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A CONSTRUCTION OF CERTAIN WEAK COLIMITS AND AN
EXACTNESS PROPERTY OF THE 2-CATEGORY OF CATEGORIES

DESCOTTE M.E., DUBUC E.J., SZYLD M.

Abstract. Given a 2-category A, a 2-functor A F−→ Cat and a distinguished
1-subcategory Σ ⊂ A containing all the objects, a σ-cone for F (with respect to Σ) is a
lax cone such that the structural 2-cells corresponding to the arrows of Σ are invertible.
The conical σ-limit is the universal (up to isomorphism) σ-cone. The notion of σ-limit
generalizes the well known notions of pseudo and lax limit. We consider the fundamen-
tal notion of σ-filtered pair (A,Σ) which generalizes the notion of 2-filtered 2-category.
We give an explicit construction of σ-filtered σ-colimits of categories, a construction
which allows computations with these colimits. We then state and prove a basic exact-
ness property of the 2-category of categories, namely, that σ-filtered σ-colimits commute
with finite weighted pseudo (or bi) limits. An important corollary of this result is that a
σ-filtered σ-colimit of exact category valued 2-functors is exact. This corollary is essen-
tial in the 2-dimensional theory of flat and pro-representable 2-functors, that we develop
elsewhere.

Introduction

In this paper we develop an explicit construction of certain colimits of categories, and
state and prove an important exactness property of the 2-category Cat of categories,
which corresponds to the commutation of filtered colimits with finite limits of sets.

In Section 1 we recall some necessary background and fix terminology. Given a

2-category A, a 2-functor A F−→ Cat and a distinguished 1-subcategory Σ ⊂ A con-
taining all the objects, a σ-cone for F (with respect to Σ) with vertex E is a lax cone

{FA θA−→ E}A∈A , {θBFf
θf

=⇒ θA}
A

f−→B∈A
, such that θf is invertible for every f in Σ.

In Definition 1.1 we recall the notion of conical σ-colimit. It is the universal (up to iso-
morphism, that is, in the “pseudo” sense) σ-cone. Conical σ-limits are special cases of
cartesian quasi limits as considered in [6, I,7.9.1 iii)]. For a complete definition of weighted
σ-limits in terms of σ-natural transformations we refer the interested reader to [4, §2].
Weighted σ-limits generalize both weighted lax and pseudo-limits as considered in [8, §5].
In Definition 1.2 we recall the fundamental notion of σ-filtered pair (A,Σ) introduced
in [4, Definition 3.1.2]. This notion relativizes to Σ the definition of bifiltered given in
[10, Definition 3.2].
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In Section 2, Definition 2.13 and Theorem 2.15, we generalize the construction of
2-filtered pseudo-colimits of categories of [5, Theorem 1.19] and develop an explicit con-
struction of σ-filtered σ-colimits of categories which is essential in many applications. In
Section 3 we recall the notion of finite weight, and prove, Theorem 3.2, that σ-filtered
σ-colimits commute with finite weighted pseudo (or bi) limits in Cat.

It is clear that the notion of exact 2-functor should be the preservation up to equiva-
lence of finite weighted bilimits. An important corollary of Theorem 3.2 is that a σ-filtered
σ-colimit of Cat valued exact 2-functors is exact. This fact is essential in the theory of
flat 2-functors that we develop in [4].

1. Background and terminology

We refer the reader to [9] for basic notions on 2-categories. Size issues are not relevant
to us here, when it is not clear from the context we indicate the smallness condition
if it applies. By Cat we denote the 2-category of (small) categories, with functors as
morphisms and natural transformations as 2-cells.

In any 2-category, we use ◦ to denote vertical composition and juxtaposition to denote
horizontal composition. We consider juxtaposition more binding than “◦”, thus αβ ◦ γ
means (αβ)◦γ. We will abuse notation by writing f instead of idf for arrows f when there
is no risk of confusion. For a 2-category A and objects A,B ∈ A, we use the notation
A(A,B) to denote the category whose objects are the morphisms between A and B and
whose arrows are the 2-cells between those morphisms.

We fix throughout this paper a pair (A,Σ), where Σ is a family of arrows of a 2-category
A, containing the identities and closed under composition. We note that this amounts to
a 1-subcategory of A containing all the objects. We will use a symbol σ accompanying a
concept, it is convenient to think that σ means that the concept is to be taken “relative
to Σ”. Whenever possible, we’ll omit Σ from the notation.

We now give an explicit definition of the concepts of σ-cone and (conical) σ-colimit.
For a complete definition of weighted σ-limits in terms of σ-natural transformations we
refer the interested reader to [4, §2]. Weighted σ-limits generalize both weighted lax and
pseudo-limits as considered in [8, §5], which correspond respectively to the two extreme
cases where Σ consists of only the identities or Σ consists of all the arrows of A. As usual,
conical σ-colimits are weighted σ-colimits where the weight is constant at the category
1. An important property of conical σ-colimits is that any weighted σ-colimit can be
expressed as a conical σ-colimit, albeit with a different pair (A,Σ) [4, Theorem 2.4.10].

1.1. Definition. (σ-colimit) Let F : A −→ B be a 2-functor, and E an object of

B. A σ-cone for F (with respect to Σ) with vertex E is a lax cone {FA θA−→ E}A∈A,

{θBFf
θf

=⇒ θA}
A

f−→B∈A
such that θf is invertible for every f in Σ. The morphisms be-

tween two σ-cones correspond to their morphisms as lax cones. This defines the category
ConesΣ

σ (F,E).
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The σ-colimit in B (with respect to Σ) of the 2-functor F : A −→ B is the universal

σ-cone, denoted {FA λA−→ σLimΣ

−−−−→
A∈A

FA}A∈A, {λBFf
λf

=⇒ λA}
A

f−→B∈A
in the sense that for

each E ∈ B, pre-composition with λ is an isomorphism of categories (we omit Σ now)

B(σLim−−−→
A∈A

FA,E)
λ∗−→ Conesσ(F,E) (1.1)

Since we need them later we now list the equations satisfied by lax cones and their
morphisms.

