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COARSE-GRAINING OPEN MARKOV PROCESSES

JOHN C. BAEZ AND KENNY COURSER

Abstract. Coarse-graining is a standard method of extracting a simpler Markov pro-
cess from a more complicated one by identifying states. Here we extend coarse-graining
to ‘open’ Markov processes: that is, those where probability can flow in or out of certain
states called ‘inputs’ and ‘outputs’. One can build up an ordinary Markov process from
smaller open pieces in two basic ways: composition, where we identify the outputs of
one open Markov process with the inputs of another, and tensoring, where we set two
open Markov processes side by side. In previous work, Fong, Pollard and the first au-
thor showed that these constructions make open Markov processes into the morphisms
of a symmetric monoidal category. Here we go further by constructing a symmetric
monoidal double category where the 2-morphisms include ways of coarse-graining open
Markov processes. We also extend the already known ‘black-boxing’ functor from the
category of open Markov processes to our double category. Black-boxing sends any
open Markov process to the linear relation between input and output data that holds
in steady states, including nonequilibrium steady states where there is a nonzero flow
of probability through the process. To extend black-boxing to a functor between double
categories, we need to prove that black-boxing is compatible with coarse-graining.

1. Introduction

A ‘Markov process’ is a stochastic model describing a sequence of transitions between
states in which the probability of a transition depends only on the current state. The
only Markov processes we consider here are continuous-time Markov processes with a
finite set of states. Such a Markov process can be drawn as a labeled graph:

a

b

c d
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2
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In this example the set of states is X = {a, b, c, d}. The numbers labeling edges are
transition rates, so the probability πi(t) of being in state i ∈ X at time t ∈ R evolves
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according to a linear differential equation

d

dt
πi(t) =

∑
j∈X

Hij πj(t)

called the ‘master equation’, where the matrix H can be read off from the diagram:

H =


−1/2 0 0 0

0 −2 1 0
1/2 2 −5 2

0 0 4 −2

 .
If there is an edge from a state j to a distinct state i, the matrix entry Hij is the number
labeling that edge, while if there is no such edge, Hij = 0. The diagonal entries Hii are
determined by the requirement that the sum of each column is zero. This requirement
says that the rate at which probability leaves a state equals the rate at which it goes to
other states. As a consequence, the total probability is conserved:

d

dt

∑
i∈X

πi(t) = 0

and is typically set equal to 1.
However, while this sum over all states is conserved, the same need not be true for

the sum of πi(t) over i in a subset Y ⊂ X. This poses a challenge to studying a Markov
process as built from smaller parts: the parts are not themselves Markov processes. The
solution is to describe them as ‘open’ Markov processes. These are a generalization in
which probability can enter or leave from certain states designated as inputs and outputs:

a

b

c dinputs outputs
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In an open Markov process, probabilities change with time according to the ‘open master
equation’, a generalization of the master equation that includes inflows and outflows. In
the above example, the open master equation is

d

dt


πa(t)
πb(t)
πc(t)
πd(t)

 =


−1/2 0 0 0

0 −2 1 0
1/2 2 −5 2

0 0 4 −2



πa(t)
πb(t)
πc(t)
πd(t)

 +


Ia(t)
Ib(t)

0
0

 −


0
0
0

Od(t)

 .
To the master equation we have added a term describing inflows at the states a and b
and subtracted a term describing outflows at the state d. The functions Ia, Ib and Od
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are not part of the data of the open Markov process. Rather, they are arbitrary smooth
real-valued functions of time. We think of these as provided from outside—for example,
though not necessarily, from the rest of a larger Markov process of which the given open
Markov process is part.

Open Markov processes can be seen as morphisms in a category, since we can compose
two open Markov processes by identifying the outputs of the first with the inputs of
the second. Composition lets us build a Markov process from smaller open parts—or
conversely, analyze the behavior of a Markov process in terms of its parts. The resulting
category has been studied in a number of papers [3, 4, 15, 23], but here we go further and
introduce a double category to describe coarse-graining.

‘Coarse-graining’ is a widely used method of simplifying a Markov process by map-
ping its set of states X onto some smaller set X ′ in a manner that respects, or at least
approximately respects, the dynamics [1, 7]. Here we introduce coarse-graining for open
Markov processes. We show how to extend this notion to the case of maps p : X → X ′

that are not surjective, obtaining a general concept of morphism between open Markov
processes.

Since open Markov processes are already morphisms in a category, it is natural to
treat morphisms between them as morphisms between morphisms, or ‘2-morphisms’. We
can do this using double categories. These were first introduced by Ehresmann [12, 13],
and they have long been used in topology and other branches of pure mathematics [8, 9].
More recently they have been used to study open dynamical systems [21]. So, it should
not be surprising that they are also useful for open Markov processes.

A 2-morphism in a double category looks like this:

A B

C D

⇓ α

M

gf

N

While a mere category has only objects and morphisms, here we have a few more types
of entities. We call A,B,C and D ‘objects’, f and g ‘vertical 1-morphisms’, M and N
‘horizontal 1-cells’, and α a ‘2-morphism’. We can compose vertical 1-morphisms to get
new vertical 1-morphisms and compose horizontal 1-cells to get new horizontal 1-cells. We
can compose the 2-morphisms in two ways: horizontally by setting squares side by side,
and vertically by setting one on top of the other. In a ‘strict’ double category all these
forms of composition are associative. In a ‘pseudo’ double category, horizontal 1-cells
compose in a weakly associative manner: that is, the associative law holds only up to an
invertible 2-morphism, called the ‘associator’, which obeys a coherence law. This is just
a quick sketch of the ideas; for full definitions see for example the works of Grandis and
Paré [17, 18].

We construct a double category Mark with:

1. finite sets as objects,
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2. maps between finite sets as vertical 1-morphisms,

3. open Markov processes as horizontal 1-cells,

4. morphisms between open Markov processes as 2-morphisms.

Composition of open Markov processes is only weakly associative, so this is a pseudo
double category.

The plan of the paper is as follows. In Section 2 we define open Markov processes
and steady state solutions of the open master equation. In Section 3 we introduce coarse-
graining first for Markov processes and then open Markov processes. In Section 4 we
construct the double category Mark described above. We prove this is a symmetric
monoidal double category in the sense of Shulman [24]. This captures the fact that we
can not only compose open Markov processes but also ‘tensor’ them by setting them side
by side. For example, if we compose this open Markov process:

inputs outputs

2

12

1 1

with the one shown before:

inputs outputs
4

2
2

1

1/2

we obtain this open Markov process:

inputs outputs
4

22

1

1/2

2

12

1 1
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but if we tensor them, we obtain this:

inputs outputs

4

2
2

1

1/2

2

12

1 1

If we fix constant probabilities at the inputs and outputs, there typically exist solutions
of the open master equation with these boundary conditions that are constant as a function
of time. These are called ‘steady states’. Often these are nonequilibrium steady states,
meaning that there is a nonzero net flow of probabilities at the inputs and outputs. For
example, probability can flow through an open Markov process at a constant rate in a
nonequilibrium steady state.

In previous work, Fong, Pollard and the first author studied the relation between
probabilities and flows at the inputs and outputs that holds in steady state [4, 5]. They
called the process of extracting this relation from an open Markov process ‘black-boxing’,
since it gives a way to forget the internal workings of an open system and remember only
its externally observable behavior. They proved that black-boxing is compatible with
composition and tensoring. This result can be summarized by saying that black-boxing
is a symmetric monoidal functor.

In Section 5 we show that black-boxing is compatible with morphisms between open
Markov processes. To make this idea precise, we prove that black-boxing gives a map
from the double category Mark to another double category, called LinRel, which has:

1. finite-dimensional real vector spaces U, V,W, . . . as objects,

2. linear maps f : V → W as vertical 1-morphisms from V to W ,

3. linear relations R ⊆ V ⊕W as horizontal 1-cells from V to W ,

4. squares

V1 V2

W1 W2

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2
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obeying (f ⊕ g)R ⊆ S as 2-morphisms.

Here a ‘linear relation’ from a vector space V to a vector space W is a linear subspace
R ⊆ V ⊕W . Linear relations can be composed in the same way as relations [2]. The double
category LinRel becomes symmetric monoidal using direct sum as the tensor product,
but unlike Mark it is strict: that is, composition of linear relations is associative.

Maps between symmetric monoidal double categories are called ‘symmetric monoidal
double functors’ [11]. Our main result, Thm. 5.5, says that black-boxing gives a symmetric
monoidal double functor

� : Mark→ LinRel.

The hardest part is to show that black-boxing preserves composition of horizontal 1-cells:
that is, black-boxing a composite of open Markov processes gives the composite of their
black-boxings. Luckily, for this we can adapt a previous argument [5]. Thus, the new
content of this result concerns the vertical 1-morphisms and especially the 2-morphisms,
which describe coarse-grainings.

An alternative approach to studying morphisms between open Markov processes uses
bicategories rather than double categories [6, 25]. In Section 6 we use a result of Shulman
[24] to construct symmetric monoidal bicategories Mark and LinRel from the symmetric
monoidal double categories Mark and LinRel. We conjecture that the black-boxing dou-
ble functor determines a functor between these symmetric monoidal bicategories. How-
ever, double categories seem to be a simpler framework for coarse-graining open Markov
processes.

