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THE FORMAL THEORY OF MULTIMONOIDAL MONADS

GABRIELLA BÖHM

Abstract. Certain aspects of Street’s formal theory of monads in 2-categories are
extended to multimonoidal monads in symmetric strict monoidal 2-categories. Namely,
any symmetric strict monoidal 2-category M admits a symmetric strict monoidal 2-
category of pseudomonoids, monoidal 1-cells and monoidal 2-cells in M. Dually, there
is a symmetric strict monoidal 2-category of pseudomonoids, opmonoidal 1-cells and
opmonoidal 2-cells in M. Extending a construction due to Aguiar and Mahajan for
M � Cat, we may apply the first construction p-times and the second one q-times (in
any order). It yields a 2-category Mpq. A 0-cell therein is an object A of M together
with p�q compatible pseudomonoid structures; it is termed a pp�qq-oidal object inM.
A monad inMpq is called a pp, qq-oidal monad inM; it is a monad t on A inM together
with p monoidal, and q opmonoidal structures in a compatible way. IfM has monoidal
Eilenberg-Moore construction, and certain (Linton type) stable coequalizers exist, then
a pp� qq-oidal structure on the Eilenberg-Moore object At of a pp, qq-oidal monad pA, tq
is shown to arise via a symmetric strict monoidal double functor to Ehresmann’s double
category SqrpMq of squares in M, from the double category of monads in SqrpMq in
the sense of Fiore, Gambino and Kock. While q ones of the pseudomonoid structures
of At are lifted along the ‘forgetful’ 1-cell At Ñ A, the other p ones are lifted along its
left adjoint. In the particular example when M is an appropriate 2-subcategory of Cat,
this yields a conceptually different proof of some recent results due to Aguiar, Haim and
López Franco.

Introduction

Classically, a monad on a category A is a monoid in the category of endofunctors on A; that
is, a functor t : AÑ A together with natural transformations from the twofold iterate t.t
and from the identity functor, respectively, to t, regarded as an associative multiplication
with a unit. A popular example is the monad T b � induced by an associative unital
algebra T on the category of vector spaces.

Any adjunction l % r : B Ñ A induces a monad r.l on A, with unit provided by the
unit of the adjunction, and multiplication induced by the counit. Conversely, any monad
is induced by some adjunction in this sense. There is no unique adjunction in general,
but a terminal one can easily be described. An Eilenberg-Moore algebra of a monad
t on a category A consists of an object X of A and an associative and unital action
tX Ñ X. A morphism of Eilenberg-Moore algebras is a morphism in A which commutes
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with the actions. (For the monad T b � induced by an algebra T on the category of
vector spaces, these are just left T -modules and their morphisms.) The evident forgetful
functor ut (forgetting the actions) from the so defined Eilenberg-Moore category At to A
has a left adjoint (sending an object X to tX with action provided by the multiplication
of the monad) and this adjunction induces the monad t. Moreover, any other adjunction
l % r : B Ñ A inducing the same monad factorizes through a unique functor B Ñ At.

Having functors f : A Ñ B between the base categories of some respective monads t
and s, and natural transformations between them, it is often a relevant question if they
lift to the Eilenberg-Moore categories in the sense of the commutative diagram

At

ut

��

// Bs

us

��
A

f
// B

(EM)

where ut and us are the respective forgetful functors. It is not hard to see that such
liftings of a functor f correspond bijectively to natural transformations ϕ : s.f Ñ f.t
which are compatible with both monad structures. Such a pair pf, ϕq is called a monad
functor. A natural transformation between functors A Ñ B has at most one lifting to a
natural transformation between the lifted functors, and the condition for its existence is
a compatibility with the natural transformations ϕ. A natural transformation satisfying
this compatibility condition is termed a monad transformation.

The formal theory of monads [28] due to Ross Street provides a wide generalization
of the above picture and gives it a conceptual interpretation. The 2-category Cat of
categories, functors and natural transformations is replaced by an arbitrary 2-category
M. A monad in M on a 0-cell A is defined as a monoid in the hom category MpA,Aq.
Monads are the 0-cells in a 2-category MndpMq whose 1-cells and 2-cells are the analogues
of monad functors, and monad transformations, respectively. Regarding any 0-cell of M
as a trivial monad (with identity 1, and 2-cell parts), regarding any 1-cell of M as their
monad morphism (with identity 2-cell part), and regarding any 2-cell of M as a monad
transformation, there is an inclusion 2-functor M Ñ MndpMq. For M � Cat it has
a right 2-adjoint. The right 2-adjoint sends a monad to its Eilenberg-Moore category,
a monad functor to the corresponding lifted functor, and a monad transformation to
the lifted natural transformation. When for some 2-category M the above inclusion 2-
functor M Ñ MndpMq possesses a right 2-adjoint, M is said to admit Eilenberg-Moore
construction. By the theory worked out in [28], the right adjoint describes an analogous
lifting theory. (More will be said in Section 3.)