LC0 For all A ∈ A, θidA = idθA

LC1 For all A
f−→ B

g−→ C ∈ A, θgf = θf ◦ θgFf

FA
θA

%%
Ff θf⇑��
FB

θB //

Fg
θg⇑
��

E

FC
θC

99 =

FA
θA

%%
Ff
��

FB θgf⇑

Fg
��

E

FC
θC

99

LC2 For all A

f //
γ⇓
g

// B ∈ A, θf = θg ◦ θBFγ

FA
θA

((
Fγ
⇒Ff
��

Fg θg⇑��
FB

θB
// E

=

FA
θA

%%
Ff θf⇑��
FB

θB
// E

LCM For all A
f−→ B ∈ A, θ′f ◦ ϕBFf = ϕA ◦ θf

FA

θA
ϕA ⇑

%%

θ′A

%%Ff

θf⇑��
FB

θB
// E

=

FA
θ′A

%%
Ff θ′f⇑
��

FB
θ′B //

θB

ϕB⇑ // E

The reader will notice that this definition can immediately be extended to the case where
F is a pseudofunctor. However, we did not investigate the possibility of extending the
whole theory to this case, in particular the crucial constructions in Definitions 2.1 and
2.13.
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We note that conical σ-limits are special cases of cartesian quasi limits considered by
J. W. Gray in [6, I,7.9.1 iii)]. As it is well known for the lax case, there is an op-lax
naturality involved in the definition of conical colimits as weighted colimits with weight
constant 1. That is the reason why our conical σ-colimits above have the structure 2-cells
in the reverse direction from Gray’s cartesian quasi colimits.

In [6, I,7.11.4 i)] Gray proves that cartesian quasi colimits in Cat exist and gives an
explicit construction of them. A dual proof (see [4, §2.5] for details) shows that σ-colimits

in Cat exist and yields the formula, for A F−→ Cat, σLim−−−→
A∈A

FA = (π0(ΓF )op)[(CΣ)−1]. Here

π0 is the left adjoint of the inclusion Cat d−→ 2-Cat, (ΓF )op is the co-2-fibration associated
to F , and [(CΣ)−1] indicates that the category of fractions is taken with respect to the
arrows (f, ϕ) of ΓF with f ∈ Σ and ϕ an isomorphism (in other words the cartesian arrows
over Σ).

However, as it is the case for filtered pseudo-colimits of categories, general categories
of fractions are hard to explicitly compute and work with, and a better construction is
available under extra hypothesis of filteredness on the domain category, which yield a
calculus of fractions [1, Exposé VI]. A generalization for dimension 2 is developed in [5].
See [3, Theorem 9.2] where an explicit comparison is made between the construction of
[5] and a construction using the calculus of 2-fractions of [11].

We now consider a fundamental notion introduced in [4, Definition 3.1.2]. This notion
relativizes to Σ the definition of bifiltered given in [10, Definition 3.2], [5, Definition 2.6].
See also the equivalent notion of 2-filtered [5, Definition 2.1]. We recover these notions
when Σ consists of all the arrows of A.

1.2. Definition. (σ-filtered 2-categories) We say that a pair (A,Σ) is σ-filtered, or
for brevity, that A is σ-filtered, if it is non empty and the following hold (we add a circle
to an arrow · o // · to indicate that it belongs to Σ):

σF0 Given A,B ∈ A, there exist E ∈ A and morphisms
A

o
f
)) E

B
o
g

55

σF1 Given A
f //
o
g
// B ∈ A, there exist a morphism B o

h // E and a 2-cell hf
α

=⇒ hg.

If f ∈ Σ, we may choose α invertible.

σF2 Given A

f //
α⇓ β⇓

o
g

// B ∈ A, there exists a morphism B o
h // E such that hα = hβ.

For a 2-functor ∆
F−→ A, we say that a lax cone θ with vertex E has arrows in Σ if

the structure arrows F (i)
θi−→ E are in Σ for all i ∈ ∆. We refer to a 2-functor ∆

F−→ A
as a finite 2-diagram if ∆ is a finite 2-category. The following is proven in [4, Proposition
3.1.5]:
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1.3. Proposition. A pair (A,Σ) is σ-filtered if and only if every finite 2-diagram

∆
F−→ A has a σ-cone (with respect to F−1(Σ) ⊂ ∆) with arrows in Σ. �

2. A construction of σ-filtered σ-colimits in Cat
In this section we will generalize the construction of 2-filtered pseudo-colimits of categories

of [5, Theorem 1.19], and construct σ-filtered σ-colimits of categories. Let A F−→ Cat be
a 2-functor, and assume that A is σ-filtered. We will construct the σ-colimit of F in the
sense of Definition 1.1.

In a similar way to [5, Definition 1.5], we define a quasicategory Lσ(F ) and compute the
σ-colimit by identifying homotopical premorphisms. We note however that the definition
of homotopy of [5] doesn’t generalize in a direct way to the σ-case. We note that, in the
case where Σ consists of all the arrows of A, the definition here is equivalent to the one
in [5] by [5, 1.18].

In the same spirit, we note that our proofs of the results in this section and section 3
below are not direct generalizations of the proofs that can be found in [5], [2]. Instead, we
prove a general lemma (2.6) from which all of the other results follow. This lemma and
its proof are reminiscent of the usual arguing for filtered categories and filtered colimits:
one should “go further” in order to obtain the equations one wishes to prove.

2.1. Definition. [cf. [5, 1.5], Quasicategory L(F )]

1. Objects of Lσ(F ) are pairs (x,A), with A ∈ A and x ∈ FA, as in L(F ).

2. Premorphisms (x,A)
(u,ξ,v)−−−→ (y,B) consist of triples A o

u // C, B v // C and

F (u)(x)
ξ−→ F (v)(y) ∈ FC. This is the same as in L(F ), but we add the re-

quirement that the arrow A
u−→ C is in Σ.

3. The equivalence relation “being homotopical to” will be defined below, as it is more
clearly expressed after an abuse of notation is introduced.

2.2. Notation. We omit the letter F in denoting the action of F on its arguments.

Thus, as in [5, 1.6], A
u //
α⇓
v

// B indicates a 2-cell in A as well as the corresponding

natural transformation FA

F (u) //
F (α)⇓
F (v)

// FB in Cat. This abuse and its use are justified since

F
x−→ A lives in Homs(A, Cat)op and we abuse F

x−→ A for A(A,−)
x−→ F (recall the

Yoneda lemma).

With this notation, premorphisms are written as 2-cells F

x
??

ξ⇓

y ��

A
o
u
��

B
v

??C . This allows



198 DESCOTTE M.E., DUBUC E.J., SZYLD M.

one to exploit the rich interplay that exists between “real” 2-cells of A and premorphisms
or “fake” 2-cells.