It is worth comparing some related work. Fong, Pollard and the first author con-
structed a symmetric monoidal category where the morphisms are open Markov processes
[4, 5]. Like us, they only consider Markov processes where time is continuous and the set
of states is finite. However, they formalized such Markov processes in a slightly different
way than we do here: they defined a Markov process to be a directed multigraph where
each edge is assigned a positive number called its ‘rate constant’. In other words, they
defined it to be a diagram

(0,∞) Eroo
t
//

s // X

where X is a finite set of vertices or ‘states’, E is a finite set of edges or ‘transitions’
between states, the functions s, t : E → X give the source and target of each edge, and
r : E → (0,∞) gives the rate constant of each edge. They explained how from this data
one can extract a matrix of real numbers (Hij)i,j∈X called the ‘Hamiltonian’ of the Markov
process, with two familiar properties:

1. Hij ≥ 0 if i 6= j,

2.
∑

i∈X Hij = 0 for all j ∈ X.

A matrix with these properties is called ‘infinitesimal stochastic’, since these conditions
are equivalent to exp(tH) being stochastic for all t ≥ 0.
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In the present work we skip the directed multigraphs and work directly with the
Hamiltonians. Thus, we define a Markov process to be a finite set X together with an
infinitesimal stochastic matrix (Hij)i,j∈X . This allows us to work more directly with the
Hamiltonian and the all-important master equation

d

dt
π(t) = Hπ(t)

which describes the evolution of a time-dependent probability distribution π(t) : X → R.
Clerc, Humphrey and Panangaden have constructed a bicategory [10] with finite sets

as objects, ‘open discrete labeled Markov processes’ as morphisms, and ‘simulations’ as
2-morphisms. In their framework, ‘open’ has a similar meaning as it does in works listed
above. These open discrete labeled Markov processes are also equipped with a set of
‘actions’ which represent interactions between the Markov process and the environment,
such as an outside entity acting on a stochastic system. A ‘simulation’ is then a function
between the state spaces that map the inputs, outputs and set of actions of one open
discrete labeled Markov process to the inputs, outputs and set of actions of another.

Another compositional framework for Markov processes is given by de Francesco Al-
basini, Sabadini and Walters [16] in which they construct an algebra of ‘Markov automata’.
A Markov automaton is a family of matrices with nonnegative real coefficients that is in-
dexed by elements of a binary product of sets, where one set represents a set of ‘signals
on the left interface’ of the Markov automata and the other set analogously for the right
interface.

Notation and Terminology. Following Shulman, we use ‘double category’ to mean
‘pseudo double category’, and use ‘strict double category’ to mean a double category
for which horizontal composition is strictly associative and unital. (In older literature,
‘double category’ often refers to a strict double category.)

It is common to use blackboard bold for the first letter of the name of a double category,
and we do so here. Bicategories are written in boldface, while ordinary categories are
written in sans serif font. Thus, three main players in this paper are a double category
Mark, a bicategory Mark, and a category Mark, all closely related.

2. Open Markov processes

Before explaining open Markov processes we should recall a bit about Markov processes.
As mentioned in the Introduction, we use ‘Markov process’ as a short term for ‘continuous-
time Markov process with a finite set of states’, and we identify any such Markov process
with the infinitesimal stochastic matrix appearing in its master equation. We make this
precise with a bit of terminology that is useful throughout the paper.

Given a finite set X, we call a function v : X → R a ‘vector’ and call its values at
points x ∈ X its ‘components’ vx. We define a ‘probability distribution’ on X to be a
vector π : X → R whose components are nonnegative and sum to 1. As usual, we use RX
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to denote the vector space of functions v : X → R. Given a linear operator T : RX → RY

we have (Tv)i =
∑

j∈X Tijvj for some ‘matrix’ T : Y ×X → R with entries Tij.

2.1. Definition. Given a finite set X, a linear operator H : RX → RX is infinitesimal
stochastic if

1. Hij ≥ 0 for i 6= j and

2.
∑

i∈X Hij = 0 for each j ∈ X.

The reason for being interested in such operators is that when exponentiated they give
stochastic operators.

2.2. Definition. Given finite sets X and Y , a linear operator T : RX → RY is stochas-
tic if for any probability distribution π on X, Tπ is a probability distribution on Y .

Equivalently, T is stochastic if and only if

1. Tij ≥ 0 for all i ∈ Y , j ∈ X and

2.
∑

i∈Y Tij = 1 for each j ∈ X.

If we think of Tij as the probability for j ∈ X to be mapped to i ∈ Y , these condi-
tions make intuitive sense. Since stochastic operators are those that preserve probability
distributions, the composite of stochastic operators is stochastic.

In Lemma 3.7 we recall that a linear operator H : RX → RX is infinitesimal stochastic
if and only if its exponential

exp(tH) =
∞∑
n=0

(tH)n

n!

is stochastic for all t ≥ 0. Thus, given an infinitesimal stochastic operator H, for any
time t ≥ 0 we can apply the operator exp(tH) : RX → RX to any probability distribution
π ∈ RX and get a probability distribution

π(t) = exp(tH)π.

These probability distributions π(t) obey the master equation

d

dt
π(t) = Hπ(t).

Moreover, any solution of the master equation arises this way.
All the material so far is standard [22, Sec. 2.1]. We now turn to open Markov

processes.

2.3. Definition. We define a Markov process to be a pair (X,H) where X is a finite
set and H : RX → RX is an infinitesimal stochastic operator. We also call H a Markov
process on X.
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2.4. Definition. We define an open Markov process to consist of finite sets X, S
and T and injections

S

X

T

i o

together with a Markov process (X,H). We call S the set of inputs and T the set of
outputs.

In general, a diagram of this shape in any category:

S

X

T

i o

is called a cospan. The objects S and T are called the feet, the object X is called the
apex, and the morphisms i and o are called the legs. We use FinSet to stand for the
category of finite sets and functions. Thus, an open Markov process is a cospan in FinSet
with injections as legs and a Markov process on its apex. We do not require that the
injections have disjoint range. We often abbreviate an open Markov process as

S

(X,H)

T

i o

or simply S
i→ (X,H)

o← T .
Given an open Markov process we can write down an ‘open’ version of the master

equation, where probability can also flow in or out of the inputs and outputs. To work
with the open master equation we need two well-known concepts:

2.5. Definition. Let f : A→ B be a map between finite sets. The linear map f ∗ : RB →
RA sends any vector v ∈ RB to its pullback along f , given by

f ∗(v) = v ◦ f.

The linear map f∗ : RA → RB sends any vector v ∈ RA to its pushforward along f ,
given by

(f∗(v))(b) =
∑

{a: f(a)=b}

v(a).

If we write f ∗ and f∗ as matrices with respect to the standard bases of RA and RB, they
are simply transposes of one another.
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Now, suppose we are given an open Markov process

S

(X,H)

T

i o

together with inflows I : R→ RS and outflows O : R→ RT , arbitrary smooth functions
of time. We write the value of the inflow at s ∈ S at time t as Is(t), and similarly for
outflows and other functions of time. We say a function v : R → RX obeys the open
master equation if

dv(t)

dt
= Hv(t) + i∗(I(t))− o∗(O(t)).

This says that for any state j ∈ X the time derivative of vj(t) takes into account not only
the usual term from the master equation, but also inflows and outflows.

If the inflows and outflows are constant in time, a solution v of the open master
equation that is also constant in time is called a steady state. More formally:

2.6. Definition. Given an open Markov process S
i→ (X,H)

o← T together with I ∈ RS

and O ∈ RT , a steady state with inflows I and outflows O is an element v ∈ RX such
that

Hv + i∗(I)− o∗(O) = 0.

Given v ∈ RX we call i∗(v) ∈ RS and o∗(v) ∈ RT the input probabilities and output
probabilities, respectively.

2.7. Definition. Given an open Markov process S
i→ (X,H)

o← T , we define its black-
boxing to be the set

�
(
S

i→ (X,H)
o← T

)
⊆ RS ⊕ RS ⊕ RT ⊕ RT

consisting of all 4-tuples (i∗(v), I, o∗(v), O) where v ∈ RX is some steady state with inflows
I ∈ RS and outflows O ∈ RT .

Thus, black-boxing records the relation between input probabilities, inflows, output
probabilities and outflows that holds in steady state. This is the ‘externally observable
steady state behavior’ of the open Markov process. It has already been shown [4, 5]
that black-boxing can be seen as a functor between categories. Here we go further and
describe it as a double functor between double categories, in order to study the effect of
black-boxing on morphisms between open Markov processes.

3. Morphisms of open Markov processes

There are various ways to approximate a Markov process by another Markov process on
a smaller set, all of which can be considered forms of coarse-graining [7]. A common
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approach is to take a Markov process H on a finite set X and a surjection p : X → X ′ and
create a Markov process on X ′. In general this requires a choice of ‘stochastic section’ for
p, defined as follows:

3.1. Definition. Given a function p : X → X ′ between finite sets, a stochastic section
for p is a stochastic operator s : RX′ → RX such that p∗s = 1X′.

It is easy to check that a stochastic section for p exists if and only if p is a surjection.
In Lemma 3.9 we show that given a Markov process H on X and a surjection p : X → X ′,
any stochastic section s : RX′ → RX gives a Markov process on X ′, namely

H ′ = p∗Hs.

Experts call the matrix corresponding to p∗ the collector matrix, and they call s the
distributor matrix [7]. The names help clarify what is going on. The collector matrix,
coming from the surjection p : X → X ′, typically maps many states of X to each state
of X ′. The distributor matrix, the stochastic section s : RX′ → RX , typically maps each
state in X ′ to a linear combination of many states in X. Thus, H ′ = p∗Hs distributes
each state of X ′, applies H, and then collects the results.