For a monad t on a monoidal category A, in [25] the additional structure was described
which is equivalent to a monoidal structure on the Eilenberg-Moore category At such that
the forgetful functor At Ñ A is strict monoidal. The explicit computations of [25] in
Cat (considered with the Cartesian product of categories as the monoidal structure) were
replaced in [24], [9] by abstract arguments about more general monoidal bicategories.
Beyond a wide generalization, thereby also a conceptually different proof was obtained.
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Namely, the structure described in [25] was interpreted as an opmonoidal monad; that
is, a monad in the 2-category Cat01 of monoidal categories, opmonoidal functors and
opmonoidal natural transformations. Now Cat01 admits Eilenberg-Moore construction in
the sense of [28], see [22] and [31] for conceptually different proofs. Hence there is a 2-
functor from Street’s 2-category of monads MndpCat01q above to Cat01 whose object map
sends an opmonoidal monad to its monoidal Eilenberg-Moore category.

Recently in [1] a similar analysis to that of [25] was carried out for multimonoidal
monads on multimonoidal categories. (In [1] the term higher monoidal was used. However,
we prefer to call the same thing multimonoidal and reserve the term higher to be used
only for dimensionality of categorical structures.) The aim of this paper is to extend the
results of [1] to multimonoidal monads in symmetric strict monoidal 2-categories and,
more importantly, derive them from a suitable ‘formal theory’. With this we not only
gain a deeper understanding of the origin of the formulae in [1] but, as a byproduct, also
open a way to some practical applications. For example, we obtain sufficient conditions
under which the 2-category of pseudomonoids, monoidal 1-cells and monoidal 2-cells in a
strict monoidal 2-category admits Eilenberg–Moore construction.

The development of this formal theory will require a move away from 2-categories to
symmetric strict monoidal double categories. By a strict monoidal 2-category we mean
a monoid in the category of 2-categories and 2-functors considered with the Cartesian
product of 2-categories as the monoidal product. This definition occurred e.g. on page
69 of [20] where also the notion of symmetry was introduced as a suitable 2-natural
isomorphism between the monoidal product 2-functor and its reversed mate. Similarly
restrictively, we adopt the definition of symmetric strict monoidal double category in
[8]. Here again, a strict monoidal double category means a monoid in the category of
double categories and double functors considered with the Cartesian product of double
categories as the monoidal product. A symmetry in [8] can be interpreted then as a
suitable double natural isomorphism between the monoidal product double functor and
its reversed mate. (Note that in order for Ehresmann’s square, or quintet construction
[12] to yield a symmetric strict monoidal double category in this sense, we need to apply
it to a symmetric strict monoidal 2-category.)

The notions recalled in the previous paragraph are very restrictive (by being so strict).
One can ask about various levels of generalization whether they are possible. Instead of
monoids, one may consider pseudomonoids in the 2-category of 2-categories, 2-functors
and 2-natural transformations; and correspondingly, pseudomonoids in the 2-category of
double categories, double functors and double natural transformations — considered in
both cases with the monoidal structure provided by the Cartesian product. Although we
expect that it should be possible, it is not motivated by our examples. Also, the technical
complexity resulting from the tedious checking of all coherence conditions could divert
attention from the key ideas. It looks more challenging to extend our considerations to
monoidal bicategories in the sense of [21, 3, 26] — or at least to their semistrict version
known as Gray monoids [16, 10]. These are monoids in the category of 2-categories and
2-functors considered with the monoidal structure provided by the Gray tensor product
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[19]. Since the corresponding Gray tensor product of double categories seems not yet
available in the literature, this problem does not look to be within reach. We plan to
address it elsewhere [5].