2.3. Definition. Given premorphisms (x,A)
(u1,ξ1,v1)//

(u2,ξ2,v2)
// (y,B), we say that ξ1 is homotopi-

cal to ξ2, and write ξ1 ∼ ξ2 if there are 2-cells (α1, α2, β1, β2), with αi invertible i = 1, 2,
such that

A
o

u1 ##

o
wA

$$
α1⇓

F

x
>>

y   

ξ1⇓ C1 o
w1 // D

β1⇓
B

v1
;;

o
wB

:: =

A
o

u2 ##

o
wA

$$
α2⇓

F

x
>>

y   

ξ2⇓ C2 o
w2 // D

β2⇓
B

v2
;;

o
wB

:: (2.1)

We refer to the 2-cells (α1, α2, β1, β2) as the homotopy and write (α1, α2, β1, β2) : ξ1 ⇒ ξ2.

Note that the relation “being homotopical” defined above is clearly symmetric. More-
over, from the fact that A is σ-filtered, it follows easily that it is also reflexive.

2.4. Remark. Note that for any pair of “real” 2-cells D

w
??

γ1⇓

w′ ��

A
o
u1
��

B
v1

??C , D

w
??

γ2⇓

w′ ��

A
o
u2
��

B
v2

??C , by

considering a σ-cone with arrows in Σ of the diagram given by them (recall Proposition
1.3), we have that there exist (α1, α2, β1, β2) satisfying an equation analogous to (2.1)
above, in other words “real 2-cells are always homotopical”.

2.5. Notation. [cf. [5, 1.7]] We have the following composition of two 2-cells over a
third one

β ◦γ α =

.
))

α ⇓ .
''. //

  

>>

.

66

((
γ ⇓ .

β ⇓ .

77

.

55

To compose premorphisms α = ξ, β = ζ (cf. [5, 1.10 and above]) we pick γ from a

σ-cone with arrows in Σ of the diagram
·

B
55

o )) ·
to determine a premorphism

ζ ◦γ ξ =

.
o ))

ξ ⇓ .
o
%%F //

  

>>

B

88

o
''
γ ⇓ .

ζ ⇓ .
o
99

.

55

(2.2)



CONSTRUCTION OF CERTAIN WEAK COLIMITS AND AN EXACTNESS PROPERTY 199

Given composable premorphisms ξi, i = 1, 2, 3, the equality

ξ3 ◦δ (ξ2 ◦γ1 ξ1) = (ξ3 ◦γ2 ξ2) ◦η ξ1

holds if δ and η are chosen from the diagram

.
))

ξ1 ⇓ .
((.

66

''
γ1 ⇓ .

&&F

77

''

CC

��

ξ2 ⇓ .

77

''
γ3 ⇓ .

.

77

((
γ2 ⇓ .

88

ξ3 ⇓ .

66

.

55

(2.3)

The following lemma is the key to almost all the results of this paper. As mentioned
above, it is the σ-case of a method which is usually applied to filtered colimits. Informally,
it states that any set of homotopy equations between premorphisms yields equalities
between premorphisms which are obtained by going further.

2.6. Lemma. Consider a finite sequence of functors A Fi−→ Cat (note that we may have

Fi = Fj for i 6= j), premorphisms Fi

xi ??

ξi⇓

yi ��

Ai
o
ui
��

Bi

vi

??Ci in Lσ(Fi) and a finite set S = {η, ξ, ...}

of finite compositions of the premorphisms over 2-cells of A (we ask that, for any of
the given compositions η, all the involved premorphisms have the same Fi, and all the
compositions fit as in (2.2))

Assume that a finite number of homotopy equations between these compositions hold
(we ask that, for any given equation, the premorphisms on both sides of the equations have
the same domain and codomain).

Then there exist E ∈ A, and for each i arrows wi, ti, zi in Σ and 2-cells µi, νi, with µi
invertible, fitting as follows

ξ̃i :

Ai
o

ui ""

o
wi

$$µi⇓

Fi

xi
>>

yi   

ξi⇓ Ci o
zi // E,

νi⇓
Bi

vi
<<

o
ti

:: (2.4)

such that if we consider the corresponding premorphisms ξ̃i, then the equations for the
compositions of the ξ̃i hold in FE. We mean the equations obtained by using composition
in FE instead of composition over the 2-cells, and equality instead of homotopy.

Moreover,
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1. The arrows wi and ti can be chosen depending only on the objects Ai, Bi (this means
precisely that if Ai = Bj then wi = tj and similarly if Ai = Aj or Bi = Bj)

2. The arrow zi and the 2-cells µi, νi can be chosen so that:

i) If Ai = Bi = Ci and ui = vi = id, then zi = wi = ti and µi = νi = id.

ii) Otherwise, i.e. considering only those pairs (ui, vi) such that (ui, vi) 6= (id, id),
the 2-cells µi and νi can be chosen depending only on the arrows ui, vi
(this means precisely that, for each i, j such that (ui, vi) 6= (id, id) and
(uj, vj) 6= (id, id), if ui = vj then µi = νj and similarly if ui = uj or vi = vj).

Note that in particular, for every i, j, (ui, vi) = (uj, vj) implies that (µi, νi) = (µj, νj).

Proof. The idea of the proof is to construct a finite 2-diagram4 G−→ A that holds all the
information of the premorphisms, the compositions over the 2-cells and the homotopies.
We will construct4 (and G) in steps, starting with an empty category and adding objects,
arrows and 2-cells. We omit to explicitly add all the identities and all the compositions of
the arrows and the 2-cells. We note however that this procedure yields a finite 2-category
4 because neither arrows between the same object (loops) nor 2-cells between the same
arrow (2-loops) can arise as compositions of the “added” arrows and 2-cells.

Step 0 We begin constructing 4 by adding one object for each element of the set {Ai, Bi}
consisting of all the Ai and all the Bi. Then there is no harm in labeling these
objects by Ai, Bi. The reader should note that, if Ai = Aj, or Ai = Bj, or Bi = Bj,
then the same equality holds in 4.

Step 1 We now consider all the premorphisms ξi such that (ui, vi) 6= (id, id). We add one
new object ? for each element of the set consisting of all the Ci in these premor-
phisms, one new arrow for each element of the set {ui, vi} consisting of all the arrows
in these premorphisms, and define G as follows:

Ai a
'' ?

Bi
b

77
G7−→

Ai
o
ui
''
Ci

Bi
vi

77

We note that, for every premorphism ξi, there are arrows of 4 mapped to ui and
vi. We now want to extend this result to all the given compositions of the ξi over
the 2-cells.

Step 2 To simplify the notation, it is convenient to add to the set S of premorphisms
{η, ξ, ...} all the ξi and all the compositions between them appearing in the given
premorphisms η, ξ, .... For example, if η = (ξj ◦γ ξi) ◦δ ξm ∈ S, then we add ξj ◦γ ξi
to the family. When we use the letters η, ξ we will be referring to premorphisms in
this family.

We will modify 4 so that
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2.7. For each premorphism F

xi
??

