗

OO

��

D(B)
FB
//

v∗

OO

��

E (B).

v∗

OO

The functoriality of canonical mates with pasting and the description of the natural
transformation α! as the canonical mate associated to the inner two squares concludes the
proof.

The notion of equivalent morphisms in the 2-category DER of derivators (Definition
5.1) has a variant in every 2-category, hence there is also the notion of equivalent functors
in Cat .

5.5. Proposition. Let F : D → E be a morphism of derivators.

1. Every morphism of derivators preserves left Kan extensions along equivalences and
left adjoint functors.

2. If F preserves left Kan extensions along u : A → B and v : B → C, then F also
preserves left Kan extensions along vu : A→ C.

3. If u, v : A→ B are naturally isomorphic, then F preserves left Kan extensions along
u if and only if F preserves left Kan extensions along v.

4. If u, v are equivalent functors in Cat, then F preserves left Kan extensions along u
if and only if F preserves left Kan extensions along v.

Proof. If u : A→ B is an equivalence, then u∗ is part of an adjoint equivalence (u!, u
∗).

Hence the canonical mate u!FA → FBu! factors as a composition of three isomorphisms,

u!F
∼−→ u!Fu

∗u!
∼−→ u!u

∗Fu!
∼−→ Fu!,

establishing the first part of the first statement. Let (u, v) : A � B be an adjunction.
To conclude that every morphism preserves left Kan extensions along u it suffices by
Remark 3.4 to show that every morphism preserves colimits of shape (u/b), b ∈ B. Since
(vb, εb : uvb → b) ∈ (u/b) is a terminal object, this defines a homotopy final functor
1→ (u/b) and the statement hence follows from the following lemma (Lemma 5.6). The
second statement is immediate from the functoriality of mates with pasting. As for the
third statement, if α : u ∼−→ v is a natural isomorphism, then so is α∗ : u∗ ∼−→ v∗ and also
the total mate α! : v! → u! (21). The third statement is thus immediate from Lemma 5.4,
and together with the first statement this implies statement four.
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5.6. Lemma. Let F : D → E be a morphism of derivators and let u : A→ B be homotopy
final. If F preserves colimits of shape A, then F preserves colimits of shape B.

Proof. Let us recall that a functor u : A→ B is homotopy final if and only if the square

A u //

πA
��
|�

B

πB
��

1 // 1

(23)

is homotopy exact. To reformulate that F preserves colimits of shape B let us consider
the pasting on the left in

E (A)

(πA)!
��

E (B)u∗oo

(πB)!
��

D(B)

(πB)!
��

Foo E (A)

(πA)!
��

D(A)Foo

(πA)!
��

D(B)

(πB)!
��

u∗oo

E (1)

��

E (1)=
oo

��

D(1),
F
oo E (1)

��

D(1)
F
oo

��

D(1).=
oo

(24)

Using the homotopy exactness of (23) and the functoriality of mates with pasting, we
see that F preserves colimits of shape B if and only if the pasting on the left is an
isomorphism. Up to a vertical pasting by a pseudo-naturality isomorphism of F , this
pasting agrees with the pasting on the right. Using again the homotopy exactness of (23)
and our assumption on F , we see that the pasting on the right indeed is an isomorphism,
concluding the proof.

5.7. Example. If A ∈ Cat admits a final object ω, then every morphism of derivators
preserves colimits of shape A. In fact, in this case there is an adjunction (πA, ω) : A� 1,
and the result hence follows from Proposition 5.5 applied to πA. Alternatively, the result
follows from an application of Lemma 5.6 to ω : 1→ A.

5.8. Warning. Note that, in general, the converse implication in Lemma 5.6 is not true.
In more detail, there are homotopy final functor u : A→ B and morphisms of derivators
which preserve colimits of shape B but not of shape A. Let A ∈ Cat and πA : A → 1 be
the unique functor. The functor πA is homotopy final as soon as the nerve NA is weakly
contractible ([GPS14, Cor. 3.13]). Considering A = p for example in the represented case,
this shows that, in general, the converse implication is wrong.

In order to also obtain a positive statement in the converse direction, it suffices to
insist on u∗ being essentially surjective.

5.9. Lemma. Let u : A→ B be homotopy final such that u∗ : D(B)→ D(A) is essentially
surjective for every derivator D . A morphism of derivators preserves colimits of shape A
if and only if it preserves colimits of shape B.
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Proof. By Lemma 5.6 it suffices to show that a morphism F : D → E of derivators which
preserves colimits of shape B also preserves colimits of shape A. We again consider the
pastings (24) which match up to a vertical pasting by a pseudo-naturality isomorphism.
By assumption on F and u, the pasting on the left is an isomorphism, hence so is the
pasting on the right which is given by

colimA Fu
∗ → F colimA u

∗ ∼−→ F colimB .

Since the restriction morphism u∗ is essentially surjective, we conclude that F preserves
colimits of shape A.

5.10. Corollary. Let (l, r) : B � A be a reflective localization, i.e., an adjunction such
that r is fully faithful. A morphism of derivators preserves colimits of shape A if and only
if it preserves colimits of shape B.

Proof. As a right adjoint the functor r : A→ B is homotopy final, hence by Lemma 5.9
it remains to show that r∗ : D(B)→ D(A) is essentially surjective for every derivator D .
But if (l, r, η : id→ rl, ε : lr → id) is an adjunction, then we obtain an induced adjunction
(r∗, l∗, η∗ : id→ l∗r∗, ε∗ : r∗l∗ → id). Since r is fully faithful, ε : lr → id is an isomorphism,
hence so is ε∗ : r∗l∗ → id, and this implies that r∗ is essentially surjective.

We collect an additional closure property of the class of functors along which a fixed
morphism of derivators preserves left Kan extensions. This cancellation property will be
useful in §9.

5.11. Lemma. Let F : D → E be a morphism of derivators, let u : A→ B, v : B → C be
in Cat and let v be fully faithful. If F preserves left Kan extensions along vu : A → C,
then F preserves left Kan extensions along u.

Proof. Let us consider the following diagram

u!F
η

∼
//

��

v∗v!u!F
∼ //

��

v∗(vu)!F

∼

��

Fu! η
∼ //

η ∼
��

v∗v!Fu!