For any symmetric strict monoidal 2-categoryM, there is a symmetric strict monoidal
2-categoryM10 whose 0-cells are the pseudomonoids (also called monoidal objects e.g. in
[31] or monoidales e.g. in [9]), the 1-cells are the monoidal 1-cells, and the 2-cells are the
monoidal 2-cells in M. Symmetrically, there is a symmetric strict monoidal 2-category
M01 whose 0-cells are again the pseudomonoids, but the 1-cells are the opmonoidal 1-
cells, and the 2-cells are the opmonoidal 2-cells in M. Moreover, these constructions
commute with each other (see Section 1). Thus applying p times the first construction
and q times the second one (in an arbitrary order), we get a 2-category Mpq. For a
fixed non-negative integer n and every 0 ¤ p ¤ n, the 0-cells of Mp,n�p are the same
gadgets. They consist of a 0-cell of M together with n pseudomonoid structures and
compatibility morphisms between them (constituting suitable monoidal structures on the
structure morphisms of the pseudomonoids). We call a 0-cell ofMp,n�p an n-oidal object
ofM. (In the particular case ofM � Cat, in [1, 2] it was called an n-monoidal category.)
A 1-oidal object is a pseudomonoid, in particular a monoidal category for M � Cat. So
we re-obtain the classical terminology if “1” is pronounced as “mono”. A 2-oidal object
of Cat is a duoidal category (in the sense of [29], termed 2-monoidal in [2]). Again we
agree with the established terminology if “2” is pronounced as “duo”. A 1-cell in Mpq

consists of a 1-cell of M together with monoidal structures with respect to p ones of
the pseudomonoid structures; and opmonoidal structures with respect to the remaining q
ones of the pseudomonoid structures of the domain and the codomain. They are subject
to suitable compatibility conditions. We term a 1-cell of Mpq a pp, qq-oidal 1-cell in M
(rather than pp, qq-monoidal as in [1, 2]; where in particular a p2, 0q-oidal 1-cell of Cat was
called a double monoidal functor, a (0,2)-oidal 1-cell was called double comonoidal and a
(1,1)-oidal 1-cell was called bimonoidal). A 2-cell in Mpq — called a pp, qq-oidal 2-cell in
M — is a 2-cell inM which is compatible with all of the (op)monoidal structures of the
domain and the codomain. A monad in Mpq is termed a pp, qq-oidal monad.

As recalled above from [24], the monoidal structure of the base category A of any
opmonoidal (or p0, 1q-oidal) monad t in Cat lifts to the Eilenberg-Moore category At

along the forgetful functor ut : At Ñ A. (This means that the functors and natural
transformations constituting the monoidal structures of A and At fit in commutative
diagrams as in (EM)). Furthermore, if reflexive coequalizers exist in A and they are
preserved by the monoidal product of A and by the functor t, then also the monoidal
structure of the base category A of a monoidal (or p1, 0q-oidal) monad t lifts to the
Eilenberg-Moore category At. However, at this time it is a lifting along the left adjoint
f t of the forgetful functor ut : At Ñ A. This means that the functors and natural
transformations constituting the monoidal structures of A and At fit in commutative
diagrams obtained from that in (EM) replacing the forgetful functors with their left
adjoints in the opposite direction. This is a result of [27]; see also [1]. In [1] it was
proven, moreover, that under the same assumptions also the pp� qq-oidal structure of the
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base category A of any pp, qq-oidal monad t in Cat lifts to the Eilenberg-Moore category
At. This is a lifting of mixed kind, though. While q ones of the monoidal structures are
lifted along the forgetful functor ut : At Ñ A; the remaining p ones are lifted along its
left adjoint f t.

Because of this mixed nature of lifting; that is, since the different ingredients are lifted
along different functors ut and f t, we do not expect it to be described by some 2-functor
(as in the situations of [28] and [9]). Instead, in this paper we deal with symmetric
strict monoidal double categories and define their pp, qq-oidal objects (see Section 6).
These pp, qq-oidal objects are shown to be preserved by symmetric strict monoidal double
functors. In Ehresmann’s double category SqrpMq of squares (or quintets [12]) in a
symmetric strict monoidal 2-category M, the pp, qq-oidal objects are the same as the
pp� qq-oidal objects in M.

Taking the double category of monads [14] in the particular double category SqrpMq,
we obtain a symmetric strict monoidal double category which we denote by MndpMq.
Its horizontal 2-category is MndpMq and its vertical 2-category is MndpMopqop (where
p�qop refers to the horizontally opposite 2-category, see [28, Section 4]). The pp, qq-oidal
objects in MndpMq are identified with the pp, qq-oidal monads in M (see Section 7).
Consequently, any symmetric strict monoidal double functor MndpMq Ñ SqrpMq takes
pp, qq-oidal monads in M to pp� qq-oidal objects in M.