In general H ′ depends on the choice of s, but sometimes it does not:

3.2. Definition. We say a Markov process H on X is lumpable with respect to a
surjection p : X → X ′ if the operator p∗Hs is independent of the choice of stochastic
section s : RX′ → RX .

This concept is not new [7]. In Thm. 3.10 we show that it is equivalent to another
traditional formulation, and also to an even simpler one: H is lumpable with respect to
p if and only if p∗H = H ′p∗. This equation has the advantage of making sense even when
p is not a surjection. Thus, we can use it to define a more general concept of morphism
between Markov processes:

3.3. Definition. Given Markov processes (X,H) and (X ′, H ′), a morphism of Markov
processes p : (X,H)→ (X ′, H ′) is a map p : X → X ′ such that p∗H = H ′p∗.

There is a category Mark with Markov processes as objects and the morphisms as
defined above, where composition is the usual composition of functions. But what is
the meaning of such a morphism? Using Lemma 3.7 one can check that for any Markov
processes (X,H) and (X ′, H ′), and any map p : X → X ′, we have

p∗H = H ′p∗ ⇐⇒ p∗ exp(tH) = exp(tH ′)p∗ for all t ≥ 0.

Thus, p is a morphism of Markov processes if evolving a probability distribution on X via
exp(tH) and then pushing it forward along p is the same as pushing it forward and then
evolving it via exp(tH ′).

We can also define morphisms between open Markov processes:
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3.4. Definition. A morphism of open Markov processes from the open Markov

process S
i→ (X,H)

o← T to the open Markov process S ′
i′→ (X ′, H ′)

o′← T ′ is a triple of
functions f : S → S ′, p : X → X ′, g : T → T ′ such that the squares in this diagram are
pullbacks:

S

S ′ T ′

X T

X ′

i

i′ o′

o

f gp

and p∗H = H ′p∗.

We need the squares to be pullbacks so that in Lemma 5.3 we can black-box morphisms
of open Markov processes. In Lemma 4.2 we show that horizontally composing these
morphisms preserves this pullback property. But to do this, we need the horizontal
arrows in these squares to be injections. This explains the conditions in Defs. 2.4 and 3.4.

We often abbreviate a morphism of open Markov processes as

S

S ′ T ′

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

As an example, consider the following diagram:

a

b2

b1

cinputs outputs

6

68

4

7

This is a way of drawing an open Markov process S
i→ (X,H)

o← T where X =
{a, b1, b2, c}, S and T are one-element sets, i maps the one element of S to a, and o maps
the one element of T to c. As explained in Section 1, we can read off the infinitesimal
stochastic operator H : RX → RX from this diagram and obtain

H =


−15 0 0 0

8 −10 0 0
7 4 −6 0
0 6 6 0

 .
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The resulting open master equation is

d

dt


va1(t)
vb1(t)
vb2(t)
vc1(t)

 =


−15 0 0 0

8 −10 0 0
7 4 −6 0
0 6 6 0



va1(t)
vb1(t)
vb2(t)
vc1(t)

 +


I(t)

0
0
0

 −


0
0
0

O(t)

 .
Here I is an arbitrary smooth function of time describing the inflow at the one point of
S, and O is a similar function describing the outflow at the one point of T .

Suppose we want to simplify this open Markov process by identifying the states b1 and
b2. To do this we take X ′ = {a, b, c} and define p : X → X ′ by

p(a) = a, p(b1) = p(b2) = b, p(c) = c.

To construct the infinitesimal stochastic operator H ′ : RX′ → RX′ for the simplified open
Markov process we need to choose a stochastic section s : RX′ → RX for p, for example

s =


1 0 0
0 1/3 0
0 2/3 0
0 0 1

 .
This says that if our simplified Markov process is in the state b, we assume the original
Markov process has a 1/3 chance of being in state b1 and a 2/3 chance of being in state
b2. The operator H ′ = p∗Hs is then

H ′ =

 −15 0 0
15 −6 0
0 6 0

 .
It may be difficult to justify the assumptions behind our choice of stochastic section, but
the example at hand has a nice feature: H ′ is actually independent of this choice. In
other words, H is lumpable with respect to p. The reason is explained in Thm. 3.10.
Suppose we partition X into blocks, each the inverse image of some point of X ′. Then H
is lumpable with respect to p if and only if when we sum the rows in each block of H, all
the columns within any given block of the resulting matrix are identical. This matrix is
p∗H:

H =


−15 0 0 0

8 −10 0 0
7 4 −6 0
0 6 6 0

 =⇒ p∗H =

 −15 0 0 0
15 −6 −6 0
0 6 6 0

 .
While coarse-graining is of practical importance even in the absence of lumpability, the
lumpable case is better behaved, so we focus on this case.
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So far we have described a morphism of Markov processes p : (X,H)→ (X ′, H ′), but
together with identity functions on the inputs S and outputs T this defines a morphism
of open Markov processes, going from the above open Markov process to this one:

a b cinputs outputs

615

The open master equation for this new coarse-grained open Markov process is

d

dt

 va(t)
vb(t)
vc(t)

 =

 −15 0 0
15 −6 0
0 6 0

 va(t)
vb(t)
vc(t)

 +

 I(t)
0
0

 −
 0

0
O(t)

 .
In Section 4 we construct a double category Mark with open Markov processes as

horizontal 1-cells and morphisms between these as 2-morphisms. This double category is
our main object of study. First, however, we should prove the results mentioned above.
For this it is helpful to recall a few standard concepts:

3.5. Definition. A 1-parameter semigroup of operators is a collection of linear
operators U(t) : V → V on a vector space V , one for each t ∈ [0,∞), such that

1. U(0) = 1 and

2. U(s + t) = U(s)U(t) for all s, t ∈ [0,∞). If V is finite-dimensional we say the
collection U(t) is continuous if t 7→ U(t)v is continuous for each v ∈ V .

3.6. Definition. Let X be a finite set. A Markov semigroup is a continuous 1-
parameter semigroup U(t) : RX → RX such that U(t) is stochastic for each t ∈ [0,∞).

3.7. Lemma. Let X be a finite set and U(t) : RX → RX a Markov semigroup. Then
U(t) = exp(tH) for a unique infinitesimal stochastic operator H : RX → RX , which is
given by

Hv =
d

dt
U(t)v

∣∣∣∣
t=0

for all v ∈ RX . Conversely, given an infinitesimal stochastic operator H, then exp(tH) =
U(t) is a Markov semigroup.

Proof. This is well-known. For a proof that every continuous one-parameter semigroup
of operators U(t) on a finite-dimensional vector space V is in fact differentiable and of
the form exp(tH) where Hv = d

dt
U(t)v

∣∣
t=0

, see Engel and Nagel [14, Sec. I.2]. For a
proof that U(t) is then a Markov semigroup if and only if H is infinitesimal stochastic,
see Norris [22, Thm. 2.1.2].
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3.8. Lemma. Let U(t) : RX → RX be a differentiable family of stochastic operators defined
for t ∈ [0,∞) and having U(0) = 1. Then d

dt
U(t)

∣∣
t=0

is infinitesimal stochastic.

Proof. Let H = d
dt
U(t)

∣∣
t=0

= limt→0+(U(t)− 1)/t. As U(t) is stochastic, its entries are
nonnegative and the column sum of any particular column is 1. Then the column sum of
any particular column of U(t)−1 will be 0 with the off-diagonal entries being nonnegative.
Thus U(t) − 1 is infinitesimal stochastic for all t ≥ 0, as is (U(t) − 1)/t, from which it
follows that limt→0+(U(t)− U(0))/t = H is infinitesimal stochastic.

3.9. Lemma. Let p : X → X ′ be a function between finite sets with a stochastic section
s : RX′ → RX , and let H : RX → RX be an infinitesimal stochastic operator. Then
H ′ = p∗Hs : RX′ → RX′ is also infinitesimal stochastic.

Proof. Lemma 3.7 implies that exp(tH) is stochastic for all t ≥ 0. For any map p : X →
X ′ the operator p∗ : RX → RX′ is easily seen to be stochastic, and s is stochastic by
assumption. Thus, U(t) = p∗ exp(tH)s is stochastic for all t ≥ 0. Differentiating, we
conclude that

d

dt
U(t)

∣∣∣∣
t=0

=
d

dt
p∗ exp(tH)s

∣∣∣∣
t=0

= p∗ exp(tH)Hs|t=0 = p∗Hs

is infinitesimal stochastic by Lemma 3.8.

We can now give some conditions equivalent to lumpability. The third is widely found
in the literature [7] and the easiest to check in examples. It makes use of the standard
basis vectors ej ∈ RX associated to the elements j of any finite set X. The surjection
p : X → X ′ defines a partition on X where two states j, j′ ∈ X lie in the same block of the
partition if and only if p(j) = p(j′). The elements of X ′ correspond to these blocks. The
third condition for lumpability says that p∗H has the same effect on two basis vectors ej
and ej′ when j and j′ are in the same block. As mentioned in the example above, this
condition says that if we sum the rows in each block of H, all the columns in any given
block of the resulting matrix p∗H are identical.

3.10. Theorem. Let p : X → X ′ be a surjection of finite sets and let H be a Markov
process on X. Then the following conditions are equivalent:

1. H is lumpable with respect to p.

2. There exists a linear operator H ′ : RX′ → RX′ such that p∗H = H ′p∗.

3. p∗Hej = p∗Hej′ for all j, j′ ∈ X such that p(j) = p(j′).

