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SPANS OF COSPANS

DANIEL CICALA

Abstract. We study spans of cospans in a category C and explain how to horizontally
and vertically compose these. When C is a topos and the legs of the spans are monic,
these two forms of composition satisfy the interchange law. In this case there is a
bicategory of objects, cospans, and ‘monic-legged’ spans of cospans in C. One motivation
for this construction is an application to graph rewriting.

1. Introduction

There is currently interest in studying complex networks through the simpler networks
of which they are comprised. This point of view is known as compositionality. Various
flavors of graphs (directed, weighted, colored, etc.) play an important role in this program
because they are particularly well suited to model networks [2, 3, 12, 13]. By adding a bit
of structure to graphs, we can decide how to glue graphs together to make larger graphs.

The structure that we want to consider is given by choosing two subsets of nodes,
named inputs and outputs. When the inputs of one graph equal the outputs of another,
we can glue the graphs together. One method for adding this structure is to use a cospan
of graphs I → G← O where I and O are discrete. Then gluing graphs together becomes a
matter of composing cospans, which Bénabou [4] described using pushouts in the context
of a bicategory whose morphisms are cospans and 2-morphisms are maps of cospans.
Rebro [11] extended this idea to give a bicategory whose 2-morphisms are cospans of
cospans. See the figure below to see what this means.

The goal of this paper is to explore another tool to study networks: spans of cospans
(see Figure 1c). Grandis and Paré studied these in the context of intercategories and
showed that lax interchange holds. We build a bicategory from certain spans of cospans.
Both Bénabou and Rebro only required sufficient colimits to compose maps of cospans
and cospans of cospans, respectively. For us, we require sufficient limits and colimits while
also ensuring they play well together. For this reason, we start with a topos C, then let
our 0-cells be the objects of C, 1-cells the cospans in C, and 2-cells isomorphism classes
of spans (with monic legs) of cospans. Our main theorem is that this construction, named
MonSp(Csp(C)), really gives a bicategory.
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(a) Map of cospans
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(b) Cospan of cospans
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(c) Span of cospans

Figure 1: Various morphisms of cospans

The specific motivation for this particular construction is to create a framework to
house the rewriting of graphs (with inputs and outputs). Applying our construction to
the topos Graph of presheaves on

• •

we consider Rewrite, the full sub-bicategory of MonSp(Csp(Graph)) whose objects
are the discrete graphs. The 2-cells of Rewrite represent all possible ways to rewrite one
graph into another that respect the inputs and outputs. In this paper, graph rewrites
are performed using the double pushout method. This is explained in Section 4, though
more detailed accounts exist in the literature [5, 8]. Here is an example of what a 2-cell
in Rewrite looks like:

◦ �

◦

• �

◦

• �

◦

• �

Inputs are depicted with ‘◦’, outputs with ‘�’, and nodes depicted with ‘•’ are neither.
The picture above illustrates the rewriting of the top graph to the bottom graph by
deleting an edge and adding a loop.

The structure of this paper is as follows. We begin Section 2 by defining spans of
cospans and two ways to compose them. When working in a topos and assuming that
the legs of the spans of cospans are monic, we show that the compositions satisfy an
interchange law. This section ends with a construction of a bicategory whose 2-cells are
spans of cospans. Strictly speaking, there is no need for the full strength of a topos, so
in Section 3, we discuss how we can weaken our assumptions so that interchange still
holds. Then in Section 4 we give a brief introduction to graph rewriting and present our
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motivating example: Rewrite, a bicategory that contains all possible ways to rewrite
graphs.

2. Spans of cospans

We begin by introducing spans of cospans. Given that our motivation is to have these
be 2-cells in some bicategory, we also show how to compose them. In fact, there are two
ways to do so and these correspond to horizontal and vertical composition. Of course, we
would like for these compositions to play nicely together and so we finish this section by
showing that an interchange law holds under certain assumptions.