��

Fv∗v!u! ∼
// v∗Fv!u! ∼

// v∗F (vu)!

in which the unlabelled vertical morphisms are instances of the canonical mates (12). The
vertical morphism to the very right is invertible by assumption on F as are the morphisms
labelled by η since v is fully faithful. The remaining horizontal morphisms are invertible
as an instance of a pseudo-naturality constraint or by uniqueness of adjoints (Lemma 4.1),
and it is straightforward to verify the commutativity of the rectangle on the right. The
top left square commutes as a naturality square and the bottom left square commutes by
Lemma 3.8, and we conclude that the canonical mate u!F → Fu! is invertible.



368 MORITZ GROTH

5.12. Warning. The dual version of Lemma 5.11 allows us to conclude something about
right Kan extensions along the first functor. For a counterexample to the statement
making conclusion about the second functor see Warning 9.3.

6. Continuity and parameters

In this section we discuss some closure properties related to the passage to parametrized
versions of morphisms and natural transformations. This allows us to reformulate ques-
tions related to cocontinuity internally to the 2-category of derivators.

6.1. Proposition. [Gro13, Prop. 2.5] For every derivator D and every functor v : B →
B′ the restriction morphism v∗ : DB′ → DB is continuous and cocontinuous.

6.2. Proposition. [Gro13, Cor. 2.7]. Let F : D → E be a morphism of derivators, let
u : A → A′, and let B ∈ Cat. If F preserves left Kan extensions along u, then F also
preserves left Kan extensions along id× u : B × A→ B × A′.

6.3. Corollary. A morphism of derivators F : D → E preserves left Kan extensions
along u : A→ A′ if and only if FB : DB → E B preserves left Kan extensions along u for
every B ∈ Cat.

There is the following closely related result.

6.4. Proposition. Let D ,E be derivators, let u : A→ A′, let B ∈ Cat , and let F : D →
E B be a morphism of derivators. The morphism F preserves left Kan extensions along u
if and only if b∗F : D → E preserves left Kan extensions along u for every b ∈ B.

Proof. If F preserves left Kan extensions along u, then so does b∗F since evaluation
morphisms are cocontinuous (Proposition 6.1 and Proposition 5.2). Conversely, in order to
conclude that F preserves left Kan extensions along u we have to show that the canonical
mate associated to the left square in

D(A) F // E (B × A) b∗ // E (A)

D(A′)
F
//

u∗

OO

��

E (B × A′)
b∗
//

(id×u)∗

OO

��

E (A′),

u∗

OO

is an isomorphism. By (Der2) it suffices to check this at every object b ∈ B, which, by the
cocontinuity of b∗ (Proposition 6.1), is the case as soon as the canonical mate of the above
pasting is an isomorphism for every b ∈ B. Since this precisely means that b∗F, b ∈ B,
preserves left Kan extensions along u, this concludes the proof.
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Based on these compatibilities, one can show that most of the results obtained in this
paper have parametrized reformulations internally to the 2-category of derivators. We
begin by recalling that the passage to shifted derivators defines a pseudo-functor of two
variables

(−)(−) : Catop ×DER → DER : (A,D) 7→ DA.

While the partial pseudo-functors (−)A : DER → DER and D (−) : Catop → DER are
actual 2-functors, given a morphism of derivators F : D → E and a functor u : A → B,
the following diagram commutes up to the invertible natural transformation γu : u∗FB ∼−→
FAu∗,

DB FB //

u∗

��
~� ∼=

E B

u∗

��

DA

FA
// E A,

(25)

given by the following lemma.

6.5. Lemma. Let F : D → E be a morphism of prederivators and let u : A → B be a
functor. The pseudo-naturality constraints γu×idC , C ∈ Cat , of F assemble to an invertible
modification γu : u∗FB → FAu∗ populating (25).

Proof. This follows from a direct verification.

Considering Kan extensions instead of restrictions we obtain the following.

6.6. Lemma. Let F : D → E be a morphism of derivators and let u : A → B be a
functor. The canonical mates (12) for u× idC : A×C → B×C,C ∈ Cat, define a natural
transformation u!F

A → FBu!,

DA FA //

u!
��

~�

E A

u!
��

DB

FB
// E B.

(26)

Proof. Since there are an invertible modification (25) and adjunctions of derivators
(u!, u

∗) for D and for E , we can consider the natural transformation

u!F
A η→ u!F

Au∗u!
γ−1
u→ u!u

∗FBu!
ε→ FBu!

of derivators. This is an instance of the calculus of mates internally to the 2-category
DER. Unraveling definitions, this mate has as components the canonical mates (12)
associated to u× idC , C ∈ Cat .
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6.7. Lemma. Let u : A→ B be a functor between small categories. There is a lax natural
transformation

u! : (−)A → (−)B : DER → DER

given by the morphisms u! : DA → DB,D ∈ DER, and the natural transformations
γu : u!F

A → FBu! (26) for all F : D → E in DER.

Proof. There are three coherence properties to be verified for such a lax natural transfor-
mation. The first two ask for a compatibility with respect to composition of morphisms
of derivators and with respect to identity morphisms. These two are immediate from
the functoriality of mates with pasting. Similarly, as a consequence of Lemma 3.9 and
Lemma 6.6, if F,G : D → E are morphisms of derivators and if α : F → G is a natural
transformation, then for every u : A→ B there is the pasting relation

u!F
A //

α

��

FBu!

α

��

DA F //

u!

��
}�

E A

u!

��

=

DA ⇓α

F
%%

G

99

u!

��
}�

E A

u!

��

u!G
A // GBu!, DB ⇓α

F
&&

G

88 E B DB
G
// E B,

thereby establishing the remaining coherence property.

6.8. Lemma. Let F,G : D → E be morphisms of derivators. A natural transformation
α : F → G is a natural isomorphism if and only if the underlying natural transformation
α1 : F1 → G1 is invertible.