When these conditions hold there is a unique operator H ′ : RX′ → RX′ such that p∗H =
H ′p∗, it is given by H ′ = p∗Hs for any stochastic section s of p, and it is infinitesimal
stochastic.
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Proof. (i) =⇒ (iii). Suppose thatH is lumpable with respect to p. Thus, p∗Hs : RX′ →
RX′ is independent of the choice of stochastic section s : RX′ → RX . Such a stochastic
section is simply an arbitrary linear operator that maps each basis vector ei ∈ RX′ to a
probability distribution on X supported on the set {j ∈ X : p(j) = i}. Thus, for any
j, j′ ∈ X with p(j) = p(j′) = i, we can find stochastic sections s, s′ : RX′ → RX such that
s(ei) = ej and s′(ei) = ej′ . Since p∗Hs = p∗Hs

′, we have

p∗Hej = p∗Hs(ei) = p∗Hs
′(ei) = p∗Hej′ .

(iii) =⇒ (ii). Define H ′ : RX′ → RX′ on basis vectors ei ∈ RX′ by setting

H ′ei = p∗Hej

for any j with p(j) = i. Note that H ′ is well-defined: since p is a surjection such j exists,
and since H is lumpable, H ′ is independent of the choice of such j. Next, note that for
any j ∈ X, if we let p(j) = i we have p∗Hej = H ′ei = H ′p∗ej. Since the vectors ej form
a basis for RX , it follows that p∗H = H ′p∗.

(ii) =⇒ (i). Suppose there exists an operator H ′ : RX′ → RX′ such that p∗H = H ′p∗.
Choose such an operator; then for any stochastic section s for p we have

p∗Hs = H ′p∗s = H ′.

It follows that p∗Hs is independent of the stochastic section s, so H is lumpable with
respect to p.

Suppose that any, hence all, of conditions (i), (ii), (iii) hold. Suppose that H ′ : RX′ →
RX′ is an operator with p∗H = H ′p∗. Then the argument in the previous paragraph shows
that H ′ = p∗Hs for any stochastic section s of p. Thus H ′ is unique, and by Lemma 3.9
it is infinitesimal stochastic.

4. A double category of open Markov processes

In this section we construct a symmetric monoidal double category Mark with open
Markov processes as horizontal 1-cells and morphisms between these as 2-morphisms.
Symmetric monoidal double categories were introduced by Shulman [24] and applied to
various examples from engineering by the second author [11]. We refer the reader to those
papers for the basic definitions, since they are rather long.

The pieces of the double category Mark work as follows:

1. An object is a finite set.

2. A vertical 1-morphism f : S → S ′ is a map between finite sets.

3. A horizontal 1-cell is an open Markov process

S (X,H) T .
i o
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In other words, it is a pair of injections S
i→ X

o← T together with a Markov process
H on X.

4. A 2-morphism is a morphism of open Markov processes

S

S ′ T ′.

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

In other words, it is a triple of maps f, p, g such that these squares are pullbacks:

S

S ′ T ′,

X T

X ′

i1

i′1 o′1

o1

f gp

and H ′p∗ = p∗H.

Composition of vertical 1-morphisms in Mark is straightforward. So is vertical com-
position of 2-morphisms, since we can paste two pullback squares and get a new pullback
square. Composition of horizontal 1-cells is a bit more subtle. Given open Markov pro-
cesses

S (X,H) T,
i1 o1

T (Y,G) U
i2 o2

(1)

we first compose their underlying cospans using a pushout:

X +T Y

X

j
::

Y

k
dd

S

i1

;;

T

o1

dd
i2

::

U

o2

cc

Since monomorphisms are stable under pushout in a topos, the legs of this new cospan
are again injections, as required. We then define the composite open Markov process to
be

S (X +T Y,H �G) U
ji1 ko2
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where
H �G = j∗Hj

∗ + k∗Gk
∗. (2)

Here we use both pullbacks and pushforwards along the maps j and k, as defined in Def.
2.5. To check that H � G is a Markov process on X +T Y we need to check that j∗Hj

∗

and k∗Gk
∗, and thus their sum, are infinitesimal stochastic:

4.1. Lemma. Suppose that f : X → Y is any map between finite sets. If H : RX → RX

is infinitesimal stochastic, then f∗Hf
∗ : RY → RY is infinitesimal stochastic.

Proof. Using Def. 2.5, we see that the matrix elements of f ∗ and f∗ are given by

(f ∗)ji = (f∗)ij =

{
1 f(j) = i
0 otherwise

for all i ∈ Y , j ∈ X. Thus, f∗Hf
∗ has matrix entries

(f∗Hf
∗)ii′ =

∑
j,j′: f(j)=i,f(j′)=i′

Hjj′ .

To show that f∗Hf
∗ is infinitesimal stochastic we need to show that its off-diagonal entries

are nonnegative and its columns sum to zero. By the above formula, these follow from
the same facts for H.

Another formula for horizontal composition is also useful. Given the composable open
Markov processes in Eq. (1) we can take the copairing of the maps j : X → X +T Y and
k : Y → X +T Y and get a map ` : X + Y → X +T Y . Then

H �G = `∗(H ⊕G)`∗ (3)

where H ⊕ G : RX+Y → RX+Y is the direct sum of the operators H and G. This is easy
to check from the definitions.

Horizontal composition of 2-morphisms is even subtler:

4.2. Lemma. Suppose that we have horizontally composable 2-morphisms as follows:

S

S ′ T ′

(X,H) T T

T ′ U ′

(Y,G) U

(X ′, H ′) (Y ′, G′)

i1

i′1 o′1

o1

f gp

i2 o2

g

i′2 o′2

hq

Then there is a 2-morphism

S

S ′ U ′

(X +T Y,H �G) U

(X ′ +T ′ Y
′, H ′ �G′)

i3 o3

f hp+g q

i′3 o′3
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whose underlying diagram of finite sets is

S

S ′

X X +T Y Y U

X ′ X ′ +T ′ Y
′ Y ′ U ′,

i1 j k o2

f p+g q h

i′1 j′ k′ o′2

where j, k, j′, k′ are the canonical maps from X, Y,X ′, Y ′, respectively, to the pushouts
X +T Y and X ′ +T ′ Y

′.

Proof. To show that we have defined a 2-morphism, we first check that the squares in
the above diagram of finite sets are pullbacks. Then we show that (p +g q)∗(H � G) =
(H ′ �G′)(p+g q)∗.

For the first part, it suffices by the symmetry of the situation to consider the left
square. We can write it as a pasting of two smaller squares:

S

S ′

X X +T Y

X ′ X ′ +T ′ Y
′

i1 j

f p p+g q

i′1 j′

By assumption the left-hand smaller square is a pullback, so it suffices to prove this for
the right-hand one. For this we use that fact that FinSet is a topos and thus an adhesive
category [19, 20], and consider this commutative cube:

T

T ′

X +T Y

X

Y

X ′ +T ′ Y
′

X ′

Y ′

o1

i2

o′1

i′2

p

j

k

p+g q

j′

k′

g
q

By assumption the top and bottom faces are pushouts, the two left-hand vertical faces
are pullbacks, and the arrows o′1 and i′2 are monic. In an adhesive category, this implies
that the two right-hand vertical faces are pullbacks as well. One of these is the square in
question.
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To show that (p +g q)∗(H � G) = (H ′ � G′)(p +g q)∗, we again use the above cube.
Because its two right-hand vertical faces commute, we have

(p+g q)∗j∗ = j′∗p∗ and (p+g q)∗k∗ = k′∗q∗

so using the definition of H �G we obtain

(p+g q)∗(H �G) = (p+g q)∗(j∗Hj
∗ + k∗Gk

∗)
= (p+g q)∗j∗Hj

∗ + (p+g q)∗k∗Gk
∗

= j′∗p∗Hj
∗ + k′∗q∗Gk

∗.

By assumption we have
p∗H = H ′p∗ and q∗G = G′q∗

so we can go a step further, obtaining

(p+g q)∗(H �G) = j′∗H
′p∗j

∗ + k′∗G
′q∗k

∗.

Because the two right-hand vertical faces of the cube are pullbacks, Lemma 4.3 below
implies that

p∗j
∗ = j′∗(p+g q)∗ and q∗k

∗ = k′∗(p+g q)∗.

Using these, we obtain

(p+g q)∗(H �G) = j′∗H
′j′∗(p+g q)∗ + k′∗G

′k′∗(p+g q)∗
= (j′∗H

′j′∗ + k′∗G
′k′∗)(p+g q)∗

= (H ′ �G′)(p+g q)∗

completing the proof.

The following lemma is reminiscent of the Beck–Chevalley condition for adjoint func-
tors:

4.3. Lemma. Given a pullback square in FinSet:

A B

DC

g

f

k

h

the following square of linear operators commutes:

RA RB

RDRC

g∗

f∗

k∗

h∗
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Proof. Choose v ∈ RB and c ∈ C. Then

(g∗f
∗(v))(c) =

∑
a:g(a)=c

v(f(a)),

(k∗h∗(v))(c) =
∑

b:h(b)=k(c)

v(b),

so to show g∗f
∗ = k∗h∗ it suffices to show that f restricts to a bijection

f : {a ∈ A : g(a) = c} ∼−→ {b ∈ B : h(b) = k(c)}.

On the one hand, if a ∈ A has g(a) = c then b = f(a) has h(b) = h(f(a)) = k(g(a)) = k(c),
so the above map is well-defined. On the other hand, if b ∈ B has h(b) = k(c), then by
the definition of pullback there exists a unique a ∈ A such that f(a) = b and g(a) = c, so
the above map is a bijection.