Whenever a symmetric strict monoidal 2-category M admits monoidal Eilenberg-
Moore construction (in the sense that the comparison 1-cells I1 Ñ I and AtBs Ñ pABqts

are identities for the identity monad on the monoidal unit I and all monads t on A and
s on B, see Definition 3.1) and furthermore some Linton type coequalizers (see (5.1))
exist and are preserved by the horizontal composition, we construct a symmetric strict
monoidal double functor MndpMq Ñ SqrpMq (see Section 8). In the terminology of [15]
it provides Eilenberg–Moore construction for the double category SqrpMq. Its horizontal
2-functor is the Eilenberg-Moore 2-functor MndpMq Ñ M and its vertical 2-functor
MndpMopqop ÑM is obtained via Linton type coequalizers. Its taking pp, qq-oidal monads
in M to their pp � qq-oidal Eilenberg-Moore objects provides a ‘formal theory’ in the
background of the liftings in [1].

Acknowledgement. It is a pleasure to thank Ross Street and two anonymous referees
for helpful comments, insightful questions and mentioning some relevant references. Fi-
nancial support by the Hungarian National Research, Development and Innovation Office
– NKFIH (grant K124138) is gratefully acknowledged.

1. Multimonoidal structures in 2-categories

We begin with a brief review of some definitions and basic constructions for later use. A
more detailed introduction can be found e.g. in Chapter 7 of [6].

A 2-category is a category enriched in the category of small categories and functors
considered with the Cartesian product of categories as the monoidal product. The explicit
definition can be found in [6, Definition 7.1.1]. Throughout, horizontal composition in a
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2-category (i.e. the composition functor) will be denoted by a lower dot . and vertical
composition (that is, the compositions of the hom categories) will be denoted by an upper
dot �. All identity (1- or 2-) cells will be denoted by 1.

1.1. Example. The most well-known 2-category is, perhaps, Cat [6, Example 7.1.4.a].
Its 0-cells (or objects) are small categories, the 1-cells (i.e. objects of the hom categories)
are the functors and the 2-cells (i.e. morphisms of the hom categories) are the natural
transformations.

For any 2-category M we denote the horizontally opposite 2-category in [28, Section
4] by Mop and we denote the vertically opposite 2-category in [28, Section 4] by M o

p.
A 2-functor is a functor enriched in the category of small categories and functors

considered with the Cartesian product of categories as the monoidal product. The explicit
definition can be found in [6, Definition 7.2.1]. Any 2-functor F :MÑ N can be seen as
a 2-functor Fop :Mop Ñ Nop and also as a 2-functor F o

p :M o
p Ñ N o
p.

A 2-natural transformation is a natural transformation enriched in the category of
small categories and functors considered with the Cartesian product of categories as the
monoidal product. The explicit definition can be found in [6, Definition 7.2.2]. Any 2-
natural transformation Θ : F Ñ G can be seen as a 2-natural transformation Θop : Fop Ñ
Gop and also as a 2-natural transformation Θ o

p : F o
p Ñ G o
p.

1.2. Example. Small 2-categories are the 0-cells, 2-functors are the 1-cells, and 2-natural
transformations are the 2-cells of a 2-category 2Cat, see [6, Proposition 7.2.3].

1.3. Definition. [20, page 69] A strict monoidal 2-category is a monoid in the cate-
gory whose objects are the 2-categories, whose morphisms are the 2-functors and whose
monoidal product is the Cartesian product of 2-categories. Explicitly, a strict monoidal
2-category consists of the following data.

• A 2-category M.

• A 2-functor I from the singleton 2-category to M. The image of the only object of
the singleton category under it is called the monoidal unit and it is denoted by the
same symbol I.

• A 2-functor b : M �M Ñ M called the monoidal product. It must be strictly
associative with the strict unit I. The action of the 2-functor b on (0-, 1- and 2-)
cells will be denoted by juxtaposition.

The 2-category Cat of Example 1.1 is strict monoidal via the Cartesian product of
categories.