Proof. It is easy to check that a natural transformation α of derivators is invertible if
and only if all components αA, A ∈ Cat , are invertible, and it remains to show that if α1 is
invertible then every αA, A ∈ Cat , is invertible. Since isomorphisms in E (A) are detected
pointwise, it suffices to show that a∗αA, a ∈ A, is an isomorphism in E (1). Associated to
a : 1→ A there is the pasting relation

D(1)
G1

++

F1

33

KS
α1 E (1)

=

D(1)
G1 // E (1)

D(A)
FA

//

a∗

OO

E (A)

a∗

OO

?Gγ

D(A)

a∗

OO

GA
++

FA

33

KS
αA E (A),

a∗

OO

?Gγ

expressing one of the coherence properties of a modification. Since γF,a, γG,a, and α1 are
invertible, the same is true for a∗αA.
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6.9. Remark. Lemma 6.8 shows that the lax natural transformation constructed in
Lemma 6.7 restricts to a pseudo-natural isomorphism on the sub-2-category given by
all derivators, the morphisms which preserve left Kan extensions along u, and all natural
transformations of derivators. Alternatively, this also follows from Proposition 6.2.

This remark is of particular interest in the context of stable derivators and exact
morphisms; see §9.

7. Coproduct preserving morphisms

In this section we revisit the existence of (co)products in derivators [Gro13, Prop. 1.7] and
show that homotopy (co)products and categorical (co)products agree in a certain precise
sense. Similarly, a morphism of derivators preserves homotopy (co)products if and only
if it preserves categorical (co)products.

7.1. Proposition. Let D be a derivator and let S be a discrete category. A cocone
X ∈ D(SB) is a coproduct cocone if and only if diaSB(X) : SB → D(1) is a coproduct
cocone, i.e., it exhibits X∞ as the coproduct of Xs ∈ D(1), s ∈ S.

Proof. Let us consider the pasting diagram Figure 1 in which the canonical isomorphism
in the top triangle follows from the construction of coproducts in D(1). The bottom
triangle is the adjunction counit, the top square commutes by the strictness of underlying
diagram morphisms, and the bottom square is populated by the natural transformation
induced by (4) in the special case of A = S. Note that diaSπ

∗
S = ∆S and the vertical

pasting of the triangles evaluated at y ∈ D(1) is hence the fold map

∇ : colimS ∆S(y) =
∐
s∈S

y → y.

An evaluation of the vertical pasting of the squares at X ∈ D(SB) is the natural trans-
formation i∗SdiaSB(X) → ∆S(X∞) induced by the structure maps of X. Thus, the total
pasting applied to X yields the map

∐
s∈S Xs → X∞ induced from the underlying dia-

gram diaSBX, i.e., the map detecting if diaSBX is a coproduct cocone in the usual sense.
Since the upper two natural transformations are invertible, this is the case if and only
if the pasting of the lower two natural transformations is an isomorphism on X. Note
that this latter pasting is the canonical mate associated to the square on the left in (5)
in the special case of A = S, which by Proposition 2.4 is an isomorphism if and only if
X ∈ D(SB) is a coproduct cocone.

7.2. Definition. Let S be a discrete category. A morphism of derivators preserves
S-fold coproducts if it preserves left Kan extensions along ∇S : S → 1. A morphism of
derivators preserves initial objects if it preserves left Kan extensions along ∅ : ∅ → 1.

Dually, we speak about morphisms preserving products or terminal objects. These
two notions reduce to the usual categorical notions as we show next.
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D(1)S
B i∗S // D(1)S

colimS

��

D(SB)
i∗S //

diaSB

OO

��id

D(S)

' diaS

OO

(πS)!
//

��
∼=

D(1)

D(SB)
∞∗

//

id

OO

��

D(1)
id

GG

π∗S

OO

��
ε

Figure 1: Matching of categorical coproducts and homotopy coproducts.

7.3. Proposition. Let F : D → E be a morphism of derivators and let S be a (possibly
empty) discrete category. The following are equivalent.

1. The morphism F preserves S-fold coproducts.

2. The morphism F preserves left Kan extensions along iS : S → SB.

3. The functor FSB : D(SB)→ E (SB) sends coproduct cocones to coproduct cocones.

4. The underlying functor F1 : D(1)→ E (1) preserves S-fold coproducts.

5. Every functor FA : D(A)→ E (A), A ∈ Cat , preserves S-fold coproducts.

Proof. The equivalence of the first three statements is simply a special case of Proposition
3.7. We next show that the first and fourth statement are equivalent. Let F : D → E be
a morphism of derivators and let us consider the following two pastings

D(S)
FS // E (S)

diaS
'
//

W_
∼=

E (1)S

W_
id

D(1)
F1
//

∇∗S

OO

E (1)
id
//

∇∗S

OO

E (1),

∆S

OO
D(S)

diaS
'
// D(1)S

FS
1 //

W_
id

E (1)S

V^
id

D(1)
id
//

∇∗S

OO

D(1)
F1
//

∆S

OO

E (1),

∆S

OO

(27)

in which the two inner squares commute. Note that these inner squares are horizontally
constant (the horizontal functors are equivalences and the squares are populated by natu-
ral isomorphisms) and they hence have invertible mates. These two pastings agree up to a
vertical pasting by the pseudo-naturality constraint of the underlying diagram morphism.
Putting this together, F preserves S-fold coproducts if and only if the canonical mate of
the pasting on the left is an isomorphism if and only if the canonical mate of the pasting
on the right is an isomorphism if and only if the underlying functor F1 : D(1) → E (1)
preserves S-fold coproducts, thereby establishing the equivalence of (i) and (iv). Since
(v) clearly implies (iv), it remains to show that (i) implies (v). But, using the equivalence
of (i) and (iv), this is an immediate consequence of Corollary 6.3.
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Proposition 7.3 applies, in particular, in the case of S = ∅, thereby yielding state-
ments about morphisms of derivators which preserve initial objects. As an immediate
consequence we obtain the following result.

7.4. Corollary. A morphism of derivators which preserves binary coproducts also pre-
serves non-empty, finite coproducts.

Proof. This is immediate from the corresponding result in ordinary category theory and
two applications of Proposition 7.3.

7.5. Lemma. A morphism of derivators preserves initial objects if and only if it preserves
left Kan extensions along cosieves.

Proof. If a morphism preserves initial objects, then it also preserves left Kan extensions
along cosieves by [Gro13, Prop. 1.23] and Lemma 3.5. For the converse direction it suffices
to consider the empty cosieve ∅ : ∅ → 1.