η⇓

yj ��

Ai
o
u

��

Bj

v

??C we have chosen arrows of 4, Ai
a−→ ?,

Bj
b−→ ?, that are mapped to u and v respectively.

We do this as follows: We modify 4, considering one η at a time. We work induc-
tively in the order that the composition is computed. By the Step 1, 2.7 holds for
the ξi. Consider then a composition

η ◦γ ξ =

Ak
o
u′

''
ξ⇓ C ′

o
r

&&
F

xk

@@

xi //

yj
��

Ai

v′
77

o
u

''

γ⇓ D

η⇓ C
o
s

88

Bj
v

77

Then by the inductive hypothesis we have the diagram

Ak a′

''
?′

Ai

b′ 77

a
(( ?

Bj

b 77

G7−→

Ak
o
u′

''
C ′

Ai

v′ 77

o
u
''
C

Bj

v 77

We add one new object ?̃, two new arrows c, d and one new 2-cell to 4, and extend
G as follows:

?′
c

&&
Ai

b′ 88

a ''

⇓ ?̃

? d

88
G7−→

C ′
o
r
''

Ai
o
u ((

v′ 77

γ ⇓ D

C
o
s

77

Then the arrows ca′ and db are mapped to ru′ and sv as desired.

We note that we add one object, two arrows and a 2-cell once for each appearing
composition over a 2-cell γ, and not once for each γ. We have to do this because two
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premorphisms ξi : F

??

⇓
��

· ui
��

· vi

?? · , ξj : F

??

⇓
��

· uj
��

· vj

?? · can have the same arrow vi = vj = id

but if ui 6= id = uj then we have chosen two different arrows of 4 that map to vi
and vj (cf. item 2.ii) in the statement of the lemma). Then the same 2-cell γ may
appear in two compositions ξ ◦γ ξj and ξ ◦γ ξi but must be treated differently in each
case.

Step 3 We finally consider each of the homotopy equations η ∼ ξ. By definition, there are
2-cells (α1, α2, β1, β2), with αi invertible i = 1, 2, such that

Ai
o
u ""

o
wAi

$$α1⇓

F

xi
??

yj ��

η⇓ C o
w1 // D

β1⇓

Bj

v
<<

o
wBj

:: =

Ai
o

u′ ""

o
wAi

$$
α2⇓

F

xi
??

yj ��

ξ⇓ C ′ o
w2 // D

β2⇓

Bj

v′
<<

o
wBj

:: (2.5)

We know by 2.7 that there are arrows a, b, a′, b′ of4mapped to u,v,u′,v′ respectively.
We add one object ∗, four arrows c, d, e, f and four 2-cells to 4, and extend G as
follows:

Ai

a ""

e

##⇓
?

c // ∗
⇓

Bj

b
<<

f

<<
G7−→

Ai
o
u ##

o
wAi

$$α1⇓
C o

w1 // D

β1⇓

Bj

v
;;

o
wBj

::

Ai

a′ !!

e

""⇓
?′ d // ∗
⇓

Bj

b′
==

f

<<
G7−→

Ai
o

u′ ##

o
wAi

$$α2⇓
C ′ o

w2 // D

β2⇓

Bj

v′
;;

o
wBj

::

We have finished constructing 4 and G. By Proposition 1.3 we have a σ-cone (with

respect to G−1(Σ)) θ with arrows in Σ and vertex E, of the diagram 4 G−→ A.
Using 2.7 we define, for each η

η̃ :

Ai
o
u ""

o
θAi

##
θ−1
a ⇓

F

x
@@

y ��

η⇓ C o
θ? // E

θb⇓

Bj

v
<<

o
θBj

:: (2.6)
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Note that in particular we have for each ξi, the premorphism ξ̃i as in (2.4) with
wi = θAi , ti = θBi , zi = θ?, µi = θ−1

a , νi = θb; where the object ? and the arrows a, b were
added to 4 in step 1. By the construction of 4, items 1. and 2. at the end of the lemma
hold.

We will show the following two basic properties of the η̃ from which it will follow that
the original homotopy equations hold for the ξ̃i in FE, as desired. Consider two of these
premorphisms η, ξ; then

A. If the equation η ∼ ξ was one of the homotopy equations, then η̃ = ξ̃.

B. If the composition η◦γξ appears in one of the given compositions, then η̃ ◦γ ξ = η̃◦ξ̃.
Using first A and then B, it is easy to show that the homotopy equations between

the compositions of the ξi yield the desired equations in FE between the corresponding
compositions of the ξ̃i. Then it only remains to prove A and B.

Proof of A. The homotopy (α1, α2, β1, β2) : η ⇒ ξ was considered in Step 3 of our
construction of 4. We refer there for the notation. We claim that

η̃ =

Ai
o
u ""

o
wAi

$$
o
θAi

θ−1
e ⇓

!!α1⇓

F

xi
??

yj ��

η⇓ C o
w1 // D o

θ∗ // E

β1⇓

Bj

v
<<

o
wBj

::
o
θBj

θf⇓
>> (2.7)

and similarly for ξ̃. From these equalities it is clear how to show η̃ = ξ̃ using (2.5). So it
suffices to prove (2.7). By axioms LC1 and LC2 (see Definition 1.1) we have

Ai
o
u

  
owAi

##

o
θAi

θa⇑

��

α1⇒ C
ow1��

o
θ?

  
D o

θ∗
//

θc⇑

E

=

Ai
o
θAi

��
owAi
��

θe⇑

D o
θ∗

// E

Composing with θ−1
e and θ−1

a it follows

Ai
o
u ##

o
wAi

$$

o
θAi

θ−1
e ⇓

!!α1⇓
C o

w1 //

o
θ?

θc⇓
99D o

θ∗ // E
= Ai

o
u ))

o
θAi

θ−1
a ⇓

%%
C o

θ?
// E

From this equation and the corresponding one for β1 it is immediate to show that the
diagrams in equations (2.6) and (2.7) are equal.
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Proof of B. The composition η ◦γ ξ was considered in Step 2 of the construction of 4, we
refer there for the notation. We have to show that

Ak
o
u′

''

o
θAk

��
ξ⇓ C ′

o
r

&&

θ−1
ca′⇓

F

xk

@@

xi //

yj
��

Ai

v′
77

o
u

''

γ⇓ D o
θ?̃ // E

η⇓ C
o
s

88

θdb⇓
Bj

v

77

o
θBj

BB =

Ak
o
u′

%%
o
θAk

��

ξ⇓ C ′

o
θ?′

))

θ−1
a′ ⇓

F

xk

CC

xi //

yj

��

Ai

v′
99

o
u %%

o θAi
θb′⇓

θ−1
a ⇓

// E

η⇓ C
o
θ?