1.4. Definition. A strict monoidal 2-functor is a monoid morphism in the category
whose objects are the 2-categories, whose morphisms are the 2-functors and whose monoidal
product is the Cartesian product of 2-categories. Explicitly, a 2-functor F : M ÑM1 is
strict monoidal whenever FI � I 1 and F.b � b1.pF � Fq.
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1.5. Definition. A 2-natural transformation Θ : F Ñ G between strict monoidal 2-
functors is said to be monoidal if the following diagrams of 2-natural transformations
commute.

b.pF � Fq

1.pΘ�Θq
��

F.b

Θ.1

��
b.pG � Gq G.b

I F.I

Θ.1

��
I G.I

That is, for all objects A and B, ΘAB � ΘAΘB and ΘI � 1.

For any 2-category M, there is a 2-functor flip :M �M ÑM �M, sending a pair
of 2-cells pω, ϑq to pϑ, ωq. It occurs in the following definition.

1.6. Definition. [20, Page 69] A symmetric strict monoidal 2-category consists of a
strict monoidal 2-category pM,b, Iq together with a 2-natural transformation σ : b Ñ
b.flip rendering commutative the following diagrams for all objects A, B and C.

AB σ // BA

σ

��
AB

ABC
σ1 //

σ12 $$

BAC

1σ
��

BCA

The subscripts p and q of σpq indicate that it is a morphism A1 . . . ApB1 . . . Bq Ñ B1 . . . Bq

A1 . . . Ap.

1.7. Definition. A strict monoidal 2-functor F between symmetric strict monoidal 2-

categories is said to be symmetric if Fp AB σ // BA q � pFAqpFBq σ1

// pFBqpFAq for all
objects A and B of the domain 2-category of F.

1.8. Example. Symmetric strict monoidal small 2-categories are the 0-cells, symmetric
strict monoidal 2-functors are the 1-cells and monoidal 2-natural transformations are the
2-cells of a 2-category sm-2Cat. Both vertical and horizontal compositions are given by
the same formulae as in 2Cat of [6, Proposition 7.2.3].

1.9. Example. Below we describe a 2-functor Mnd : sm-2Cat Ñ sm-2Cat.
For any 2-category M, there is a 2-category MndpMq as in [28]. Its 0-cells are the

monads in M. That is, quadruples consisting of a 0-cell A of M, a 1-cell t : AÑ A and
2-cells µ : t.t Ñ t and η : 1 Ñ t. They are required to satisfy the associativity condition
µ�pµ.1q � µ�p1.µq and the unitality conditions µ�pη.1q � 1 � µ�p1.ηq. A 1-cell in MndpMq
from pA, t, µ, ηq to pA1, t1, µ1, η1q is a pair consisting of a 1-cell f : A Ñ A1 in M and a
2-cell ϕ : t1.f Ñ f.t satisfying the multiplicativity condition p1.µq�pϕ.1q�p1.ϕq � ϕ�pµ1.1q
and the unitality condition 1.η � ϕ�pη1.1q. Such a 1-cell is called a monad morphism
in M. The 2-cells pf, ϕq Ñ pg, γq in MndpMq are those 2-cells ω : f Ñ g in M for
which pω.1q�ϕ � γ�p1.ωq. They are called monad transformations in M. The vertical
composite of monad transformations is their vertical composite as 2-cells in M. The
horizontal composite of composable 1-cells pf, ϕq and pg, γq is pg.f, p1.ϕq�pγ.1qq. The
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horizontal composite of monad transformations is their horizontal composite as 2-cells in
M. WheneverM is equipped with a strict monoidal structure pb, Iq, there is an induced
strict monoidal structure on MndpMq. The monoidal unit is pI, 1, 1, 1q, the identity monad
on I. The monoidal product of monads pA, t, µ, ηq and pA1, t1, µ1, η1q is

pAA1, AA1 tt1 // AA1 , tt1.tt1 � pt.tqpt.1t1q
µµ1

// tt1 , I � II
ηη1

// tt1 q.

The monoidal product of monad morphisms pf, ϕq : pA, tq Ñ pB, sq and pf 1, ϕ1q : pA1, t1q Ñ
pB1, s1q is the monad morphism

p AA1 ff
1

// BB1 , ss1.ff 1 � ps.fqps.1f 1q
ϕϕ1

// pf.tqpf 1.t1q � ff 1.tt1 q.

The monoidal product of monad transformations is their monoidal product as 2-cells of
M. If in addition a strict monoidal 2-category pM,b, Iq is equipped with a symmetry
σ, then the induced symmetry on MndpMq has the components pσ, 1q. So far we recalled
the 0-cell part of the desired 2-functor Mnd.