In order to apply Corollary 7.4 it is convenient to have a different description of binary
coproducts in derivators. Recall from ordinary category theory that coproducts of two
objects x, y ∈ C in a category with finite coproducts can equivalently be described by
pushout diagrams

∅ //

��

x

��

y // x t y

in which ∅ is an initial object. To extend this to derivators let us consider the functor

k = ((1, 0), (0, 1)) : 1 t 1→ � = [1]2 (28)

which factors as compositions of fully faithful functors

1 t 1 i→ p ip→ � and 1 t 1 j→ y iy→ �. (29)

Here, ip : p → � and iy : y → � denote the inclusions of the full subcategories obtained
by removing the final object (1, 1) and initial object (0, 0), respectively. Our naming
convention for the objects in � is

(0, 0) //

��

(1, 0)

��

(0, 1) // (1, 1).

Given a derivator D , as a special case of Definition 2.1, a diagram X ∈ D(y) is a
coproduct cocone if it lies in the essential image of j! : D(1 t 1)→ D(y).



374 MORITZ GROTH

7.6. Notation. Let D be a derivator. We denote by D(�)copr ⊆ D(�) the full subcate-
gory spanned by the cocartesian squares X such that X(0,0)

∼= ∅, and we refer to any object
in D(�)copr as a coproduct square.

The justification for this terminology is provided by the following lemma.

7.7. Lemma. For every derivator D the left Kan extension along k (28) induces an equiv-
alence D(1t1) ' D(�)copr. Moreover, a square X lies in D(�)copr if and only if X(0,0)

∼= ∅
and if the restriction i∗yX ∈ D(y) is a coproduct cocone.

Proof. The functor (28) is fully faithful hence so is k! : D(1t1)→ D(�). Since k factors
as indicated in (29), there are by Lemma 4.1 natural isomorphisms

k!
∼= (ip)!i! ∼= (iy)!j!.

All of these functors are fully faithful and these factorizations yield two different descrip-
tions of the essential image of k!. Using the natural isomorphism k!

∼= (ip)!i! we see that
X ∈ D(�) lies in the essential image of k! if and only if X is cocartesian and X(0,0)

∼= ∅,
i.e., if and only if X is a coproduct square. In fact, since i is a cosieve this follows from
[Gro13, Prop. 1.23]. Similarly, using the isomorphism k!

∼= (iy)!j! and the fact that iy
is a cosieve it follows from the same proposition that the essential image of k! consists
precisely of those X with X(0,0)

∼= ∅ and such that i∗yX is a coproduct cocone.

This seemingly picky discussion allows us in §9 to show that right exact morphisms
preserve finite coproducts.

8. Pointed morphisms

In this section we define pointed morphisms of pointed derivators. It is shown that this is a
natural class of morphisms which allows for canonical comparison maps expressing a lax or
an oplax compatibility with suspensions, loops, cofibers, fibers, and similar constructions.

8.1. Lemma. A morphism of pointed derivators preserves initial objects if and only if it
preserves terminal objects.

Proof. This is immediate from Proposition 7.3.

8.2. Corollary. A morphism of pointed derivators preserves zero objects if and only if
it preserves left extensions by zero if and only if it preserves right extensions by zero.

Proof. This is immediate from Lemma 7.5.
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8.3. Remark. To put this in words, a morphism between pointed derivators which pre-
serves initial objects (‘a construction on the left’) preserves right Kan extensions along
sieves (‘a construction on the right’). More interestingly, this phenomenon reappears in
the stable context, and we get back to this in §9 and [GS17a].

8.4. Definition. A morphism of pointed derivators is pointed if it preserves zero ob-
jects.

8.5. Examples. Equivalences, left adjoint, and right adjoint morphisms of pointed deriva-
tors are pointed. The class of pointed morphisms is closed under compositions, shifting,
products, and the passage to opposite or equivalent morphisms.

8.6. Remark. Despite being very simple to prove, Corollary 8.2 is quite useful. In
the framework of derivators, one often combines three types of constructions, namely
restriction morphisms, left Kan extension morphisms, and right Kan extension morphisms.
In the context of a pointed morphism, the above corollary frequently allows us to construct
canonical comparison maps between suitable combinations of such constructions.

1. Pointed morphisms are compatible with restrictions up to specified isomorphisms
by pseudo-naturality.

2. Pointed morphisms preserve left and right extensions by zero up to canonical iso-
morphisms (Corollary 8.2).

3. Pointed morphisms admit canonical, possibly non-invertible comparison maps for
more general Kan extensions (see (12) and (13)).

Being able to pass to inverses of the first two kinds of maps often allows us to replace
certain zigzags of morphisms by direct morphisms.

We illustrate this by three closely related examples.

8.7. Construction. Let F : D → E be a pointed morphism of pointed derivators.
We construct canonical, possibly non-invertible natural transformations populating the
following squares,

D([1]) cof //

F
��

D([1])

F
��

D([1]) fib //

F
��

�	

D([1])

F
��

E ([1])
cof
// E ([1]),

AI

E ([1])
fib
// E ([1]).

By duality it is enough to construct the natural transformation in the square on the left.
Denoting by i : [1] → p the sieve classifying the horizontal morphism (0, 0) → (1, 0), let
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us recall that cof is defined by the rows in the following diagram

D([1])
i∗ //

F
��

�� ∼=

D(p)
(ip)!

//

F
��

D(�)
(k′)∗

//

F
��

D([1])

F
��

E ([1])
i∗
// E (p)

(ip)!

// E (�)
(k′)∗

//

@H

E ([1]),

@H∼=

in which k′ : [1] → � classifies the vertical morphism (1, 0) → (1, 1). In this diagram
the two natural transformations on the left are instances of (13) and (12), respectively,
while the transformation on the right is a pseudo-naturality isomorphism. As a pointed
morphism, F preserves by Corollary 8.2 right Kan extensions along the sieve i. Passing
to the inverse of the natural transformation on the left, we can define the canonical
transformation as the following pasting

cof ◦ F[1] = (k′)∗ ◦ (ip)! ◦ i∗ ◦ F[1] (30)
∼= (k′)∗ ◦ (ip)! ◦ Fp ◦ i∗ (31)

→ (k′)∗ ◦ F� ◦ (ip)! ◦ i∗ (32)
∼= F[1] ◦ (k′)∗ ◦ (ip)! ◦ i∗ (33)

= F[1] ◦ cof. (34)

The functoriality of mates with respect to pasting implies that these canonical natural
transformations

cof ◦ F → F ◦ cof and F ◦ fib→ fib ◦ F (35)

are compatible with compositions and identities. If the transformations in (35) are in-
vertible, then we say that F preserves cofibers or fibers, respectively.