Before we begin, a few remarks on convention are in order. First, throughout this
paper, tailed arrows “�” refer to monics, and two headed arrows “�” to quotient maps.
Also, hooked arrows “↪→” are canonical inclusions, which are labeled ιx when its codomain
is x. To declutter the diagrams, we name only those arrows that are explicitly referenced.
Spans A← B → C are denoted by B : A

sp−→ C and cospans X → Y ← Z by Y : X
csp−−→ Z.

This notation is vague, but context should dispense with any confusion. Note that, when
first defining spans of cospans below, the object names might seem to be oddly chosen.
The intention is to develop a consistency that carries into the proof of the interchange
law, at which point, the naming should seem more methodical.

2.1. Spans of cospans and their compositions. Suppose that we are working in a
category C. Given a parallel pair of cospans L, S : X

csp−−→ Y , a span of cospans is a span
S ′ : L

sp−→ S such that
L

Y

S

X S ′

commutes. Given spans of cospans S ′1, S
′
2 : L

sp−→ S, then a morphism of spans of cospans
is a C-morphism S ′1 → S ′2 such that the diagram

X

L

Y

S

S ′1

S ′2

(1)

commutes. This is an isomorphism of spans of cospans exactly when the C-morphism is.
There are two different ways to turn compatible pairs of spans of cospans into a single

span of cospans. Actually, we are foreshadowing that spans of cospans are 2-cells in a
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bicategory. Therefore, we immediately name these assignments for what they are: vertical
and horizontal composition. For the compositions to be defined, C should have enough
limits and colimits. Also, for the present moment, compositions are only be defined up to
isomorphism. We also hold off on looking for the typical properties composition should
satisfy until we introduce the bicategorical structure.

Take a pair of spans of cospans S ′ : L
sp−→ S and S ′′ : S

sp−→ L′. Define vertical compo-
sition ◦v by

S ′′ ◦v S ′ := S ′ ×S S ′′ : L
sp−→ L′. (2)

Diagrammatically, this is

X Y

L

S ′

S

S ′′

L′

◦v
X Y

L

L′

S ′ ×S S ′′

Now, let L, S : X
csp−−→ Y and R, T : Y

csp−−→ Z be cospans and let S ′ : L
sp−→ S and T ′ : R

sp−→
T be spans of cospans. Define the assignment horizontal composition ◦h by

T ′ ◦h S ′ := S ′ +Y T
′′ : L+Y R

sp−→ S +Y T, (3)

which corresponds to

X Y Y

L

S ′

S

R

T ′

T

s t
◦h

X Y

L+Y R

S +Y T

S ′ +Y T
′

f

At this point, it is natural to ask whether the interchange law holds between vertical and
horizontal composition. It does, but not without some further assumptions.

2.2. The interchange law. Let C be a topos with chosen pushouts and let both legs
of each span of cospans be monic. To see examples of where the interchange law fails
without these assumptions, see Section 3.

The first thing we want to do is to show that the vertical and horizontal compositions
are well-defined, up to isomorphism. To this end, we give a lemma that will be put to
work several times during the course of this section.
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2.3. Lemma. Given a diagram

B A C

B′ A C ′
∼=

(4)

we get a pushout

B + C B +A C

B′ + C ′ B′ +A C
′

γ γ′

(5)

such that the canonical arrows γ and γ′ are monic.

Proof. Using its universal property, we see that γ factors through B′ + C as seen in
diagram

B

B′

B + C

B′ + C

B′ + C ′

C

C ′

It is straightforward to check that the squares are both pushouts. By Lemma 4.1, we get
that γ must be monic and also that the monotonicity of γ′ follows from the diagram (5)
being a pushout, which we now show.

One can check that the right hand square commutes by using the universal property
of B + C. To see that this square is a pushout, set up a cocone D

B + C B +A C

B′ + C ′ B′ +A′ C ′

D

q

γ γ′

dq′

d′

(6)

Then d′ιB′ , d′ιC′ , and D form a cocone under the span B′ ← A′ → C ′ on the bottom
face of diagram (4). This induces the canonical map γ′′ : B′ +A C

′ → D. It follows that
d′ιB′ = γ′′q′ιB′ and d′ιC′ = γ′′q′ιC′ . Therefore, d′ = γ′′q′ by the universal property of
coproducts.