55

θb⇓

Bj

v

99

o
θBj

FF

By axiom LC1 (see Definition 1.1) it suffices to show

C ′

o
r

$$

o
θ?′

""θ−1
c ⇓

Ai

v′
::

o
u %%

γ⇓ D o
θ?̃ // E

C

o
s

::

o
θ?

<<
θd⇓

=

C ′ o
θ?′

��
Ai

v′
::

o
u $$

o θAi
//

θb′⇓

θ−1
a ⇓

E

C o
θ?

@@ (2.8)

But by axioms LC1 and LC2 we have

Ai
o
u

  v′ ��
o
θAi

θa⇑

��

C ′

o
r   

γ⇒ C
os��

o
θ?

  
D o

θ∗̃

//
θd⇑

E

=

Ai o
θAi

θb′⇑

��

v′ ""
C ′

o
r ""

o
θ?′

##θc⇑

D o
θ∗̃

// E

Composing this equation with θ−1
a and θ−1

c v′ proves (2.8), finishing the proof.

2.8. Remark. We note some facts that follow from the proof of Lemma 2.6 and that will
be used later. We consider as in the proof of the lemma (Step 2) the set S = {η, ξ, ...}
consisting of all the ξi and all the compositions of the ξi that appear in the given compo-
sitions, and consider for each η in this family the premorphisms η̃ as in (2.6). Then:

1. If η̃ = ξ̃, then (θ−1
a , θ−1

a′ , θb, θb′) : η ⇒ ξ is a homotopy (this is immediate by the
definition of homotopy).

2. If η ◦γ ξ is in the set S, then η̃ ◦γ ξ = η̃ ◦ ξ̃ (this is item B of the proof).

2.9. Remark. We will loosely say that we apply Lemma 2.6 to a finite family of equations
between compositions of premorphisms. We will omit to say that in this case we’re con-
sidering all appearing premorphisms as the family ξi and all the compositions appearing
in the equations as the set S = {η, ξ, ...}.
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2.10. Proposition. [cf. [5, 1.8], vertical composition of homotopies] The relation “being
homotopical” is transitive, i.e. if ξ1 ∼ ξ2 and ξ2 ∼ ξ3 then ξ1 ∼ ξ3.

Proof. Apply Lemma 2.6 to the equations ξ1 ∼ ξ2 and ξ2 ∼ ξ3. Then ξ̃1 = ξ̃2 = ξ̃3,
which by remark 2.8, item 1, implies that ξ1 ∼ ξ3.

2.11. Corollary. The relation ∼ in Definition 2.3 is an equivalence relation between
the premorphisms that share the same domain and codomain. In fact, reflexivity and
symmetry are immediate by definition, and the previous proposition expresses transitivity.

2.12. Proposition. [cf. [5, 1.11], horizontal composition of homotopies] Consider com-

posable premorphisms as follows (x, A)
ξ1 //

ξ2
// (y, B)

η1 //

η2
// (z, C) . Then, given any

two composites η1 ◦γ1 ξ1 and η2 ◦γ2 ξ2, if ξ1 ∼ ξ2 and η1 ∼ η2 then η1 ◦γ1 ξ1 ∼ η2 ◦γ2 ξ2.

Proof. We apply Lemma 2.6 to the premorphisms {ξ1, ξ2, η1, η2}, the set S =
{ξ1, ξ2, η1, η2, η1 ◦γ1 ξ1, η2 ◦γ2 ξ2} and the equations ξ1 ∼ ξ2, η1 ∼ η2. Then we have

˜η1 ◦γ1 ξ1 = η̃1 ◦ ξ̃1 = η̃2 ◦ ξ̃2 = ˜η2 ◦γ2 ξ2,

where the equalities are justified by remark 2.8, item 2 and by Lemma 2.6. By remark
2.8, item 1, this implies that η1 ◦γ1 ξ1 ∼ η2 ◦γ2 ξ2.

2.13. Definition. [cf. [5, 1.12,1.13]] Recall our Definition 2.1 of the quasicategory
Lσ(F ). There is a category that we’ll also denote by Lσ(F ), whose arrows are the classes
of premorphisms under the equivalence relation ∼. We will denote the arrows of Lσ(F )
with the same letter ξ, as it is clear from the context whether a premorphism or its class
is being considered.

Note that Proposition 2.12 shows that the composition of classes is well defined
and may be computed over an arbitrary 2-cell γ as in (2.2). The identities are

(x,A)
(idA,idx,idA)−−−−−−−→ (x,A) and composition is associative since we can choose the 2-cells

γi, i = 1, 2, 3 as in (2.3).

2.14. Proposition. [cf. [5, Proof of 2.4 (b)]] Consider a finite sequence of functors

A Fk−→ Cat and premorphisms of Lσ(Fk) as follows Fk

xk
??

ξk⇓

yk ��

A
o
u
��

B
v

??C , Fk

xk
??

ηk⇓

yk ��

A
o
s
��

B
t

??D . If

ηk ∼ ξk for each k, then there are 2-cells α1, α2, β1, β2 which define all the homotopies
(α1, α2, β1, β2) : ηk ⇒ ξk.

Proof. We apply Lemma 2.6 to the equations ηk ∼ ξk. In this way we have η̃k = ξ̃k,
but since all the ξk share the same (u, v) then all the ξ̃k are constructed from the ξk by
pasting the same 2-cells µ, ν that we denote by α2, β2 respectively. Similarly, all the η̃k
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are constructed from the ηk by pasting the same 2-cells that we denote α1, β1. Then by
Remark 2.8, item 1, (α1, α2, β1, β2) : ηk ⇒ ξk for each k as desired.

2.15. Theorem. [cf. [5, 1.19]] The following formulas define a σ-cone F
λ

=⇒ Lσ(F )

which is the σ-colimit of F in Cat. For A ∈ A, x ∈ FA, x
ξ−→ y in FA, A

u−→ B in A

λA(x) = F
x−→ A , λA(ξ) = F

x
??

ξ⇓

y ��

A
id

��

A

o
id

??A , (λu)x = F

ux
??

id⇓

x ��

B
o
id
��

A
u

??B

Proof. It is immediate to show that λ is a functor, that λu are natural transforma-
tions and axioms LC0, LC1 in Definition 1.1. If u ∈ Σ, then for each x we have the

premorphisms (λ−1
u )x = F

ux ��

id⇓

x
??B

o
u
��

A
id

??B , showing that λu is invertible.