4.4. Theorem. There exists a double category Mark as defined above.

Proof. Let Mark0, the ‘category of objects’, consist of finite sets and functions. Let
Mark1 the ‘category of arrows’, consist of open Markov processes and morphisms between
these:

S

S ′ T ′.

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

To make Mark into a double category we need to specify the identity-assigning functor

u : Mark0 →Mark1,

the source and target functors

s, t : Mark1 →Mark0,

and the composition functor

� : Mark1 ×Mark0 Mark1 →Mark1.

These are given as follows.
For a finite set S, u(S) is given by

S (S, 0S) S
1S 1S
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where 0S is the zero operator from RS to RS. For a map f : S → S ′ between finite sets,
u(f) is given by

S (S, 0S) S

S ′ S ′(S ′, 0S′)

f ff

The source and target functors s and t map a Markov process S
i→ (X,H)

o← T to S and
T , respectively, and they map a morphism of open Markov processes

S

S ′ T ′

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

to f : S → S ′ and g : T → T ′, respectively. The composition functor � maps the pair of
open Markov processes

S (X,H) T T (Y,G) U
i1 o1 i2 o2

to their composite

S (X +T Y,H �G) U
ji1 ko2

defined as in Eq. (2), and it maps the pair of morphisms of open Markov processes

S

S ′ T ′

(X,H) T T

T ′ U ′

(Y,G) U

(X ′, H ′) (Y ′, G′)

i1

i′1 o′1

o1

f gp

i2 o2

g

i′2 o′2

hq

to their horizontal composite as defined as in Lemma 4.2.
It is easy to check that u, s and t are functors. To prove that � is a functor, the main

thing we need to check is the interchange law. Suppose we have four morphisms of open
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Markov processes as follows:

S

S ′ T ′

(X,H) T T

T ′ U ′

(Y,G) U

(X ′, H ′) (Y ′, G′)

S ′

S ′′ T ′′

(X ′, H ′) T ′ T ′ (Y ′, G′) U ′

T ′′ U ′′(X ′′, H ′′) (Y ′′, G′′)

f gp g hq

f ′ g′p′ g′ h′q′

Composing horizontally gives

S

S ′ U ′

S ′′ U ′′,

(X +T Y,H �G) U

(X ′ +T ′ Y
′, H ′ �G′)

S ′ (X ′ +T ′ Y
′, H ′ �G′) U ′

(X ′′ +T ′′ Y
′′, H ′′ �G′′)

f hp+g q

f ′ h′p′ +g′ q
′

and then composing vertically gives

S

S ′′ U ′′.

(X +T Y,H �G) U

(X ′′ +T ′′ Y
′′, H ′′ �G′′)

f ′ ◦ f h′ ◦ h(p′ +g′ q
′) ◦ (p+g q)
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Composing vertically gives

S (X,H) T T (Y,G) U

S ′′ T ′′ T ′′ U ′′,(X ′′, H ′′) (Y ′′, G′′)

f ′ ◦ f g′ ◦ gp′ ◦ p g′ ◦ g h′ ◦ hq′ ◦ q

and then composing horizontally gives

S

S ′′ U ′′.

(X +T Y,H �G) U

(X ′′ +T ′′ Y
′′, H ′′ �G′′)

f ′ ◦ f h′ ◦ h(p′ ◦ p) +(g′◦g) (q
′ ◦ q)

The only apparent difference between the two results is the map in the middle: one has
(p′ +g′ q

′) ◦ (p +g q) while the other has (p′ ◦ p) +(g′◦g) (q′ ◦ q). But these are in fact the
same map, so the interchange law holds.

The functors u, s, t and ◦ obey the necessary relations

su = 1 = tu

and the relations saying that the source and target of a composite behave as they should.
Lastly, we have three natural isomorphisms: the associator, left unitor, and right unitor,
which arise from the corresponding natural isomorphisms for the double category of finite
sets, functions, cospans of finite sets, and maps of cospans. The triangle and pentagon
equations hold in Mark because they do in this simpler double category [11].

Next we give Mark a symmetric monoidal structure. We call the tensor product
‘addition’. Given objects S, S ′ ∈ Mark0 we define their sum S + S ′ using a chosen
coproduct in FinSet. The unit for this tensor product in Mark0 is the empty set. We
can similarly define the sum of morphisms in Mark0, since given maps f : S → T and
f ′ : S ′ → T ′ there is a natural map f + f ′ : S+S ′ → T +T ′. Given two objects in Mark1:

S1 (X1, H1) T1 S2 (X2, H2) T2
i1 o1 i2 o2

we define their sum to be

S1 + S2 (X1 +X2, H1 ⊕H2) T1 + T2
i1 + i2 o1 + o2
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where H1 ⊕ H2 : RX1+X2 → RX1+X2 is the direct sum of the operators H1 and H2. The
unit for this tensor product in Mark1 is ∅ → (∅, 0∅) ← ∅ where 0∅ : R∅ → R∅ is the zero
operator. Finally, given two morphisms in Mark1:

S1

S ′1 T ′1 S ′2 T ′2

(X1, H1) T1 S2 (X2, H2) T2

(X ′1, H
′
1) (X ′2, H

′
2)

i1 o1

f1 g1

i′1 o′1

p1

i2 o2

f2 g2

i′2 o′2

p2

we define their sum to be

S1 + S2

S ′1 + S ′2 T ′1 + T ′2.

(X1 +X2, H1 ⊕H2) T1 + T2

(X ′1 +X ′2, H
′
1 ⊕H ′2)

i1 + i2 o1 + o2

f1 + f2 g1 + g2

i′1 + i′2 o′1 + o′2

p1 + p2

We complete the description of Mark as a symmetric monoidal double category in the
proof of this theorem:

4.5. Theorem. The double category Mark can be given a symmetric monoidal structure
with the above properties.

Proof. First we complete the description of Mark0 and Mark1 as symmetric monoidal
categories. The symmetric monoidal category Mark0 is just the category of finite sets
with a chosen coproduct of each pair of finite sets providing the symmetric monoidal
structure. We have described the tensor product in Mark1, which we call ‘addition’, so
now we need to introduce the associator, unitors, and braiding, and check that they make
Mark1 into a symmetric monoidal category.

Given three objects in Mark1

S1 (X1, H1) T1 S2 (X2, H2) T2 S3 (X3, H3) T3

tensoring the first two and then the third results in

(S1 + S2) + S3 ((X1 +X2) +X3, (H1 ⊕H2)⊕H3) (T1 + T2) + T3

whereas tensoring the last two and then the first results in

S1 + (S2 + S3) (X1 + (X2 +X3), H1 ⊕ (H2 ⊕H3)) T1 + (T2 + T3).
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The associator for Mark1 is then given as follows:

(S1 + S2) + S3 ((X1 +X2) +X3, (H1 ⊕H2)⊕H3) (T1 + T2) + T3

(X1 + (X2 +X3), H1 ⊕ (H2 ⊕H3))S1 + (S2 + S3) T1 + (T2 + T3)

a aa

where a is the associator in (FinSet,+). If we abbreviate an object S → (X,H) ← T of
Mark1 as (X,H), and denote the associator for Mark1 as α, the pentagon identity says
that this diagram commutes:

(((X1, H1)⊕ (X2, H2))⊕ (X3, H3))⊕ (X4, H4)

((X1, H1)⊕ (X2, H2))⊕ ((X3, H3)⊕ (X4, H4))

(X1, H1)⊕ ((X2, H2)⊕ ((X3, H3)⊕ (X4, H4)))

(X1, H1)⊕ (((X2, H2)⊕ (X3, H3))⊕ (X4, H4))((X1, H1)⊕ ((X2, H2)⊕ (X3, H3)))⊕ (X4, H4)

α α

α⊕ 1(X4,H4)

α

1(X1,H1) ⊕ α

which is clearly true. Recall that the monoidal unit for Mark1 is given by ∅ → (∅, 0∅)← ∅.
The left and right unitors for Mark1, denoted λ and ρ, are given respectively by the
following 2-morphisms:

∅+ S

S T S T

(∅+X, 0∅ ⊕H) ∅+ T S + ∅ (X + ∅, H ⊕ 0∅) T + ∅

(X,H) (X,H)

` `` r rr

where ` and r are the left and right unitors in FinSet. The left and right unitors and
associator for Mark1 satisfy the triangle identity:

((X,H)⊕ (∅, 0∅))⊕ (Y,G)

(X,H)⊕ (Y,G)

(X,H)⊕ ((∅, 0∅)⊕ (Y,G)).

ρ⊕ 1 1⊕ λ

α
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The braiding in Mark1 is given as follows:

S1 + S2

S2 + S1 T2 + T1

(X1, H1)⊕ (X2, H2) T1 + T2

(X2, H2)⊕ (X1, H1)

bS1,S2 bT1,T2bX1,X2

where b is the braiding in (FinSet,+). It is easy to check that the braiding in Mark1 is its
own inverse and obeys the hexagon identity, making Mark1 into a symmetric monoidal
category.

The source and target functors s, t : Mark1 → Mark0 are strict symmetric monoidal
functors, as required. To make Mark into a symmetric monoidal double category we
must also give it two other pieces of structure. One, called χ, says how the composition
of horizontal 1-cells interacts with the tensor product in the category of arrows. The
other, called µ, says how the identity-assigning functor u relates the tensor product in the
category of objects to the tensor product in the category of arrows. We now define these
two isomorphisms.

Given horizontal 1-cells

S1 (X1, H1) T1 T1 (Y1, G1) U1

S2 (X2, H2) T2 T2 (Y2, G2) U2

the horizontal composites of the top two and the bottom two are given, respectively, by

S1 (X1 +T1 Y1, H1 �G1) U1 S2 (X2 +T2 Y2, H2 �G2) U2.