Furthermore, dqιB, dqιC , and D form a cocone under the span B ← A → C on the
top face of diagram (4). Then dqιB = d′γιB = γ′′q′γιB = γ′′γ′qιB and dqιC = d′γιC =
γ′′q′γιC = γ′′γ′qιC meaning that both d and γ′′γ′ satisfy the canonical map B+AC → D.
Hence d = γ′′γ′.

The universality of γ′′ with respect to diagram (6) follows from the universality of γ′′

with respect to B′ +A C
′.
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2.4. Lemma. Let S ′ : L
sp−→ S and S ′′ : S

sp−→ L′ be vertically composable spans of cospans,
both of whose span legs are monic. The legs of the vertical composite span of cospans
S ′′ ◦v S ′ : L

sp−→ L′ are monic. Similarly, let L, S : X
csp−−→ Y and R, T : Y

csp−−→ Z be cospans
and let S ′ : L

sp−→ S and T ′ : R
sp−→ T be spans of cospans with monic legs. Then the legs of

the horizontal composite span of cospans T ′ ◦h S ′ : L+Y R
sp−→ S +Y T are monic.

Proof. The result for vertical composition follows from the fact that pullbacks respect
monics. The result for horizontal composition follows from applying Lemma 2.3 to the
diagrams

S ′ Y T ′

S Y T

=

S ′ Y T ′

S Y T

=

The interchange law requires that, given composable spans of cospans

X Y Z

L

S ′

S

S ′′

L′

R

T ′

T

T ′′

R′ (7)

there is an isomorphism:

(S ′ ◦v S ′′) ◦h (T ′ ◦v T ′′) ∼= (S ′ ◦h T ′) ◦v (S ′′ ◦h T ′′) . (8)

The left hand side corresponds to first applying vertical composition then horizontal
composition. The right hand side swaps the order of composition. This isomorphism
strengthens to an equality when isomorphism classes of spans of cospans are the 2-cells
of a bicategory.

It is straightforward, using (2) and (3), to see that (8) reduces to finding an isomor-
phism

(S ′ ×S S ′′) +Y (T ′ ×T T ′′) ∼= (S ′ +Y T
′)×S+Y T (S ′′ +Y T

′′) (9)

of spans of cospans.
To simplify our notation, write:

A := (S ′ ×S S ′′) + (T ′ ×T T ′′), AY := (S ′ ×S S ′′) +Y (T ′ ×T T ′′),
B := (S ′ + T ′)×S+T (S ′′ + T ′′), BY := (S ′ +Y T

′)×S+Y T (S ′′ +Y T
′′).
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Now, apply Lemma 2.3 to the diagram

S ′ ×S S ′′ Y T ′ ×T T ′′

S Y T

=

to get the pushout

A AY

S + T S +Y T

a aY

Similarly, we get pushouts

A AY

S ′ + T ′ S ′ +Y T
′

a′ a′Y

A AY

S ′′ + T ′′ S ′′ +Y T
′′

a′′ a′′Y

Now, A forms a cone over the cospan S + T : S ′+ T ′
csp−−→ S ′′+ T ′′ via the maps a, a′, and

a′′. And so, we get a canonical map θ : A→ B.

2.5. Lemma. Given cospans Y , W : X
csp−−→ Z where the legs of W factor through a monic

Y � W , then there is a unique isomorphism X ×Y Z ∼= X ×W Z.

Proof. Via the projection maps, X×Y Z forms a cone over the cospan W : X
csp−−→ Z and,

also, X ×W Z forms a cone over the cospan Y : X
csp−−→ Z, though the latter requires the

monic Y � W to do so. Universality implies that the induced maps are mutual inverses
and they are the only such pair.

2.6. Lemma. The map θ : A→ B is an isomorphism.

Proof. Because colimits are stable under pullback [10, Thm. 4.7.2], we get an isomor-
phism

γ : (S ′ ×S+T S ′′) + (S ′ ×S+T T ′′) + (T ′ ×S+T S ′′) + (T ′ ×S+T T ′′)→ B.