8.8. Construction. Let us recall that the suspension functor in a pointed derivator D
is defined as

Σ = (1, 1)∗ ◦ (ip)! ◦ (0, 0)∗ : D(1)→ D(p)→ D(�)→ D(1).

Since (0, 0) : 1 → p is a sieve, associated to a pointed morphism F : D → E of pointed
derivators we can consider the composition

Σ ◦ F1 = (1, 1)∗ ◦ (ip)! ◦ (0, 0)∗ ◦ F1 (36)
∼= (1, 1)∗ ◦ (ip)! ◦ Fp ◦ (0, 0)∗ (37)

→ (1, 1)∗ ◦ F� ◦ (ip)! ◦ (0, 0)∗ (38)
∼= F1 ◦ (1, 1)∗ ◦ (ip)! ◦ (0, 0)∗ (39)

= F1 ◦ Σ. (40)

This leads to canonical natural transformations

Σ ◦ F → F ◦ Σ and F ◦ Ω→ Ω ◦ F, (41)

which are compatible with respect to compositions and identities. And if these trans-
formations are invertible, the morphism is said to preserve suspensions or loops,
respectively.
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8.9. Remark. Note that the canonical morphism (41) points in the opposite direction
as the natural transformations FΣ → ΣF yielding exact structures on additive functors
F of triangulated categories. We will come back to this in §10.

8.10. Construction. Let [2] be the poset (0 < 1 < 2) and let � = [2] × [1]. The for-
mation of coherent cofiber sequences in a pointed derivator D defines a functor D([1])→
D(�). Since this functor is given by a right extension by zero followed by a left Kan
extensions, associated to a pointed morphism F : D → E of pointed derivators there is a
canonical natural transformation populating the diagram

D([1]) //

F
��

D(�)

F
��

E ([1]) // E (�).

@H
(42)

These natural transformations are compatible with identities and composition. A pointed
morphism preserves cofiber sequences if this canonical transformation is invertible,
and there is the dual notion of a pointed morphism which preserves fiber sequences.

8.11. Remark. As a consequence of Lemma 3.9, the canonical transformations con-
structed in Construction 8.7, Construction 8.8, and Construction 8.10 are compatible
with natural transformations of pointed morphisms.

For later reference we make this remark explicit in the following special case.

8.12. Proposition. For pointed morphisms F,G : D → E of pointed derivators and a
natural transformation α : F → G the following diagram commutes

Σ ◦ F //

Σα
��

F ◦ Σ

αΣ
��

Σ ◦G // G ◦ Σ,

in which the unlabeled morphisms are instances of (41).

Proof. We write i = (0, 0) : 1→ p for the sieve classifying the initial object and consider
the following diagram

(1, 1)∗(ip)!i∗F1

α
��

(1, 1)∗(ip)!Fpi∗ //
∼=oo

α
��

(1, 1)∗F�(ip)!i∗

α
��

∼= // F1(1, 1)∗(ip)!i∗

α
��

(1, 1)∗(ip)!i∗F1 (1, 1)∗(ip)!Fpi∗ //
∼=
oo (1, 1)∗F�(ip)!i∗ ∼=

// F1(1, 1)∗(ip)!i∗,

The rows coincide with the canonical transformations (41) from Construction 8.8, hence
it suffices to show that this diagram commutes. The two squares on the left commute by
two applications of Lemma 3.9 while the square on the right commutes by the coherence
properties of a modification.
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9. Exact morphisms and homotopy finite Kan extensions

In this section we collect some results concerning left exact, right exact, and exact mor-
phisms of derivators. We show that right exact morphisms preserve many basic construc-
tions and, more generally, left homotopy finite left Kan extensions.

9.1. Definition.

1. A morphism of derivators preserves pushouts if it preserves colimits of shape
p. Dually, a morphism of derivators preserves pullbacks if it preserves limits of
shape y.

2. A morphism of derivators is right exact if it preserves initial objects and pushouts.
Dually, a morphism of derivators is left exact if it preserves terminal objects and
pullbacks.

3. A morphism of derivators is exact if it is right exact and left exact.

9.2. Proposition. [Gro13, Cor. 4.17] Right exact morphisms of derivators preserve finite
coproducts and left exact morphisms preserve finite products.

Proof. Let F : D → E be a right exact morphism of derivators. We show that F
preserves binary coproducts. Let k : 1 t 1 → � be the functor classifying the objects
(1, 0), (0, 1), and let

1 t 1 i //

j

��

p

ip
��

y
iy

// �

(43)

be the two factorizations of k as in (29). Since i : 1 t 1→ p is a cosieve, the functor i! is
by [Gro13, Prop. 1.23] left extension by initial objects. As F preserves initial objects, by
Lemma 7.5 it also preserves left Kan extensions along i. As a right exact morphism, F
also preserves left Kan extensions along ip (Proposition 3.7), and F hence also preserves
left Kan extensions along k = ip ◦ i (Proposition 5.5). Since iy and j are fully faithful and
k = iy ◦ j, it follows that F also preserves left Kan extensions along j (Lemma 5.11), and
Proposition 7.3 then implies that F preserves binary coproducts. The case of non-empty,
finite coproducts is taken care of by Corollary 7.4. Moreover, F also preserves empty
coproducts, i.e., initial objects since F is right exact.

We revisit Warning 5.12.

9.3. Warning. Let F : D → E be a morphism of derivators, let u : A→ B and v : B → C
be fully faithful. If F preserves left Kan extensions along vu, then, in general, F does not
preserve left Kan extensions along v.

To construct a counter-example we again consider the situation in (43). Let F : D → E
be a morphism of derivators which preserves finite, possibly empty coproducts. By Lemma
7.7 and Proposition 7.3 the morphism F preserves the essential image of k!, and hence also
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left Kan extensions along k by Lemma 3.5. However, in general, F does not preserve left
Kan extensions along ip or, equivalently, pushouts (Proposition 3.7). In fact, any ordinary
functor between complete and cocomplete categories which preserves finite coproducts but
not pushouts provides a counter-example.