‘Adding’ the left two and right two, respectively, we obtain

S1 + S2 (X1 +X2, H1 ⊕H2) T1 + T2 T1 + T2 (Y1 + Y2, G1 ⊕G2) U1 + U2.

Thus the sum of the horizontal composites is

S1 + S2 ((X1 +T1 Y1) + (X2 +T2 Y2), (H1 �G1)⊕ (H2 �G2)) U1 + U2

while the horizontal composite of the sums is

S1 + S2 ((X1 +X2) +T1+T2 (Y1 + Y2), (H1 ⊕H2)� (G1 ⊕G2)) U1 + U2.
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The required globular 2-isomorphism χ between these is

S1 + S2

S1 + S2 U1 + U2

((X1, H1)� (Y1, G1))⊕ ((X2, H2)� (Y2, G2)) U1 + U2

((X1, H1)⊕ (X2, H2))� ((Y1, G1)⊕ (Y2, G2))

1S1+S2
1U1+U2χ̂

where χ̂ is the bijection

χ̂ : (X1 +T1 Y1) + (X2 +T2 Y2)→ (X1 +X2) +T1+T2 (Y1 + Y2)

obtained from taking the colimit of the diagram

S1

X1

T1

Y1

U1 S2

X2

T2

Y2

U2

in two different ways. We call χ ‘globular’ because its source and target 1-morphisms are
identities. We need to check that χ indeed defines a 2-isomorphism in Mark.

To do this, we need to show that

((H1 ⊕H2)� (G1 ⊕G2)) χ̂∗ = χ̂∗ ((H1 �G1)⊕ (H2 �G2)). (4)

To simplify notation, let K = (X1+T1Y1)+(X2+T2Y2) and K ′ = (X1+X2)+T1+T2 (Y1+Y2)
so that χ̂ : K

∼→ K ′. Let

q : X1 +X2 + Y1 + Y2 → K, q′ : X1 +X2 + Y1 + Y2 → K ′

be the canonical maps coming from the definitions of K and K ′ as colimits, and note that

q′ = χ̂q

by the universal property of the colimit. A calculation using Eq. (3) implies that

(H1 �G1)⊕ (H2 �G2) = q∗ ((H1 ⊕H2)⊕ (G1 ⊕G2)) q
∗

and similarly

(H1 ⊕H2)� (G1 ⊕G2) = q′∗((H1 ⊕H2)⊕ (G1 ⊕G2))q
′∗.

Together these facts give

(H1 ⊕H2)� (G1 ⊕G2) = χ̂∗q∗ ((H1 ⊕H2)⊕ (G1 ⊕G2)) q
∗χ̂∗

= χ̂∗ ((H1 �G1)⊕ (H2 �G2) χ̂
∗.
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and since χ̂ is a bijection, χ̂∗ is the inverse of χ̂∗, so Eq. (4) follows.
For the other globular 2-isomorphism, if S and T are finite sets, then u(S+T ) is given

by

S + T (S + T, 0S+T ) S + T
1S+T 1S+T

while u(S)⊕ u(T ) is given by

S + T (S + T, 0S ⊕ 0T ) S + T
1S + 1T 1S + 1T

so there is a globular 2-isomorphism µ between these, namely the identity 2-morphism.
All the commutative diagrams in the definition of symmetric monoidal double category
[24] can be checked in a straightforward way.

5. Black-boxing for open Markov processes

The general idea of ‘black-boxing’ is to take a system and forget everything except the
relation between its inputs and outputs, as if we had placed it in a black box and were
unable to see its inner workings. Previous work of Pollard and the first author [5] con-
structed a black-boxing functor � : Dynam → SemiAlgRel where Dynam is a category of
finite sets and ‘open dynamical systems’ and SemiAlgRel is a category of finite-dimensional
real vector spaces and relations defined by polynomials and inequalities. When we black-
box such an open dynamical system, we obtain the relation between inputs and outputs
that holds in steady state.

A special case of an open dynamical system is an open Markov process as defined in
this paper. Thus, we could restrict the black-boxing functor � : Dynam → SemiAlgRel
to a category Mark with finite sets as objects and open Markov processes as morphisms.
Since the steady state behavior of a Markov process is linear, we would get a functor
� : Mark → LinRel where LinRel is the category of finite-dimensional real vector spaces
and linear relations [2]. However, we will go further and define black-boxing on the
double category Mark. This will exhibit the relation between black-boxing and morphisms
between open Markov processes.

To do this, we promote LinRel to a double category LinRel with:

1. finite-dimensional real vector spaces U, V,W, . . . as objects,

2. linear maps f : V → W as vertical 1-morphisms from V to W ,

3. linear relations R ⊆ V ⊕W as horizontal 1-cells from V to W ,
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4. squares

V1 V2

W1 W2

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

obeying (f ⊕ g)R ⊆ S as 2-morphisms.

The last item deserves some explanation. A preorder is a category such that for any pair
of objects x, y there exists at most one morphism α : x → y. When such a morphism
exists we usually write x ≤ y. Similarly there is a kind of double category for which given
any ‘frame’

A B

C D

M

gf

N

there exists at most one 2-morphism

A B

C D

⇓ α

M

gf

N

filling this frame. For lack of a better term let us call this a degenerate double category.
Item (iv) implies that LinRel will be degenerate in this sense.

In LinRel, composition of vertical 1-morphisms is the usual composition of linear
maps, while composition of horizontal 1-cells is the usual composition of linear relations.
Since composition of linear relations obeys the associative and unit laws strictly, LinRel
will be a strict double category. Since LinRel is degenerate, there is at most one way to
define the vertical composite of 2-morphisms

U1 U2

V1 V2

⇓ α

W1 W2

⇓ β

=

U1 U2

W1 W2

⇓ βα

R ⊆ U1 ⊕ U2

gf

f ′

T ⊆W1 ⊕W2

g′

S ⊆ V1 ⊕ V2

R ⊆ U1 ⊕ U2

g′gf ′f

T ⊆W1 ⊕W2
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so we need merely check that a 2-morphism βα filling the frame at right exists. This
amounts to noting that

(f ⊕ g)R ⊆ S, (f ′ ⊕ g′)S ⊆ T =⇒ (f ′ ⊕ g′)(f ⊕ g)R ⊆ T.

Similarly, there is at most one way to define the horizontal composite of 2-morphisms

V1 V2

W1 W2

⇓ α

V3

W3

⇓ α′ =

V1 V3

W1 W3

⇓ α′ ◦ α

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

R′ ⊆ V2 ⊕ V3

h

S′ ⊆W2 ⊕W3

R′R ⊆ V1 ⊕ V3

f

S′S ⊆W1 ⊕W3

h

so we need merely check that a filler α′ ◦ α exists, which amounts to noting that

(f ⊕ g)R ⊆ S, (g ⊕ h)R′ ⊆ S ′ =⇒ (f ⊕ h)(R′R) ⊆ S ′S.

5.1. Theorem. There exists a strict double category LinRel with the above properties.

Proof. The category of objects LinRel0 has finite-dimensional real vector spaces as ob-
jects and linear maps as morphisms. The category of arrows LinRel1 has linear relations
as objects and squares

V1 V2

W1 W2

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

with (f ⊕ g)R ⊆ S as morphisms. The source and target functors s, t : LinRel1 →
LinRel0 are clear. The identity-assigning functor u : LinRel0 → LinRel1 sends a finite-
dimensional real vector space V to the identity map 1V and a linear map f : V → W to
the unique 2-morphism

V V

W W .

1V

ff

1W

The composition functor � : LinRel1×LinRel0LinRel1 → LinRel1 acts on objects by the
usual composition of linear relations, and it acts on 2-morphisms by horizontal composi-
tion as described above. These functors can be shown to obey all the axioms of a double
category. In particular, because LinRel is degenerate, all the required equations between
2-morphisms, such as the interchange law, hold automatically.
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Next we make LinRel into a symmetric monoidal double category. To do this, we
first give LinRel0 the structure of a symmetric monoidal category. We do this using a
specific choice of direct sum for each pair of finite-dimensional real vector spaces as the
tensor product, and a specific 0-dimensional vector space as the unit object. Then we give
LinRel1 a symmetric monoidal structure as follows. Given linear relations R1 ⊆ V1⊕W1

and R2 ⊆ V2 ⊕W2, we define their direct sum by

R1 ⊕R2 = {(v1, v2, w1, w2) : (v1, w1) ∈ R1, (v2, w2) ∈ R2} ⊆ V1 ⊕ V2 ⊕W1 ⊕W2.

Given two 2-morphisms in LinRel1:

V1 V2

W1 W2

V ′1 V ′2

W ′
1 W ′

2

⇓ α′⇓ α

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

R′ ⊆ V ′1 ⊕ V ′2

g′f ′

S′ ⊆W ′1 ⊕W ′2

there is at most one way to define their direct sum

V1 ⊕ V ′1 V2 ⊕ V ′2

W1 ⊕W ′
1 W2 ⊕W ′

2

⇓ α⊕ α′

R⊕R′ ⊆ V1 ⊕ V ′1 ⊕ V2 ⊕ V ′2

g ⊕ g′f ⊕ f ′

S ⊕ S′ ⊆W1 ⊕W ′1 ⊕W2 ⊕W ′2

because LinRel is degenerate. To show that α⊕ α′ exists, we need merely note that

(f ⊕ g)R ⊆ S, (f ′ ⊕ g′)R′ ⊆ S ′ =⇒ (f ⊕ f ′ ⊕ g ⊕ g′)(R⊕R′) ⊆ S ⊕ S ′.