To prove axiom LC2, given A
u //
γ⇓
v

// B, we have to show that

B
id

((
(Fγ)x ⇓ B

id
%%

F
vx //

x
  

ux

>>

B
id

77

id ((

id ⇓ B

id ⇓ B id

88

A
v

66

∼
B

id
&&

F
x &&

ux 88

id ⇓ B

A
u

88

We consider a σ-cone θ with arrows in Σ with vertex C for the diagram determined
by the 2-cell γ (recall Proposition 1.3). Then a simple computation shows that

B
o
id

%%

o
θB

%%(Fγ)x⇓ id⇓
F

ux
;;

x ##

vx // B o
θB // C

id⇓ θv ⇓
A

v

99

o
θA

99 =

B
o
id

##

o
θB

$$
id⇓

F

ux
>>

x   

id⇓ B o
θB // C

θu⇓
A

u

;;

o
θA

::

We will now show the universal property. Note that since σ-colimits exist in Cat
[6, I,7.9.1 iii)], [4, §2.5], it suffices to show the 1-dimensional property (see [7, (3.4) and

below]). Then if we consider F
h

=⇒ X a σ-cone, we have to prove that there is a unique

functor Lσ(F )
h̃−→ X such that h̃λ = h. The only possible definition on objects is
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h̃(x,A) = hA(x), and given any premorphism F

x
??

ξ⇓

y ��

A
o
u
��

B
v

??C , the equality ξ = λv ◦ ξ ◦λ−1
u

forces the definition h̃(ξ) =

A

o
u ""

hA

$$h−1
u ⇓

F

x
@@

y ��

ξ⇓ C
hC // X

hv ⇓
B

v
;;

hB

::

To show that this is well defined, consider a homotopy (α1, α2, β1, β2) : ξ1 ⇒ ξ2, then
we compute

A

o
u1 ""

hA

$$
h−1
u1 ⇓

F

x
??

y   

ξ1⇓ C1

hC1 // X
hv1 ⇓

B

v1
;;

hB

::
(∗)
=

A
o

u1 ## o
wA
$$

hA

h−1
wA
⇓

��α1⇓

F

x
>>

y   

ξ1⇓ C1 o
w1 // D

hD // X
β1⇓

B

v1
;;

o
wB

::

hB

hwB⇓

@@ =

A
o

u2 ## o
wA
$$

hA

h−1
wA
⇓

��α2⇓

F

x
>>

y   

ξ2⇓ C2 o
w2 // D

hD // X
β2⇓

B

v2
;;

o
wB

::

hB

hwB⇓

@@
(∗)
=

A

o
u2 ""

hA

$$
h−1
u2 ⇓

F

x
??

y   

ξ2⇓ C2

hC2 // X
hv2 ⇓

B

v2
;;

hB

::

The equalities marked with an (∗) are justified from the following equality and the
corresponding equalities for β1, α2 and β2, all of which follow immediately from axioms
LC1 and LC2.

A

u1 ��

hA

��
h−1
u1
⇓

C1 hC1

// X
=

A

u1 "" o
wA

$$

hA

h−1
wA
⇓

��α1⇓
C1 o

w1 //

hC1

hw1⇓
;;D

hD // X
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3. A basic exactness property of Cat
The following theorem, the proof of which will occupy this whole section, generalizes
[5, Theorem 2.4] not only to the σ-case but also to all finite weighted bilimits instead
of cotensors. The case where Σ consists of all the arrows of A was considered in
[2, Theorem 7.24].

We refer to [8, §2], [12, (1.12)], [4, §2] among other choices for the definition of the

bilimit of a 2-functor A F−→ B weighted by a 2-functor A W−→ Cat. We consider below a
simple version of finite weight which is sufficient for our purposes.

3.1. Definition. We say that a 2-functor A W−→ Cat is a finite weight if A is a finite

2-category and for each A ∈ A, WA is a finite category. Given 2-functors A W−→ Cat,
A F−→ B the bilimit bi{W,F} is said to be a finite bilimit if W is a finite weight.

3.2. Theorem. σ-filtered σ-colimits commute with finite (weighted) bilimits in Cat. This

means precisely that, for a finite 2-category I, and 2-functors A×I F−→ Cat, I W−→ Cat,
if W is a finite weight, then the canonical comparison functor

♦ : σLim−−−→
A∈A

bi{W,F (A,−)} ≈−→ bi{W,σLim−−−→
A∈A

F (A,−)} (3.1)

is an equivalence of categories. Observe that the bilimits can be computed in Cat as
pseudo-limits. Despite that, commutativity holds not up to isomorphism but only up to
equivalence, i.e. in the “bi-sense”.

As it is known, weighted bilimits can be constructed using bicotensors, biproducts
and biequalizers (see [13]). These bilimits exist in Cat in the stronger pseudo form.
Furthermore, the proof in [13] also yields the finite case, see [2, Corollary 6.12] for a
detailed proof of the following: finite weighted bilimits in Cat can be constructed (as
pseudo-limits) from finite cotensors, finite 2-products and pseudo-equalizers. Therefore to
prove Theorem 3.2 it suffices to check commutativity for these three special kind of limits,
which we do in the next three propositions.

The reader may notice that the proofs of these three propositions are somewhat similar,
and in fact a direct unified proof of Theorem 3.2 is also possible. This proof is obtained by
describing the categories appearing in (3.1) and the action of ♦, using the constructions
of σ-filtered σ-colimits in Cat, and the construction of weighted bilimits in Cat. Since
the weight W takes values in finite categories, Lemma 2.6 can also be used to prove this
general case, but since some computations become much harder than the ones in the
particular cases of the three propositions below we have refrained from doing so.

When using Lemma 2.6, we will denote the arrows wi, zi, ti in (2.4) by A
wA−→ E,

B
wB−→ E, and so on, this is justified by item 1 in Lemma 2.6.

Finite cotensors. Note that if C,D ∈ Cat, we have {D,C} = CD the category of func-
tors from C to D. Given F : A −→ Cat, and W a category, since cotensors are computed
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pointwise we have the 2-functor {W,F}(A) = (FA)W , we will denote FW = {W,F}. We
have a comparison functor ♦ : Lσ(FW ) −→ Lσ(F )W , we describe its action on objects
and on arrows.

1. An object in Lσ(FW ) is a pair (x,A), where x ∈ FW (A) = (FA)W . This is given

by F
xk−→ A, k ∈ W , and arrows xp

xf−→ xq, p
f−→ q ∈ W , satisfying equations

xidk = idxk for all k ∈ W , xf◦g = xf ◦ xg for all composable pairs f, g ∈ W .

2. An object in Lσ(F )W is a functor W
(x,ϕ)−−−→ Lσ(F ) given explicitly by:

F
xk−→ Ak, k ∈ W, F

xp ??