9.4. Proposition. [Gro13, Prop. 3.21] Right exact morphisms of pointed derivators pre-
serve suspensions.

Proof. Given a right exact morphism F : D → E of pointed derivators, we have to show
that the canonical transformation Σ ◦F → F ◦Σ (41) is invertible. But this is immediate
from Construction 8.8, since right exact morphisms preserve left Kan extensions along ip
(Proposition 3.7).

In a similar way one makes precise and proves the following result.

9.5. Proposition. Right exact morphisms of pointed derivators preserve cones, cofibers,
cofiber squares, cofiber sequences, and iterated cofiber sequences.

9.6. Remark. The canonical isomorphisms given by Proposition 9.4 and Proposition 9.5
are compatible with natural transformations of right exact morphisms (Remark 8.11 and
Proposition 8.12).

9.7. Proposition. [Gro13, Cor. 4.17] A morphism of stable derivators is left exact if
and only if it right exact if and only if it is exact.

Proof. By duality it suffices to show that a left exact morphism of stable derivators is
right exact, and by Lemma 8.1 it only remains to show that a left exact morphism preserves
pushouts. Since the morphism preserves pullbacks, it sends cartesian squares to cartesian
squares (Proposition 3.7), which, using stability, is to say that it sends cocartesian squares
to cocartesian squares. By an additional application of Proposition 3.7 this implies that
the morphism preserves pushouts.

9.8. Corollary. Left adjoint morphisms, right adjoint morphisms, and equivalences of
stable derivators are exact.

Proof. This follows from Proposition 9.7 and the (co)continuity of adjoints.

This applies, in particular, to derived adjunctions and equivalences arising from Quillen
adjunctions and Quillen equivalences of stable model categories.

9.9. Examples. The class of exact morphisms is closed under compositions, shifting,
products, and the passage to opposite, naturally isomorphic or equivalent morphisms.

As a preparation for the compatibility of right exact morphism with left homotopy
finite left Kan extensions we recall a theorem of Ponto–Shulman [PS14] showing that such
morphisms preserve homotopy finite colimits.
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9.10. Definition. A small category A is strictly homotopy finite if the nerve NA
is a finite simplicial set. A small category is homotopy finite if it is equivalent to a
strictly homotopy finite category.

Thus, strictly homotopy finite categories are precisely the finite and skeletal categories
which have no non-trivial endomorphisms. Alternatively, these are precisely the finite and
directed category. (Let us recall that a category is directed if whenever a→ b is a non-
identity morphism, then there is no morphism b→ a.)

9.11. Theorem. [PS14, Thm. 7.1] Every right exact morphism of derivators preserves
homotopy finite colimits.

With our preparation we now extend this result to sufficiently finite left Kan extensions
(Theorem 9.13). The following definition is inspired by Remark 3.4 and the notion of L-
finite limits in classical category theory [Par90, Prop. 7].

9.12. Definition. Let u : A→ B be a functor between small categories.

1. The functor u is left homotopy finite if for every b ∈ B there is a homotopy
finite category Cb and a homotopy final functor Cb → (u/b).

2. The functor u is right homotopy finite if for every b ∈ B there is a homotopy
finite category Cb and a homotopy cofinal functor Cb → (b/u).

We say that a morphism of derivators preserves left homotopy finite left Kan
extensions if it preserves left Kan extensions along all left homotopy finite functors.

9.13. Theorem. Every right exact morphism of derivators preserves left homotopy finite
left Kan extensions.

Proof. Let F : D → E be a right exact morphism of derivators and let u : A → B be
a left homotopy finite functor. By Remark 3.4 it is enough to show that F preserves
colimits of shape (u/b) for all b ∈ B. By Definition 9.12 for every b ∈ B there is a
homotopy finite category Cb and a homotopy final functor ib : Cb → (u/b). Theorem 9.11
shows that F preserves colimits of shape Cb and, by Lemma 5.6, the same is true for
colimits of shape (u/b).

9.14. Remark. By this theorem right exact morphisms of derivators preserve a large
class of left Kan extensions. It turns out that such morphisms also preserve many canoni-
cal isomorphisms between expressions involving such right Kan extensions. In particular,
in the framework of stable derivators this leads to a calculus of uniform formulas for stable
derivators.

Also the following two variants of Theorem 9.13 are convenient. Due to their impor-
tance, we state them as separate theorems.
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9.15. Theorem. Every right exact morphism of pointed derivators preserves

1. left homotopy finite left Kan extensions and

2. right extensions by zero.

Proof. This is immediate from Theorem 9.13 and Corollary 8.2.

9.16. Theorem. Every exact morphism of stable derivators preserves

1. left homotopy finite left Kan extensions,

2. left extensions by zero,

3. right homotopy finite right Kan extensions, and

4. right extensions by zero.

Proof. This is immediate from Theorem 9.15 and its dual.

9.17. Remark.

1. Of course, the subcases (ii) and (iv) in Theorem 9.16 are redundant but are men-
tioned in order to emphasize them.

2. These three theorems apply rather frequently since many typical constructions sat-
isfy the above finiteness assumptions; see for example [GŠ14, GŠ16b, GŠ16a, GŠ15].
Additional applications of these theorems will also appear in [GS17a].

3. LetDERSt,ex be the 2-category of stable derivators, exact morphisms, and all natural
transformations, and let u : A→ B be a left homotopy finite functor. By Theorem
9.16 the lax natural transformation

u! : (−)A → (−)B : DERSt,ex → DERSt,ex

which is the restriction of the lax natural transformation from Lemma 6.7 toDERSt,ex

is a pseudo-natural transformation. There is variant of this for right Kan extensions
along right homotopy finite functors.

10. The canonicity of canonical triangulations

The values of strong, stable derivators can be turned into triangulated categories, and we
refer to these triangulations as canonical triangulations; see [Fra96, Mal01] or [Gro13,
§4.2]. Our next goal is to show that these triangulations are 2-functorial with respect to
exact morphisms and arbitrary transformations.