5.2. Theorem. The double category LinRel can be given the structure of a symmetric
monoidal double category with the above properties.

Proof. We have described LinRel0 and LinRel1 as symmetric monoidal categories.
The source and target functors s, t : LinRel1 → LinRel0 are strict symmetric monoidal
functors. The required globular 2-isomorphisms χ and µ are defined as follows. Given
four horizontal 1-cells

R1 ⊆ U1 ⊕ V1, R2 ⊆ V1 ⊕W1,

S1 ⊆ U2 ⊕ V2, S2 ⊆ V2 ⊕W2,
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the globular 2-isomorphism χ : (R2 ⊕ S2)(R1 ⊕ S1) ⇒ (R2R1) ⊕ (S2S1) is the identity
2-morphism

U1 ⊕ U2 W1 ⊕W2

U1 ⊕ U2 W1 ⊕W2.

(R2 ⊕ S2)(R1 ⊕ S1)

11

(R2R1)⊕ (S2S1)

The globular 2-isomorphism µ : u(V ⊕W )⇒ u(V )⊕ u(W ) is the identity 2-morphism

V ⊕W V ⊕W

V ⊕W V ⊕W .

1V⊕W

11

1V ⊕ 1W

All the commutative diagrams in the definition of symmetric monoidal double category
[24] can be checked straightforwardly. In particular, all diagrams of 2-morphisms commute
automatically because LinRel is degenerate.

Theorems 5.1 and 5.2 could be proved more generally, replacing linear relations with
relations in an arbitrary regular category. However, here we need these results only to set
the stage for defining the symmetric monoidal double functor � : Mark → LinRel. We
proceed as follows:

1. On objects: for a finite set S, we define �(S) to be the vector space RS ⊕ RS.

2. On horizontal 1-cells: for an open Markov process S
i→ (X,H)

o← T , we define its
black-boxing as in Def. 2.7:

�(S
i→ (X,H)

o← T ) =

{(i∗(v), I, o∗(v), O) : v ∈ RX , I ∈ RS, O ∈ RT and H(v) + i∗(I)− o∗(O) = 0}.

3. On vertical 1-morphisms: for a map f : S → S ′, we define �(f) : RS⊕RS → RS′⊕RS′

to be the linear map f∗ ⊕ f∗.

What remains to be done is define how � acts on 2-morphisms of Mark. This de-
scribes the relation between steady state input and output concentrations and flows of a
coarse-grained open Markov process in terms of the corresponding relation for the original
process:
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5.3. Lemma. Given a 2-morphism

S (X,H) T

(X ′, H ′)S ′ T ′,

f g

i o

i′ o′

p

in Mark, there exists a (unique) 2-morphism

�(S) �(T )

�(S ′) �(T ′)

�(S
i→ (X,H)

o← T )

�(g)�(f)

�(S′
i′→ (X′, H′)

o′← T ′)

in LinRel.

Proof. Since LinRel is degenerate, if there exists a 2-morphism of the claimed kind it
is automatically unique. To prove that such a 2-morphism exists, it suffices to prove

(i∗(v), I, o∗(v), O) ∈ V =⇒ (f∗i
∗(v), f∗(I), g∗o

∗(v), g∗(O)) ∈ W

where
V = �(S

i→ (X,H)
o← T ) =

{(i∗(v), I, o∗(v), O) : v ∈ RX , I ∈ RS, O ∈ RT and H(v) + i∗(I)− o∗(O) = 0}
and

W = �(S ′
i′→ (X ′, H ′)

o′← T ′) =

{(i′∗(v′), I ′, o′∗(v′), O′) : v′ ∈ RX′ , I ′ ∈ RS′ , O′ ∈ RT ′ and H ′(v′) + i′∗(I
′)− o′∗(O′) = 0}.

To do this, assume (i∗(v), I, o∗(v), O) ∈ V , which implies that

H(v) + i∗(I)− o∗(O) = 0. (5)

Since the commuting squares in α are pullbacks, Lemma 4.3 implies that

f∗i
∗ = i′∗p∗, g∗o

∗ = o′∗p∗.

Thus
(f∗i

∗(v), f∗(I), g∗o
∗(v), g∗(O)) = (i′∗p∗(v), f∗(I), o′∗p∗(v), g∗(O))

and this is an element of W as desired if

H ′p∗(v) + i′∗f∗(I)− o′∗g∗(O) = 0. (6)
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To prove Eq. (6), note that

H ′p∗(v) + i′∗f∗(I)− o′∗g∗(O) = p∗H(v) + p∗i∗(I)− p∗o∗(O)
= p∗(H(v) + i∗(I)− o∗(O))

where in the first step we use the fact that the squares in α commute, together with the
fact that H ′p∗ = p∗H. Thus, Eq. (5) implies Eq. (6).

The following result is a special case of a result by Pollard and the first author on
black-boxing open dynamical systems [5]. To make this paper self-contained we adapt
the proof to the case at hand:

5.4. Lemma. The black-boxing of a composite of two open Markov processes equals the
composite of their black-boxings.

Proof. Consider composable open Markov processes

S
i−→ (X,H)

o←− T, T
i′−→ (Y,G)

o′←− U.

To compose these, we first form the pushout

X +T Y

X

j
::

Y

k
dd

S

i

;;

T

o

dd
i′

::

U

o′
cc

Then their composite is

S
ji−→ (X +T Y,H �G)

ko′←− U

where
H �G = j∗Hj

∗ + k∗Gk
∗.

To prove that � preserves composition, we first show that

�(Y,G) �(X,H) ⊆ �(X +T Y,H �G).

Thus, given

(i∗(v), I, o∗(v), O) ∈ �(X,H), (i′
∗
(v′), I ′, o′

∗
(v′), O′) ∈ �(Y,G)

with
o∗(v) = i′

∗
(v′), O = I ′

we need to prove that

(i∗(v), I, o′
∗
(v′), O′) ∈ �(X +T Y,H �G).
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To do this, it suffices to find w ∈ RX+TY such that

(i∗(v), I, o′
∗
(v′), O′) = ((ji)∗(w), I, (ko′)

∗
(w), O′)

and w is a steady state of (X +T Y,H �G) with inflows I and outflows O′.
Since o∗(v) = i′∗(v′), this diagram commutes:

X

R

Y

T
i′o

v v′

so by the universal property of the pushout there is a unique map w : X +T Y → R such
that this commutes:

X

X +T Y

Y

T

R
w

i′o

v′v

j k

(7)

This simply says that because the functions v and v′ agree on the ‘overlap’ of our two
open Markov processes, we can find a function w that restricts to v on X and v′ on Y .

We now prove that w is a steady state of the composite open Markov process with
inflows I and outflows O′:

(H �G)(w) + (ji)∗(I)− (ko′)∗(O
′) = 0. (8)

To do this we use the fact that v is a steady state of S
i→ (X,H)

o← T with inflows I and
outflows O:

H(v) + i∗(I)− o∗(O) = 0 (9)

and v′ is a steady state of T
i′→ (Y,G)

o′← U with inflows I ′ and outflows O′:

G(v′) + i′∗(I
′)− o′∗(O′) = 0. (10)

We push Eq. (9) forward along j, push Eq. (10) forward along k, and sum them:

j∗(H(v)) + (ji)∗(I)− (jo)∗(O) + k∗(G(v′)) + (ki′)∗(I
′)− (ko′)∗(O

′) = 0.
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Since O = I ′ and jo = ki′, two terms cancel, leaving us with

j∗(H(v)) + (ji)∗(I) + k∗(G(v′))− (ko′)∗(O
′) = 0.

Next we combine the terms involving the infinitesimal stochastic operators H and G, with
the help of Eq. (7) and the definition of H �G:

j∗(H(v)) + k∗(G(v′)) = (j∗Hj
∗ + k∗Gk

∗)(w)
= (H �G)(w).

(11)

This leaves us with
(H �G)(w) + (ji)∗(I)− (ko′)∗(O

′) = 0

which is Eq. (8), precisely what we needed to show.
To finish showing that � is a functor, we need to show that

�(X +T Y,H �G) ⊆ �(Y,G) �(X,H).

So, suppose we have

((ji)∗(w), I, (ko′)
∗
(w), O′) ∈ �(X +T Y,H �G).

We need to show

((ji)∗(w), I, (ko′)
∗
(w), O′) = (i∗(v), I, o′∗(v′), O′) (12)

where
(i∗(v), I, o∗(v), O) ∈ �(X,H), (i′∗(v′), I ′, o′∗(v′), O′) ∈ �(Y,G)

and
o∗(v) = i′∗(v′), O = I ′.

To do this, we begin by choosing

v = j∗(w), v′ = k∗(w).

This ensures that Eq. (12) holds, and since jo = ki′, it also ensures that

o∗(v) = (jo)∗(w) = (ki′)∗(w) = i′
∗
(v′).

To finish the job, we need to find an element O = I ′ ∈ RT such that v is a steady state of
(X,H) with inflows I and outflows O and v′ is a steady state of (Y,G) with inflows I ′ and
outflows O′. Of course, we are given the fact that w is a steady state of (X +T Y,H �G)
with inflows I and outflows O′.