ϕf⇓

xq ��

Ap
o
uf

��

Aq
vf

??
Af , p

f−→ q ∈ W,

satisfying equations ϕidk ∼ idxk for all k ∈ W , ϕf◦g ∼ ϕf ◦ ϕg for all composable
pairs f, g.

3. To describe ♦(x,A), consider the object in Lσ(F )W with F
xk−→ A, ϕf = λA(xf ).

4. A premorphism FW

x
??

ξ⇓

y ��

A
o
u

��

B
v

??C in Lσ(FW ) is a natural transformation

FA
F (u)
##

W

y ""

x
<<

ξ⇓ FC

FB
F (v)

;; . The naturality equations are, for p
f−→ q in W ,

Fv(yf ) ◦ ξp = ξq ◦ Fu(xf ).

Two premorphisms ξ1, ξ2 are equivalent if there are 2-cells (α1, α2, β1, β2), with αi
invertible i = 1, 2, such that

A
o

u1 ##

o
wA

$$
α1⇓

FW

x
<<

y ""

ξ1⇓ C1 o
w1 // D

β1⇓
B

v1
;;

o
wB

:: =

A
o

u2 ##

o
wA

$$
α2⇓

FW

x
<<

y ""

ξ2⇓ C2 o
w2 // D

β2⇓
B

v2
;;

o
wB

::
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5. An arrow (x, ϕ)
ξ−→ (y, ψ) of Lσ(F )W is a natural transformation between the func-

tors, it consists of a family of premorphisms F

xk
??

ξk⇓

yk ��

Ak
o
uk

��

Bk

vk

??Ck satisfying the naturality

equations, for p
f−→ q in W , ψf ◦ ξp ∼ ξq ◦ ϕf .

6. The description of ♦ on arrows is (♦(ξ))k = ξk for all k ∈ W .

3.3. Proposition. [cf. [5, 2.4]] σ-filtered σ-colimits commute with finite cotensors
in Cat. This means precisely that, for a finite category W , the canonical functor

Lσ(FW )
♦−→ Lσ(F )W is an equivalence of categories.

Proof. We follow the structure of the proof in [5], but by virtue of the previous lemmas
the proof here (particularly of item (a)) is simpler.

(a) essentially surjective. Given an object (x, ϕ) in Lσ(F )W as above, we apply Lemma

2.6 to have an object A, arrows Ak
wk−→ A, and premorphisms ϕ̃f ∼ ϕf , F

xp ??

ϕ̃f⇓

xq ��

Ap
o
wp

��

Aq

o
wq

??A ,

such that the equations ϕ̃f◦g = ϕ̃f ◦ ϕ̃g, ϕ̃idk = idwkxk hold in FA. These data amount
to a factorization (up to isomorphism)

W

(x,ϕ)
��

y

∼={{
FA

λA // Lσ(F )

where the functor W
y−→ FA is defined by the formulas yk = wkxk, yf = ϕ̃f , and the

identity 2-cells yield the isomorphism (x, ϕ) ∼= ♦(y, A).

(b) faithful. If ξ, η ∈ Lσ(FW ) are such that ♦(ξ) = ♦(η), then ξk = ηk for all k ∈ W .
From Proposition 2.14, this implies that ξ ∼ η which concludes the proof.

(c) full: An arrow (x, λA(xf ))
ξ−→ (y, λB(yf )) is a family of premorphisms F

xk
??

ξk⇓

yk ��

A
o
uk
��

B
vk

??Ck

satisfying the naturality equations, for p
f−→ q in W , λB(yf ) ◦ ξp ∼ ξq ◦ λA(xf ).

We apply Lemma 2.6 to have C and equivalent premorphisms such that the equations



CONSTRUCTION OF CERTAIN WEAK COLIMITS AND AN EXACTNESS PROPERTY 211

λ̃B(yf ) ◦ ξ̃p = ξ̃q ◦ λ̃A(xf ) hold. We claim that FW

x
??

ξ̃⇓

y ��

A
o
wA

��

B

o
wB

??C is a natural transforma-

tion. This is so because by item 2.i) in Lemma 2.6, we have λ̃A(xf ) = F (wA)(xf ),

λ̃B(yf ) = F (wB)(yf ), thus the naturality equations hold.

2-products. The empty product offers no difficulty and we leave it to the reader. Given

F,G : A −→ Cat, we have a comparison functor Lσ(F ×G)
♦−→ Lσ(F )×Lσ(G), given by

the formulas ♦(F × G (x,y)−−→ A) = (F
x−→ A,G

y−→ A), ♦(ξ, η) = (ξ, η). The reader can

look at [2, §7.3] for a detailed description of L(F ×G)
♦−→ L(F )×L(G), easily modifiable

to our case where a subcategory Σ of arrows is present, though our proof of the following
theorem differs substantially from the proof of [2, Theorem 7.10], as we have available the
powerful lemmas from section 2.

3.4. Proposition. σ-filtered σ-colimits commute with finite 2-products in Cat. This

means precisely that the canonical functor Lσ(F×G)
♦−→ Lσ(F )×Lσ(G) is an equivalence

of categories.

Proof. (a) essentially surjective. Given an object (F
x−→ A,G

y−→ B) of Lσ(F )×Lσ(G),

by axiom σF0 we have A o
wA // E , B o

wB // E . Then

(F
x−→ A,G

y−→ B) ∼= (F
F (wA)(x)−−−−−→ E,G

G(wB)(y)−−−−−→ E) = ♦(F ×G (F (wA)(x),G(wB)(y))−−−−−−−−−−−−→ E)

(b) faithful. It is immediate from Proposition 2.14.

(c) full. Consider a premorphism of Lσ(F )×Lσ(G) between two objects in the image of
♦, that is

( F

x
??

x′
��

⇓ξ

A
o
u
��

A′
v

??C , G

y ??

y′
��

⇓η

A
o
r
��

A′
s

??D ) : (F
x−→ A,G

y−→ A) −→ (F
x′−→ A′, G

y′−→ A′).

We apply Lemma 2.6 to have equivalent premorphisms F

x
??

x′
��

⇓ξ̃

A
o
wA
��

A′
o
wA′

??E , G

y ??

y′
��

⇓η̃

A
o
wA
��

A′
o
wA′

??E .

Then (ξ, η) ∼ (ξ̃, η̃) = ♦(ξ̃, η̃).
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Pseudo-equalizers. We will show that σ-filtered σ-colimits commute with biequalizers
in Cat, this is the σ-version of [2, Theorem 7.19], we give a shorter complete proof.