Given a strong, stable derivator, this specializes to canonical exact structures on re-
striction and Kan extension functors, and there is also a 2-categorical variant of this
statement. These results lead to a uniqueness statement for canonical triangulations,
thereby justifying the terminology. Moreover, there are variants for canonical higher
triangulations [BBD82, Mal05, GŠ16a].
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10.1. Definition. Let T and T ′ be triangulated categories. An exact functor T → T ′
is a pair (F, σ) consisting of

1. an additive functor F : T → T ′ and

2. a natural transformation σ : FΣ→ ΣF

such that for every distinguished triangle X
f→ Y

g→ Z
h→ ΣX in T the image triangle

FX
Ff→ FY

Fg→ FZ
σ◦Fh→ ΣFX is distinguished in T ′. The natural transformation σ is an

exact structure on F .

10.2. Construction. For every exact morphism F : D → E of stable derivators and
A ∈ Cat we construct a natural isomorphism

σ = σA : FA ◦ Σ ∼−→ Σ ◦ FA. (44)

Passing to shifted derivators, we can assume that A = 1 (Examples 9.9). Recall that for
every pointed morphism we constructed a canonical natural transformation (41) pointing
in the opposite direction, which we know to be invertible for right exact morphisms
(Proposition 9.4). We define (44) to be the inverse of (41) and refer to it as the canonical
exact structure on FA.

10.3. Remark. Let (F, σ) : T → T ′ be an exact functor of triangulated categories. It
follows that the exact structure σ : FΣ → ΣF is necessarily a natural isomorphism.
In fact, associated to X ∈ T there is a distinguished triangle X → 0 → Z ∼−→ ΣX
in which the final morphism is invertible. The image triangle under F takes the form
FX → 0→ FZ → ΣFX. Again, the final morphism FZ ∼−→ FΣX

σX→ ΣFX is invertible,
showing that σX is invertible.

To put it in plain English, since the exact structure in Definition 10.1 points in the
bad direction (see (41)), it better is a natural isomorphism.

This terminology employed in Construction 10.2 is justified by Theorem 10.5. As a
preparation we make the following construction.

10.4. Construction. Let D be a pointed derivator and let X ∈ D(�) be such that
X1,0

∼= X0,1
∼= 0,

X0,0
//

��

0

��

0 // X1,1.

Denoting by i = (0, 0) : 1 → p the sieve classifying the initial object, it follows from
[Gro13, Prop. 3.6] that i∗pX ∈ D(p) lies in the essential image of i∗ which is to say
that the unit η : i∗pX → i∗i

∗i∗pX is an isomorphism. This allows us to form the natural
transformation

Φ: (ip)!i∗i
∗i∗pX

η−1

→ (ip)!i
∗
pX

ε→ X
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on the full subcategory D(�)ex ⊆ D(�) spanned by all diagrams satisfying this vanishing
condition. Since the suspension is defined by Σ = (1, 1)∗(ip)!(0, 0)∗, evaluating at (1, 1)
yields

ϕ = Φ1,1 : Σ(X0,0)→ X1,1. (45)

By the fully faithfulness of ip, this transformation is invertible on suspension squares,
i.e., on squares X ∈ D(�)ex which additionally are cocartesian.

10.5. Theorem. Let F : D → E be an exact morphism of strong, stable derivators and
let A ∈ Cat. The isomorphism (44) turns FA : D(A) → E (A) into an exact functor with
respect to canonical triangulations.

Proof. The functor FA : D(A) → E (A) is additive by Proposition 9.2 and it hence
remains to show that (44) defines an exact structure. Passing to shifted derivators we
assume without loss of generality that A = 1, and it suffices to show that F = F1 : D(1)→
E (1) and σ = σ1 : F ◦Σ ∼= Σ◦F as in (44) send standard distinguished triangles in D(1),
i.e., those arising from cofiber sequences associated to coherent morphisms to distinguished
triangles in E (1).

To this end, let Q ∈ D(�) be a coherent cofiber sequence and let us consider the
corresponding standard triangle

(0, 0)∗Q→ (1, 0)∗Q→ (1, 1)∗Q→ (2, 1)∗Q
ϕ−1

→ Σ(0, 0)∗Q,

where ϕ is as in (45). In order to show that the associated image triangle in E (1) is
distinguished we pass to the following diagram

F (0, 0)∗Q // F (1, 0)∗Q // F (1, 1)∗Q // F (2, 1)∗Q
ϕ−1
// FΣ(0, 0)∗Q σ // ΣF (0, 0)∗Q

(0, 0)∗FQ

γ ∼=
OO

// (1, 0)∗FQ

γ ∼=
OO

// (1, 1)∗FQ

γ∼=
OO

// (2, 1)∗FQ

γ∼=
OO

ϕ−1
// Σ(0, 0)∗FQ.

∼=
Σγ

55

In this diagram the vertical morphisms are pseudo-naturality isomorphisms, and the three
squares to the left hence commute. The remaining morphisms are instances of inverses
of (45) and the claimed exact structure σ. In fact, we consider the inverse of (45) for the
cofiber sequence Q and also for FQ, which is again a cofiber sequence since F is exact
(Proposition 9.5). To conclude the proof it remains to show that the quadrilateral on the
right commutes. Writing X = ι02Q ∈ D(�) for the corresponding suspension square, this
amounts to showing that

F (1, 1)∗X
ϕ−1
// FΣ(0, 0)∗X σ // ΣF (0, 0)∗X

(1, 1)∗FX

γ ∼=

OO

ϕ−1
// Σ(0, 0)∗FX

∼=
γ

77

(46)

commutes. Unraveling the definition of ϕ and σ (Construction 10.4, Construction 10.2,
and Construction 8.8), it suffices to show that Figure 2 commutes. In this diagram the
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F (X1,1) FΣ(X0,0)

F (1, 1)∗X

=

F (1, 1)∗(ip)!(ip)
∗Xε

∼=
oo

η

∼=
//

=

F (1, 1)∗(ip)!i∗i
∗i∗pX

(1, 1)∗FX

γ ∼=

OO

(1, 1)∗F (ip)!i
∗
pX

ε
∼=

oo
η

∼=
//

γ ∼=

OO

=

(1, 1)∗F (ip)!i∗i
∗i∗pX

γ∼=

OO

(1, 1)∗(ip)!i
∗
pFX

ε ∼=

OO

=

γ

∼= //

η ∼=
��

(1, 1)∗(ip)!Fi
∗
pX η

∼= //

∼=

OO

η ∼=
��

(1, 1)∗(ip)!Fi∗i
∗i∗pX

∼=

OO

∼=
��

(1, 1)∗(ip)!i∗i
∗i∗pFX γ

∼= // (1, 1)∗(ip)!i∗i
∗Fi∗pX γ

∼= // (1, 1)∗(ip)!i∗Fi
∗i∗pX

Σ
(
(FX)0,0

)
ΣF (X0,0)

Figure 2: The remaining quadrilateral (46) commutes.

squares labeled by an equality sign commute as naturality squares, while the remaining
two squares commute by two applications of Lemma 3.8.