But S ′ ×S+T T ′′ and S ′′ ×S+T T ′ are initial. To see this, recall that in a topos, all maps
to the initial object are isomorphisms. Now, consider the diagram

S ′ ×S+T T ′′ T ′′

∅ T

S ′ S S + T
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whose lower right square is a pullback because coproducts are disjoint in topoi. Similarly,
T ′ ×S+T S ′′ is initial. Hence we get a canonical isomorphism

γ′ : (S ′ ×S+T S ′′) + (T ′ ×S+T T ′′)→ B (10)

that factors through γ. But Lemma 2.5 gives unique isomorphisms S ′×S S ′′ ∼= S ′×S+T S ′′
and T ′ ×T T ′′ ∼= T ′ ×S+T T ′′. This produces a canonical isomorphism

γ′′ : A→ (S ′ ×S+T S ′′) + (T ′ ×S+T T ′′).

One can show that θ = γ′ ◦ γ′′ using universal properties.

Now, let us consider the following diagram:

A

AY BY

S + T

S ′ + T ′

S ′′ + T ′′

S +Y T

S ′ +Y T
′

S ′′ +Y T
′′

a′′

a′

a′Y

θY

a′′Y

p

ψ

(11)

where θY and ψ are the canonical maps. Observe that ψ factors through θY in the above
diagram. This follows from the universal property of pullbacks. We also have that the
top square is a pullback from the previous lemma.

2.7. Lemma. The map θY : AY → BY is an isomorphism.

Proof. Because we are working in a topos, it suffices to show that θY is both monic and
epic. It is monic because a′Y is monic.

To see that θY is epic, it suffices to show that ψ is epic. The front and rear right faces
of (11) are pushouts by Lemma 2.3. Then because the top and bottom squares of (11)
are pullbacks consisting of only monomorphisms, Lemma 4.2 implies that the front and
rear left faces are pushouts. However, as pushouts over monos, Lemma 4.1 tells us they
are pullbacks. But in a topos, regular epis are stable under pullback, and so ψ is epic.

It remains to show that θY serves as an isomorphism between spans of cospans. This
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amounts to showing that

X

L+Y R

Y

L′ +Y R
′

AY

BY

j

g

h

k

θY fp

(12)

commutes. Here g and k are induced from applying vertical composition before horizontal,
h from applying horizontal composition before vertical, j is from composing in either order,
f is from (3), and p is from (11). The top and bottom face commute by construction.

2.8. Lemma. The inner triangles of diagram (12) commute. That is, we have k = fpθY
and h = θY g.

Proof. To see that k = fpθY , consider the diagram

X

L

Y

S

S ′1

S ′2

The bottom face is exactly the pushout diagram from which f was obtained. Universality
implies that k = fa′Y and, as seen in (11), a′Y = pθY .

That h = θY g follows from

fph = j = kg = fpθY g

and the fact that fp is monic.

Of course, we have only shown that two of the four inner triangles commute, but we
can replicate our arguments to s how the remaining two commute as well. This lemma
was the last step in proving the following interchange law.

2.9. Theorem. Given diagram (7) in a topos, there is a canonical isomorphism (S ′ ×S
S ′′) +Y (T ′ ×T T ′′) ∼= (S ′ +Y T

′)×S+Y T (S ′′ +Y T
′′).

Note that Section 3 contains a discussion on the assumptions taken in this theorem.
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2.10. Constructing the bicategory. Let C be any topos. We commence construc-
tion of a bicategory named MonSp(Csp(C)), or C̃ for short. The 0-cells of C̃ are just the

C-objects. For 0-cells X and Y , build a category C̃(X, Y ) whose objects are C-cospans
and morphisms are isomorphism classes of C-spans of cospans whose legs are both monic.
Composition in C̃(X, Y ) is the vertical composition ◦v introduced in (2). It is straightfor-
ward to check that associativity holds and that spans of cospans whose legs are identity
serve as identities.