Given 2-functors and 2-natural transformations A
G
))

H

55⇓α ⇓β Cat , we consider its pseudo-

equalizer in Homs(A, Cat), which is constructed pointwise, then we have a 2-functor

P : A −→ Cat. We also consider the induced diagram Lσ(G)
α //

β
// Lσ(H) and construct

its pseudo-equalizer Eq in Cat, then we have a comparison functor Lσ(P )
♦−→ Eq. As

with 2-products, we refer the reader to [2, §7.4] for more details on the description of ♦
below:

1. Objects of Lσ(P ) are P
(x,y,γ,δ)−−−−→ A with G

x−→ A, H
y−→ A, and γ, δ isomorphisms

in HA, αA(x)
γ−→ y, βA(x)

δ−→ y.

2. Objects of Eq are (x, y, ϕ, ψ), where G
x−→ A, H

y−→ B, but now ϕ, ψ are isomor-

phisms in Lσ(H), (αA(x), A)
ϕ−→ (y,B), (βA(x), A)

ψ−→ (y,B).

3. The description of ♦ on objects is ♦(x, y, γ, δ) = (x, y, λA(γ), λA(δ)), where

HA
λA−→ Lσ(H) is the inclusion in the σ-colimit. Note that, since λA(γ) = (id, γ, id)

and we usually denote a premorphism (u, ξ, v) just by ξ, we may write
♦(x, y, γ, δ) = (x, y, γ, δ), but we must keep in mind the distinction between pre-
morphisms of Lσ(H) and arrows in HA.

4. A premorphism of Lσ(P ) between objects P
(x,y,γ,δ)−−−−→ A, P

(x′,y′,γ′,δ′)−−−−−−→ A′ is given by

a pair of premorphisms G

x
??

x′
��

⇓ξ

A
o
u
��

A′
v

??C , H

y ??

y′
��

⇓η

A
o
u
��

A′
v

??C in Lσ(G) and Lσ(H) satisfying

the following two equations in HC

η ◦H(u)(γ) = H(v)(γ′) ◦ αC(ξ)

η ◦H(u)(δ) = H(v)(δ′) ◦ βC(ξ)

Two premorphisms (ξ1, η1) and (ξ2, η2) are equivalent if and only if there are homo-
topies given by the same 2-cells

(α1, α2, β1, β2) : ξ1 ⇒ ξ2, (α1, α2, β1, β2) : η1 ⇒ η2.

5. A premorphism of Eq between (x, y, ϕ, ψ), (x′, y′, ϕ′, ψ′) is also given by a pair
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of premorphisms G

x
??

x′
��

⇓ξ

A
o
u
��

A′
v

??C , H

y ??

y′
��

⇓η

B
o
r
��

B′
s

??D in Lσ(G) and Lσ(H), but now the

following similar two equations are satisfied up to homotopy, i.e. in Lσ(H)

η ◦ ϕ ∼ ϕ′ ◦ αC(ξ)

η ◦ ψ ∼ ψ′ ◦ βC(ξ)

Two premorphisms (ξ1, η1) and (ξ2, η2) are equivalent if and only if ξ1 ∼ ξ2 in Lσ(G)
and η1 ∼ η2 in Lσ(H).

6. The description of ♦ on arrows is ♦(ξ, η) = (ξ, η).

3.5. Proposition. σ-filtered σ-colimits commute with biequalizers in Cat. This means

precisely that the canonical functor Lσ(P )
♦−→ Eq is an equivalence of categories.

Proof. (a) essentially surjective. Given an object (x, y, ϕ, ψ) of Eq as above, by Lemma

2.6 (with no equations involved) we have A o
wA // E , B o

wB // E and premorphisms

H

αA(x) ??

ϕ̃⇓

y ��

A
o
wA
��

B
o
wB

??E ; H

βA(x) ??

ψ̃⇓

y ��

A
o
wA
��

B
o
wB

??E . Since ϕ ∼ ϕ̃ and ψ ∼ ψ̃, we have the isomorphism

( G

x
??

id⇓

G(wA)(x) ��

A
o
wA
��

E
o
id

??E , H

y ??

id⇓

H(wB)(y) ��

A
o
wA
��

E
o
id

??E ) : (x, y, ϕ, ψ)→ (G(wA)(x), H(wB)(y), ϕ̃, ψ̃).

But (G(wA)(x), H(wB)(y), ϕ̃, ψ̃) = ♦(G(wA)(x), H(wB)(y), ϕ̃, ψ̃).

(b) faithful. This is immediate from Proposition 2.14.

(c) full. Consider a premorphism of Eq between two objects in the image of ♦, that is

( G

x
??

x′
��

⇓ξ

A
o
u
��

A′
v

??C , H

y ??

y′
��

⇓η

A
o
r
��

A′
s

??D ) : (x, y, λA(γ), λA(δ)) −→ (x′, y′, λA′(γ
′), λA′(δ

′)).
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Then the following two equations hold in Lσ(H)

η ◦ λA(γ) ∼ λA′(γ
′) ◦ αC(ξ)

η ◦ λA(δ) ∼ λA′(δ
′) ◦ βC(ξ)

Applying Lemma 2.6, we have X
wX−→ E for X = A,A′, C,D, and equivalent premorphisms

such that the following equations hold in HE

η̃ ◦ λ̃A(γ) = λ̃A′(γ′) ◦ α̃C(ξ) (3.2)

η̃ ◦ λ̃A(δ) = λ̃A′(δ′) ◦ β̃C(ξ) (3.3)

As in the proof of Theorem 3.3, item (c), by 2.6, item 2 i), we have that λ̃A(γ) = H(wA)(γ),
and similarly for the other three possibilities that appear in the equations above involving
A′ and δ.

Also, by 2.6, item 2 ii), α̃C(ξ) and β̃C(ξ) are computed from αC(ξ) and βC(ξ) pasting

the same 2-cells µ, ν as in (2.4). Then, if we construct ξ̃ from ξ by pasting these 2-cells

µ, ν, since α and β are 2-natural transformations, we have α̃C(ξ) = αE(ξ̃), β̃C(ξ) = βE(ξ̃).
Then the equations (3.2), (3.3) above become

η̃ ◦H(wA)(γ) = H(wA′)(γ
′) ◦ αE(ξ̃)

η̃ ◦H(wA)(δ) = H(wA′)(δ
′) ◦ βE(ξ̃)

These equations show that (ξ̃, η̃) is a premorphism in Lσ(P ) between (x, y, γ, δ) and
(x′, y′, γ′, δ′)

This finishes the proof of Theorem 3.2.
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Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca

Anders Kock, University of Aarhus: kock@math.au.dk
Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Matias Menni, Conicet andUniversidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Niefield, Union College: niefiels@union.edu
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