10.6. Remark. With the exception of the slightly more involved direct verification that
(46) commutes (by means of Figure 2), the proof of Theorem 10.5 is completely straight-
forward. It turns out that there is a way to formalize formulas relative to 2-categories of
derivators and this makes such direct verifications obsolete. We will come back to this
elsewhere.

10.7. Remark. This result offers the following justification of the terminology canonical
triangulations. Note that the construction of canonical triangulations depends on certain
choices, for example on the choice of a suspension functor which in turn relies on the
choice of certain Kan extension functors. Let D be a strong stable derivator, let A ∈ Cat ,
and let us consider the exact identity morphism id: D → D . It follows from the proof
of Theorem 10.5 that if we endow D(A) with two different canonical triangulations, then
the identity functor id : D(A) → D(A) can be turned into an exact isomorphism with
respect to these triangulations.

Unraveling definitions one observes that this exact structure is obtained by combining
total mates of identity transformations, i.e., by those natural transformations showing
that the independently chosen Kan extensions are isomorphic. And in this sense also this
exact structure is canonical.

An additional justification of the terminology is given by the following result (see also
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Theorem 10.12 for a more systematic variant).

10.8. Corollary. Let D be a strong, stable derivator and let u : A→ B be in Cat. The
functors u∗ : D(B) → D(A), u! : D(A) → D(B), and u∗ : D(A) → D(B) can be turned
into exact functors with respect to canonical triangulations.

Proof. The calculus of parametrized Kan extensions yields adjunctions of strong, stable
derivators

(u!, u
∗) : DA � DB and (u∗, u∗) : DB � DA,

given by restriction and Kan extension morphisms. These three morphisms are exact
by Corollary 9.8 and the underlying functors can hence canonically be turned into exact
functors (Theorem 10.5).

Theorem 10.5 also has a variant for natural transformations, and to make it precise
we recall the following definition.

10.9. Definition. Let F,G : T → T ′ be exact functors between triangulated categories.
A natural transformation α : F → G is exact if the following diagram commutes,

F ◦ Σ //

α

��

Σ ◦ F
α

��

G ◦ Σ // Σ ◦G.

At the level of derivators there is no corresponding concept, since this compatibility
is automatic.

10.10. Corollary. Let F,G : D → E be exact morphisms of strong stable derivators,
let α : F → G be a natural transformation, and let A ∈ Cat. The natural transformation
αA : FA → GA is exact with respect to the canonical exact structures (44).

Proof. Passing to shifted derivators, we can again assume that A = 1 and in this case
the result is immediate from Proposition 8.12.

10.11. Corollary. Let D be a strong stable derivator and let α : u → v be a natural
transformation in Cat. The induced transformation α∗ : u∗ → v∗ between u∗, v∗ : D(B)→
D(A) is exact with respect to the canonical exact structures from Corollary 10.8.

Proof. There is a natural transformation α∗ : u∗ → v∗ between the exact restriction
morphisms u∗, v∗ : DB → DA. Hence, the statement follows from Corollary 10.10 and an
evaluation at the category A = 1.
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The exact structures constructed in Theorem 10.5 are functorial in exact morphisms.
To formulate this in a special case more concisely, we denote by T riaCAT the 2-category
of triangulated categories, exact functors, and exact natural transformations. This 2-
category comes with a forgetful 2-functor T riaCAT → CAT .

10.12. Theorem. Every strong, stable derivator D : Catop → CAT admits a lift against
the forgetful 2-functor T riaCAT → CAT ,

T riaCAT

��

Catop
D

//

∃D
88

CAT ,

given by endowing D(A), A ∈ Cat , with canonical triangulations.

Proof. For every A ∈ Cat we choose a canonical triangulation on D(A) [Gro13, §4.2].
Given a functor u : A→ B, the restriction functor u∗ : D(B)→ D(A) is exact (Corollary
10.8). In fact, we endow it with the canonical exact structure constructed in the proof of
Theorem 10.5, while we choose id∗ : D(A) → D(A) to be endowed with the trivial exact
structure. The definition of composition of exact functors of triangulated categories and
the functoriality of mates with respect to pasting show that this construction is compatible
with compositions. Corollary 10.11 concludes the proof.

10.13. Remark. These lifts of strong, stable derivators to the 2-category T riaCAT
are themselves 2-functorial. In fact, if we denote by DERSt,strong,ex the 2-category of
strong, stable derivators, exact morphisms, and all natural transformations, then choosing
canonical triangulations for all strong, stable derivators yields a 2-functor

DERSt,strong,ex → T riaCAT Cat
op

.

Here, T riaCAT Cat
op

denotes the 2-category of 2-functors Catop → T riaCAT , exact
pseudo-natural transformations, and exact modifications.

10.14. Remark. There are variants of the results of this section for canonical strong
triangulations ([BBD82, Mal05, GŠ16a]). In particular, a strong stable derivator also
admits a lift against the forgetful functor from the 2-category of strongly triangulated
categories, exact functors, and exact natural transformations. The details are very similar
to the case of ordinary triangulations and are left to the interested reader.

10.15. Remark. Let us recall that one way to think of derivators is as some kind of
weakly final approach to abstract homotopy theories. Quillen model categories and com-
plete and cocomplete ∞-categories have underlying homotopy derivators (see [Cis03] in
the first case and [GPS14] for a sketch proof in the second case). And it is expected that
there are variants of these results for other axiomatizations of (∞, 1)-categories. Con-
jecturally, these assignments preserve stable homotopy theories and exact morphisms of
stable homotopy theories. Hence, once these transitions are understood in more detail,
the results of this section have implications for these other approaches as well.
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modèles. Ann. Math. Blaise Pascal, 10(2):195–244, 2003.

[Cis04] Denis-Charles Cisinski. Le localisateur fondamental minimal. Cah. Topol.
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