For any 2-functor F :M Ñ N there is a 2-functor MndpFq : MndpMq Ñ MndpN q. It
sends a monad pA, t, µ, ηq to

pFA, FA Ft // FA , pFtq.pFtq � Fpt.tq
Fµ // Ft , I � FI

Fη // Ft q;

it sends a monad morphism pf, ϕq : pA, tq Ñ pB, sq to

p FA
Ff // FB , pFsq.pFfq � Fps.fq

Fϕ // Fpf.tq � pFfq.pFtq

and it sends a monad transformation ω to Fω. Whenever F is strict monoidal then so is
MndpFq and if in addition F is symmetric then so is MndpFq. This yields the 1-cell part of
the desired 2-functor Mnd.

For any 2-natural transformation Θ there is a 2-natural transformation MndpΘq with
components pΘ, 1q. It is strict monoidal whenever Θ is so. This finishes the description of
the stated 2-functor Mnd. (It would be straightforward to extend it also to modifications
but it is not needed for the purposes of the present paper.)

Symmetrically to the above considerations, we introduce another 2-functor Mndop :�
Mndpp�qopqop : sm-2Cat Ñ sm-2Cat.

1.10. Example. (1) Below a 2-functor p�q01 : sm-2Cat Ñ sm-2Cat is described.
For any strict monoidal 2-category pM,b, Iq, there is a 2-categoryM01. Its 0-cells are

the pseudomonoids inM, also called monoidal objects or monoidales by other authors, see
[31] and [9], respectively. A pseudomonoid inM consists of a 0-cell A, 1-cells m : AAÑ A
and u : I Ñ A together with invertible 2-cells α : m.m1 Ñ m.1m, λ : m.u1 Ñ 1 and
% : m.1uÑ 1 satisfying MacLane’s pentagon and triangle conditions

m.m1.m11 α.1 //

1.α1
��

m.1m.m11 m.m1.11m

α.1
��

m.m1.1m1
α.1
//m.1m.1m1

1.1α
//m.1m.11m

m.m1.1u1 α.1 //

1.%1 ((

m.1m.1u1

1.1λ
��
m.
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A 1-cell in M01 is a so-called opmonoidal 1-cell. An opmonoidal 1-cell from pA,m, u, α,
λ, %q to pA1,m1, u1, α1, λ1, %1q consists of a 1-cell f : A Ñ A1 in M together with 2-cells
ϕ2 : f.m Ñ m1.ff (called the binary part) and ϕ0 : f.u Ñ u1 (called the nullary part)
subject to the coassociativity and counitality conditions

f.m.m1 1.α //

ϕ2.1
��

f.m.1m

ϕ2.1
��

m1.ff.m1

1.ϕ21
��

m1.ff.1m

1.1ϕ2

��
m1.m11.fff

α1.1
//m1.1m1.fff

f.m.u1 1.λ //

ϕ2.1
��

f f.m.1u
1.%oo

ϕ2.1
��

m1.ff.u1

1.ϕ01
��

m1.ff.1u

1.1ϕ0

��
m1.u11.f

λ1.1
// f m1.1u1.f .

%1.1
oo

The 2-cells ω : pf, ϕ2, ϕ0q Ñ pg, γ2, γ0q in M01 are the opmonoidal 2-cells in M; that is,
those 2-cells ω : f Ñ g in M for which the following diagrams commute.

f.m
ϕ2
//

ω.1

��

m1.ff

1.ωω
��

g.m
γ2
//m1.gg

f.u
ϕ0
//

ω.1

��

u1

g.u
γ0
// u1

The vertical composite of opmonoidal 2-cells is their vertical composite as 2-cells in M.
The horizontal composite of 1-cells pf, ϕ2, ϕ0q : pA,m, u, α, λ, %q Ñ pA1,m1, u1, α1, λ1, %1q
and pg, γ2, γ0q : pA1,m1, u1, α1, λ1, %1q Ñ pA2,m2, u2, α2, λ2, %2q is

pg.f, g.f.m
1.ϕ2
// g.m1.ff

γ2.1 //m2.gg.ff � m2.pg.fqpg.fq , g.f.u
1.ϕ0
// g.u1

γ0 // u2 q.

The horizontal composite of opmonoidal 2-cells is their horizontal composite as 2-cells in
M.