The composition functor is given by an assignment

⊗ : C̃(Y, Z)× C̃(X, Y )→ C̃(X,Z)

that acts on 1-cells by (T, S) 7→ S ⊗Y T and on 2-cells by horizontal composition ◦h from
(3). It is straightforward to check that ⊗ preserves identities. Theorem 2.9 ensures that
⊗ preserves composition.

For every 0-cell X, the identity functor 1 → C̃(X,X) picks out the 2-cell with all
identity maps on X. The associator is made of 2-cells

R +X S +Y T : (R +X S) +Y T
sp−→ R +X (S +Y T ).

The right unitor is made of 2-cells S : S +Y Y
sp−→ S. Likewise, the left unitor has 2-cells

T : T
sp−→ Y +Y T . The legs for each of the above are the obvious choices. The pentagon

and triangle identities follow from the associativity, up to isomorphism, of pushouts.
Given all of the data just laid out, we have the main theorem of the paper.

2.11. Theorem. If C is a topos, then MonSp(Csp(C)) is a bicategory.

3. A discussion on the assumptions

Can we expand the domain on which this construction works? Apart from ensuring
sufficiently many limits and colimits, the primary source of roadblocks is the interchange
law. As we discuss below, it is not absolutely necessary to work strictly within a topos,
but we choose to do so in order to be expeditious. To lay out, one by one, the requirements
for our interchange law to hold would be exhausting and leave us little energy to work
through its proof. To do this is even less reasonable given the ubiquity of topoi. However,
listing these requirements is interesting enough to take a look at here.

Before digging deeper into the properties used, let’s convince ourselves of the necessity
for monic legs within our span of cospans.

3.1. Example. Consider the category Set of sets and functions. Relax the assumption
that the legs of the spans of cospans are both monic. Indeed, suppose that S ′, S ′′, and
T ′ are two element sets and S, Y , T , and T ′′ are singletons. The functions can be
any of the limited choices we have. After several routine calculations, we determine that
(S ′×S S ′′)+Y (T ′×T T ′′) has cardinality 5 and (S ′+Y T

′)×S+Y T (S ′′+Y T
′′) has cardinality

6.
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So we see that even in the archetypal topos, the legs of the spans must be monic for
the interchange law to hold. But even if they are, this law may fail if our category C is
not a topos. The next example illustrates this.

3.2. Example. Consider the Boolean algebra on a two element set. This is the category
0→ 1 with products given by meet and coproducts given by join. Note that this is not a
topos. Indeed, the only non-identity morphism is both monic and epic but, as no inverse
exists, it is not an isomorphism. Recalling the interchange equation (8), suppose that
we have Y = S ′′ = T ′ = 0 and S = S ′ = T = T ′′ = 1. It is straightforward to check
that (S ′ ×S S ′′) +Y (T ′ ×T T ′′) = 0 and (S ′ +Y T

′) ×S+Y T (S ′′ +Y T
′′) = 1. That is, the

interchange equation does not hold. Because this Boolean algebra can be embedded into
any other, it follows that interchange does not hold for any Boolean algebra.

Now that we are convinced that we actually do need to assume something for inter-
change to work, we can list our requirements. The obvious place to start is by asking for
our category to have enough limits and colimits.

In Lemma 2.3, we use that pushouts respect monics. This occurs in topoi. Indeed,
this occurs in any adhesive category, which we discuss further in Section 4.

In Lemma 2.6, we use several facts. The first is that coproducts are disjoint, meaning
that a pullback over coproduct inclusions is initial. We also use that colimits—particularly
coproducts—are stable under pullback. The full force of a topos is not needed to satisfy
this requirement. It suffices that our category is locally cartesian closed [10, Thm. 1.4.9].

In Lemma 2.7, we use that a monic epimorphism is an isomorphism in topoi. This
is surely not true in general, but it is always true that a monic regular epimorphism is
an isomorphism. Notice that the vertically aligned epimorphisms in Diagram (11) are all
regular since they are all coequalizers. For instance S+T � S+Y T is a coequalizer over
Y ⇒ S + T . So we can merely ask for pullbacks to preserve regular epimorphisms. Note
that this does happen in a regular category, which is a larger class than topoi.