In short, we are given Eq. (8), and we seek O = I ′ such that Eqs. (9) and (10) hold.
Thanks to our choices of v and v′, we can use Eq. (11) and rewrite Eq. (8) as

j∗(H(v) + i∗(I)) + k∗(G(v′)− o′∗(O′)) = 0. (13)
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Eqs. (9) and (10) say that

H(v) + i∗(I)− o∗(O) = 0
G(v′) + i′∗(I

′)− o′∗(O′) = 0.
(14)

Now we use the fact that

X +T Y

X

j
::

Y

k
dd

T

o

dd

i′

::

is a pushout. Applying the ‘free vector space on a finite set’ functor, which preserves
colimits, this implies that

RX+TY

RX

j∗

::

RY

k∗

dd

RT

o∗

dd

i′∗

::

is a pushout in the category of vector spaces. Since a pushout is formed by taking first a
coproduct and then a coequalizer, this implies that

RT

(0,i′∗)
//

(o∗,0) // RX ⊕ RY j∗+k∗ // RX+TY

is a coequalizer. Thus, the kernel of j∗ + k∗ is the image of (o∗, 0)− (0, i′∗). Eq. (13) says
precisely that

(H(v) + i∗(I), G(v′)− o′∗(O′)) ∈ ker(j∗ + k∗).

Thus, it is in the image of o∗− i′∗. In other words, there exists some element O = I ′ ∈ RT

such that
(H(v) + i∗(I), G(v′)− o′∗(O′)) = (o∗(O),−i′∗(I ′)).

This says that Eqs. (9) and (10) hold, as desired.

This is the main result of this paper:

5.5. Theorem. There exists a symmetric monoidal double functor � : Mark→ LinRel
with the following behavior:

1. Objects: � sends any finite set S to the vector space RS ⊕ RS.
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2. Vertical 1-morphisms: � sends any map f : S → S ′ to the linear map
f∗ ⊕ f∗ : RS ⊕ RS → RS′ ⊕ RS′.

3. Horizontal 1-cells: � sends any open Markov process S
i→ (X,H)

o← T to the linear
relation given in Def. 2.7:

�(S
i→ (X,H)

o← T ) =

{(i∗(v), I, o∗(v), O) : H(v) + i∗(I)− o∗(O) = 0 for some I ∈ RS, v ∈ RX , O ∈ RT}.

4. 2-Morphisms: � sends any morphism of open Markov processes

S (X,H) T

(X ′, H ′)S ′ T ′

f g

i o

i′ o′

p

to the 2-morphism in LinRel given in Lemma 5.3:

�(S) �(T )

�(S ′) �(T ′).

�(S
i→ (X,H)

o← T )

�(g)�(f)

�(S′
i′→ (X′, H′)

o′← T ′)

Proof. First we must define functors �0 : Mark0 → LinRel0 and �1 : Mark1 → LinRel1.
The functor �0 is defined on finite sets and maps between these as described in (i) and
(ii) of the theorem statement, while �1 is defined on open Markov processes and mor-
phisms between these as described in (iii) and (iv). Lemma 5.3 shows that �1 is well-
defined on morphisms between open Markov processes; given this is it easy to check that
�1 is a functor. One can verify that �0 and �1 combine to define a double functor
� : Mark → LinRel: the hard part is checking that horizontal composition of open
Markov processes is preserved, but this was shown in Lemma 5.4. Horizontal composition
of 2-morphisms is automatically preserved because LinRel is degenerate.

To make � into a symmetric monoidal double functor we need to make �0 and �1

into symmetric monoidal functors, which we do using these extra structures:

• an isomorphism in LinRel0 between {0} and �(∅),

• a natural isomorphism between �(S) ⊕ �(S ′) and �(S + S ′) for any two objects
S, S ′ ∈Mark0,
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• an isomorphism in LinRel1 between the unique linear relation {0} → {0} and
�(∅ → (∅, 0∅)← ∅), and

• a natural isomorphism between

�((S → (X,H)← T ) ⊕ �(S ′ → (X ′, H ′)← T ′)

and
�(S + S ′ → (X +X ′, H ⊕H ′)← T + T ′)

for any two objects S → (X,H)← T , S ′ → (X ′, H ′)← T ′ of Mark1.

There is an evident choice for each of these extra structures, and it is straightforward
to check that they not only make �0 and �1 into symmetric monoidal functors but also
meet the extra requirements for a symmetric monoidal double functor listed in Shulman’s
paper [24]. In particular, all diagrams of 2-morphisms commute automatically because
LinRel is degenerate.

6. A bicategory of open Markov processes

In Thm. 4.5, we constructed a symmetric monoidal double category Mark with

1. finite sets as objects,

2. maps between finite sets as vertical 1-morphisms,

3. open Markov processes as horizontal 1-cells, and

4. morphisms of open Markov processes as 2-morphisms.

Using the following result of Shulman [24], we can obtain a symmetric monoidal bicategory
Mark with

1. finite sets as objects,

2. open Markov processes as morphisms,

3. morphisms of open Markov processes as 2-morphisms.

To do this, we need to check that the symmetric monoidal double category Mark is
‘isofibrant’—a concept we explain in the proof of Lemma 6.3. The bicategory Mark then
arises as the ‘horizontal bicategory’ of the double category Mark.
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6.1. Definition. Let D be a double category. Then the horizontal bicategory of D,
which we denote as H(D), is the bicategory with

1. objects of D as objects,

2. horizontal 1-cells of D as 1-morphisms,

3. globular 2-morphisms of D (i.e., 2-morphisms with identities as their source and
target) as 2-morphisms,

and vertical and horizontal composition, identities, associators and unitors arising from
those in D.

6.2. Theorem. [Shulman] Let D be an isofibrant symmetric monoidal double category.
Then H(D) is a symmetric monoidal bicategory, where H(D) is the horizontal bicategory
of D.

6.3. Lemma. The symmetric monoidal double category Mark is isofibrant.

Proof. In what follows, all unlabeled arrows are identities. To show that Mark is
isofibrant, we need to show that every vertical 1-isomorphism has both a companion and
a conjoint [24]. Given a vertical 1-isomorphism f : S → S ′, meaning a bijection between
finite sets, then a companion of f is given by the horizontal 1-cell:

S (S ′, 0S′) S ′
f

together with two 2-morphisms

S (S ′, 0S′) S ′

S ′ S ′(S ′, 0S′)

S (S, 0S) S

S S ′(S ′, 0S′)

f

f f

f

f

such that vertical composition gives

S (S, 0S) S

S S ′(S ′, 0S′)

S ′ (S ′, 0S′) S ′

=

S

S ′

(S, 0S) S

(S ′, 0S′) S ′

f

f

f

f

f ff
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and horizontal composition gives

S (S, 0S) S

S S ′(S ′, 0S′)

(S ′, 0S′)

(S ′, 0S′)

S ′

S ′

=

S (S ′, 0S′) S ′

S (S ′, 0S′) S ′

f

f

f

f f

f

A conjoint of f : S → S ′ is given by the horizontal 1-cell

S ′ (S ′, 0S′) S
f

together with two 2-morphisms

S ′ (S ′, 0S′) S

S ′ S ′(S ′, 0S′)

S (S, 0S) S

S ′ S(S ′, 0S′)

f

f f

f

f

that satisfy equations analogous to the two above.

6.4. Theorem. Mark is a symmetric monoidal bicategory.

Proof. This follows immediately from Thm. [24]: Mark is an isofibrant symmetric
monoidal double category, so we obtain the symmetric monoidal bicategory Mark as
the horizontal bicategory of Mark.

We can also obtain a symmetric monoidal bicategory LinRel from the symmetric
monoidal double category LinRel using this fact:

6.5. Lemma. The symmetric monoidal double category LinRel is isofibrant.

Proof. Let f : X → Y be a linear isomorphism between finite-dimensional real vector
spaces. Define f̂ to be the linear relation given by the linear isomorphism f and define
2-morphisms in LinRel

X Y

Y Y

X X

X Y

αf ⇓ fα ⇓

f̂

f 1

1

1

1 f

f̂
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where αf and fα, the unique fillers of their frames, are identities. These two 2-morphisms

and f̂ satisfy the required equations, and the conjoint of f is given by reversing the
direction of f̂ , which is just f−1 : Y → X. It follows that LinRel is isofibrant.

6.6. Theorem. There exists a symmetric monoidal bicategory LinRel with

1. finite-dimensional real vector spaces as objects,

2. linear relations R ⊆ V ⊕W as morphisms from V to W ,

3. inclusions R ⊆ S between linear relations R, S ⊆ V ⊕W as 2-morphisms.

Proof. Apply Shulman’s result, Thm. 6.2, to the isofibrant symmetric monoidal double
category LinRel to obtain the symmetric monoidal bicategory LinRel as the horizontal
edge bicategory of LinRel.

Thus we have symmetric monoidal bicategories Mark and LinRel, both of which come
from discarding the vertical 1-morphisms of the symmetric monoidal double categories
Mark and LinRel, respectively. Morally, we should be able to do something similar
to the symmetric monoidal double functor � : Mark → LinRel to obtain a symmetric
monoidal functor of bicategories � : Mark→ LinRel.

6.7. Conjecture. There exists a symmetric monoidal functor � : Mark → LinRel
that maps:

1. any finite set S to the finite-dimensional real vector space �(S) = RS ⊕ RS,

2. any open Markov process S
i→ (X,H)

o← T to the linear relation from �(S) to �(T )
given by the linear subspace

�(S
i→ (X,H)

o← T ) =

{(i∗(v), I, o∗(v), O) : H(v) + i∗(I)− o∗(O) = 0} ⊆ RS ⊕ RS ⊕ RT ⊕ RT ,

3. any morphism of open Markov processes

S

S T

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

1S 1Tp

to the inclusion
�(X,H) ⊆ �(X ′, H ′).
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(1999), 162–220.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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