If the strict monoidal 2-category pM,b, Iq is equipped with a symmetry σ, then there
is an induced symmetric strict monoidal structure on M01. The monoidal product of
pseudomonoids pA,m, u, α, λ, %q and pA1,m1, u1, α1, λ1, %1q is

p AA1, AA1AA1 1σ1 // AAA1A1 mm
1

// AA1 , I � II uu1

// AA1 ,

mm1.1σ1.mm111.1σ111 mm1.1σ1.11mm1.111σ1

mm1.m1m11.11σ211.1σ111 αα1.1.1//mm1.1m1m1.1σ1211.111σ1,

mm1.1σ1.uu111 � mm1.u1u11 λλ1

// 1 , mm1.1σ1.11uu1 � mm1.1u1u1
%%1

// 1 q.

The monoidal product of 1-cells pf, ϕ2, ϕ0q : pA,m, u, α, λ, %q Ñ pA1,m1, u1, α1, λ1, %1q and
pg, γ2, γ0q : pB,m, u, α, λ, %q Ñ pB1,m1, u1, α1, λ1, %1q is

p AB
fg // A1B1 , fg.mm.1σ1

ϕ2γ2.1//m1m1.ffgg.1σ1 � m1m1.1σ1.fgfg , fg.uu
ϕ0γ0 // u1u1 q.
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The monoidal product of opmonoidal 2-cells is their monoidal product as 2-cells in M.
The symmetry has the components pσ, 1, 1q. This gives the object map of a 2-functor
p�q01 : sm-2Cat Ñ sm-2Cat.

A strict monoidal 2-functor F :MÑ N induces a 2-functor F01 :M01 Ñ N01. It takes
a 0-cell ofM01 — that is, a pseudomonoid pA,m, u, α, λ, %q inM— to the pseudomonoid
in N ,

p FA, pFAqpFAq � FpAAq Fm // FA , I � FI Fu // FA ,

Fm.pFmq1 � Fpm.m1q Fα // Fpm.1mq � Fm.1pFmq ,

Fm.pFuq1 � Fpm.u1q Fλ // F1 � 1 , Fm.1pFuq � Fpm.1uq
F% // F1 � 1 q.

The 2-functor F01 sends an opmonoidal 1-cell pf, ϕ2, ϕ0q to

pFf, Fm1.pFfqpFfq � Fpm1.ffq
Fϕ2
// Fpf.mq � Ff.Fm , Fu1

Fϕ0
// Fpf.uq � Ff.Fu q.

Finally, F01 sends an opmonoidal 2-cell ω to Fω. If the strict monoidal 2-functor F is
also symmetric, then F01 is strict monoidal and symmetric. This gives the 1-cell part of
a 2-functor p�q01 : sm-2Cat Ñ sm-2Cat.

For a monoidal 2-natural transformation Θ : F Ñ G, there is a 2-natural transforma-
tion Θ01 : F01 Ñ G01 with the component at a pseudomonoid pA,m, u, α, λ, %q in M

pΘA,ΘA.Fm � Gm.ΘAA � Gm.ΘAΘA,ΘA.Fu � Gu.ΘI � Guq.

It is strict monoidal thanks to the strict monoidality of Θ. These maps define

(i) a 2-functor p�q01 from the 2-category of strict monoidal 2-categories, strict monoidal
2-functors and monoidal 2-natural transformations to 2Cat,

(ii) a 2-functor p�q01 : sm-2Cat Ñ sm-2Cat.

(It would be easy to extend them to monoidal modifications — defined in the evident way
— but this is not needed for the purposes of the present paper.)

(2) There are symmetrically constructed 2-functors p�q10 :� ppp�q o
pq01q o
p of both kinds

in items (i) and (ii) of the list in part (1) above. They send a strict monoidal 2-categoryM
to the 2-categoryM10 � ppM o

pq01q o
p whose 0-cells are again the pseudomonoids inM. Its

1-cells and 2-cells are known as monoidal 1-cells and monoidal 2-cells inM, respectively.
(3) Next we show that the 2-endofunctors on sm-2Cat in parts (1) and (2) commute

up-to an irrelevant 2-natural isomorphism (this extends a claim in [2, Proposition 6.75]).
First we compare the symmetric strict monoidal 2-categories pM10q01 and pM01q10 for

a symmetric strict monoidal 2-category M. A 0-cell of pM10q01 is a pseudomonoid in
M10. As such, it consists of the following data.