Also in Lemma 2.7, we make use of Lemmas 4.1 and 4.2. This holds in any adhesive
category.

It is clear that the properties of adhesive categories (see Section 4) play an important

role in ensuring that C̃ is a bicategory, as does being locally cartesian closed and regular.
Topoi are a well-known, large family of categories that are contained in the intersection
of all of these classes.

4. An informal introduction to graph rewriting

For those who are not familiar with rewriting systems, and graph rewriting in particular,
we provide a brief introduction. For a more in-depth and rigorous viewpoint, see [1], [5],
or [8].

There are many methods of rewriting found throughout mathematics, computer sci-
ence, and linguistics. The general idea is that we begin with a collection of rules, a
collection of terms, and a way to apply rules to certain, compatible terms. When applied
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to a term, a rule replaces a sub-term with a new sub-term. A simple, informal example
is found within the English language. Consider a set of rules

{(noun) 7→ x : x is an English noun}.

We can apply any one of these rules to

‘The (noun) is far away.’

to obtain heaps of grammatically correct, if potentially ridiculous sentences.
The first rewriting methods were uni-dimensional, in that they are concerned with

replacing a string of characters or letters. Many attempts to define multi-dimensional
rewriting systems came up short in application and execution, but Ehrig, Pfender, and
Schneider developed a categorical approach using graph morphisms and pushouts [5] that
has since been studied extensively. This approach came to be known as double pushout
graph rewriting. This is what we are interested in and consider in our bicategory Rewrite
introduced below.

Here is how double pushout graph rewriting works. A production is a span

p : L� K � R

of graphs with monic legs. Some authors call this a ‘linear production’ to distinguish it
from spans with potentially non-monic legs, but we do not adopt this convention here.
Given a production p, and a graph morphism L → C, called a matching map, such that
there exists a diagram

L K R

C E D (13)

consisting of two pushout squares, we say that D is a derivation of C and write C  E D
or just C  D. The arrow ‘ ’ is commonly decorated with more information: for
instance, the name of the production or the matching map. But that is not necessary
here. Observe that the objects E and D need not exist, but when they do, they are unique
up to isomorphism [8, Lemma 4.5].

A grammar (G,P) is a set of graphs G paired with a set of productions P . A derivation
of the grammar is a string of derivations

G0  G1  · · · Gn

from productions in P and with G0 ∈ G. We say that Gn is a rewrite of G0. The language
L(G,P) generated by the grammar is the collection of all graphs G such that there is
a derivation G0  ∗ G of the grammar. The idea is that one would study a language.
Exactly what properties are interesting is beyond the scope of this discussion. Interested
readers should consult the references mentioned at the beginning of this section. Instead
of going deeper into the subject, we briefly zoom out.
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Seeking to axiomatise graph rewriting, Lack and Sobocinski [8] introduced a class of
categories they call adhesive. Roughly, a category is adhesive if it has pullbacks, pushouts
along monomorphisms, and certain exactness conditions between pullbacks and pushouts
hold. These exactness conditions, while subtle, imply all the properties one wants in
double pushout rewriting.

Given that topoi are adhesive [9], there are many examples of adhesive categories.
One advantage of the generalization is that adhesivity is preserved under coslicing. For
instance, the category of pointed sets not a topos, but it is adhesive because it is equivalent
to the coslice category 1 ↓ Set.

Presently, we are interested in using the adhesivity of topoi, which allows us to use
Lemmas 4.1 and 4.2, in our construction. While originally proved for adhesive categories,
we restrict our assumptions to topoi as this suits our needs.

4.1. Lemma. [8, Lemmas 4.2-3] In a topos, monomorphisms are stable under pushout.
Also, pushouts along monomorphisms are pullbacks.

4.2. Lemma. [8, Lemma 6.3] In a topos, consider a cube

•

• •

•
•

• •

•

whose top and bottom faces consist of only monomorphisms. If the top face is a pullback
and the front faces are pushouts, then the bottom face is a pullback if and only if the back
faces are pushouts.

A good portion of the theory for double pushout graph rewriting has been extended
to adhesive categories. So, while our focus is on double pushout graph rewriting, there
may be variations of the bicategory Rewrite (introduced below) that are of interest to
computer scientists. For instance, the Schanuel topos was used to model the π-calculus [6]
and adhesive categories allow us to extend rewriting to such settings. Our contribution
is a bicategorical framework to house the rewriting as 2-cells, though only for double
pushout graph rewriting.

4.3. Rewrite. Here, we introduce the bicategory Rewrite as promised. To prepare,
we begin by introducing a slight generalization of the double pushout graph rewriting
concepts discussed above. An interface (I, O) is a pair of discrete graphs and a production
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with interface (I, O), or simply (I, O)-production, is a cospan of spans

I O

L

K

R

Think of I and O as choosing inputs and outputs. Given a production with interface
(I, O), we say that a graph G′ is an (I, O)-derivation of G if there is a diagram

I O

L K R

G E G′

where the bottom squares are pushouts. We denote this as G G′. An (I, O)-grammar
(G,P) consists of a collection of graphs G and another of (I, O)-productions P . Again, an
(I, O)-grammar generates a language consisting of all graphs G such that there is a chain
of (I, O)-derivations G0  G1  · · · Gn = G from P such that G0 ∈ G. However, this
time, we require such a chain to respect the inputs and outputs in the sense that

G0 E0 G1 E1 G2 Gn−1 En−1 Gn

L0 K0 R0 L1 K1 R1 Rn−1 Ln Kn Rn

I O

· · ·

· · · · · ·

(14)

Now we can put these productions with interfaces into our bicategorical framework.
Consider the full sub-bicategory of C̃ for C := Graph with objects the finite, discrete

graphs. Here, a 1-cell is a cospan G : I
csp−−→ O where G is a graph and I, O are discrete

graphs. A 2-cell between 1-cells G′ and G′′ is a span of cospans G : G′
sp−→ G′′ which we

think of as an (I, O)-derivation G′  G′′. We call this sub-bicategory Rewrite because
the 2-cells are exactly all the possible ways to rewrite one graph into another so that
inputs and outputs are preserved. Given any 2-cell G : G′

sp−→ G′′ in Rewrite, then the
diagram

I O

G′ G G′′

G′ G G′′
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gives an (I, O)-derivation G′  G G
′′. Conversely, any (I, O)-derivation (14) can be made

into composable 2-cells Ei : Gi
sp−→ Gi+1 where the maps from I and O are the evident

composites. Then, the vertical composition of the resulting 2-cells gives us the desired
span of cospans.

To better illustrate this, we provide a concrete example of the dictionary between
Rewrite and double pushout graph rewriting. Suppose we were given an (I, O)-derivation
with I = {∗} = O, induced from the following double pushout graph rewriting diagram

a

c

a

c

a

c

a

c

a

c

a

c

a

b c

a

b c

a

b c

a

b c

a

b c

where the functions are described by the labeling, the inputs are circled, and the outputs
are squared. In words, we have rewritten the graph on the lower left by removing an edge
a→ c and adding a loop c→ c. The pullback of the span

a

b c

a

b c

a

b c

is the graph
a

b c

The corresponding 2-cell is the diagram

a c

a

b c

a

b c

a

b c
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Here we witness the advantage that graph rewriting has over graph morphisms in the
realm of expressivity. There is no way to replace the 2-cell above with a map of graph
cospans.

There is nothing inherently special, from a mathematical point of view, about working
with graphs and their morphisms. It is in applications where graphs gain importance.
We can actually create categories analogous to Rewrite with any topos.

5. Conclusion and further work

Our primary motivation for constructing this bicategory is as a way to study the gluing of
graphs together in a way compatible with chosen input and output nodes. To this end, we
defined a bicategory Rewrite. This is a very large bicategory and in practice, one begins
with a grammar and studies the resulting language. So, in an upcoming collaboration with
Kenny Courser, we look at relating languages to sub-bicategories of Rewrite generated
by a grammar. In this same paper, we study the structure of MonSp(Csp(C)) alongside
similar bicategories.
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