• A 0-cell of M10; that is, a pseudomonoid pA,m~, u~, α~, λ~, %~q in M.
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• Multiplication and unit 1-cells in M10. That is, monoidal 1-cells in M
pm�, ξ, ξ0q : pAA,m~m~.1σ1, u~u~, α~α~.1.1, λ~λ~, %~%~q Ñ pA,m~, u~, α~, λ~, %~q and
pu�, ξ0, ξ

0
0q : pI, 1, 1, 1, 1, 1q Ñ pA,m~, u~, α~, λ~, %~q.

• Associativity and unitality 2-cells in M10. They are invertible monoidal 2-cells in
M, α� : m�.m�1 Ñ m�.1m�, λ� : m�.u�1 Ñ 1 and %� : m�.1u� Ñ 1 satisfying
MacLane’s pentagon and triangle conditions.

Symmetrically, a 0-cell of pM01q10 is a pseudomonoid in M01, which consists of the
following data.

• A 0-cell of M01; that is, a pseudomonoid pA,m�, u�, α�, λ�, %�q in M.

• Multiplication and unit 1-cells in M01. That is, opmonoidal 1-cells in M
pm~, ξ.1, ξ0q :pAA,m

�m�.1σ1, u�u�, α�α�.1.1, λ�λ�, %�%�qÑpA,m�, u�, α�, λ�, %�q,
pu~, ξ0, ξ0

0q : pI, 1, 1, 1, 1, 1q Ñ pA,m�, u�, α�, λ�, %�q.

• Associativity and unitality 2-cells in M01. They are invertible opmonoidal 2-cells
in M, α~ : m~.m~1 Ñ m~.1m~, λ~ : m~.u~1 Ñ 1 and %~ : m~.1u~ Ñ 1 satisfying MacLane’s
pentagon and triangle conditions.

Both of these sets of data amount to two pseudomonoid structures pA,m~, u~, α~, λ~, %~q
and pA,m�, u�, α�, λ�, %�q on the same object A together with 2-cells in M

m~.m�m�
ξ //m�.m~m~.1σ1 u~

ξ0 //m�.u~u~ m~.u�u�
ξ0 // u� u~

ξ00 // u�

(giving rise to the 2-cell ξ.1 : m~.m�m�.1σ1 Ñ m�.m~m~.1σ1.1σ1 � m�.m~m~). They are
subject to conditions as follows.

• Associativity and unitality of the monoidal 1-cell pm�, ξ, ξ0q; equivalently, compati-
bility of the opmonoidal 2-cells α~, λ~ and %~ with the binary parts of the opmonoidal
structures of their source and target 1-cells.

• Associativity and unitality of the monoidal 1-cell pu�, ξ0, ξ
0
0q; equivalently, compati-

bility of the opmonoidal 2-cells α~, λ~ and %~ with the nullary parts of the opmonoidal
structures of their source and target 1-cells.

• Compatibility of the monoidal 2-cells α�, λ� and %� with the binary parts of the
monoidal structures of their source and target 1-cells; equivalently, coassociativity
and counitality of the opmonoidal 1-cell pm~, ξ.1, ξ0q.

• Compatibility of the monoidal 2-cells α�, λ� and %� with the nullary parts of the
monoidal structures of their source and target 1-cells; equivalently, coassociativity
and counitality of the opmonoidal 1-cell pu~, ξ0, ξ0

0q.
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Such a datum is called a duoidal or 2-oidal object of M.
A 1-cell in either one of the 2-categories pM10q01 and pM01q10 consists of a 1-cell

f : AÑ A1 in M together with a monoidal structure pϕ2 : m~1.ff Ñ f.m~, ϕ0 : u~1 Ñ f.u~q
and an opmonoidal structure pϕ2 : f.m� Ñ m� 1.ff, ϕ0 : f.u� Ñ u� 1q subject to the
following compatibility conditions.

• The monoidal 2-cell ϕ2 : pf, ϕ2, ϕ0q.pm
�, ξ, ξ0q Ñ pm� 1, ξ1, ξ01q.pff, ϕ2ϕ2.1, ϕ0ϕ0q is

compatible with the binary parts of the monoidal structures of its source and target
1-cells; equivalently, the opmonoidal 2-cell ϕ2 : pm~1, ξ1.1, ξ10q.pff, ϕ

2ϕ2.1, ϕ0ϕ0q Ñ
pf, ϕ2, ϕ0q.pm~, ξ.1, ξ0q is compatible with the binary parts of the opmonoidal struc-
tures of its source and target 1-cells.

• The monoidal 2-cell ϕ2 is compatible with the nullary parts of the monoidal struc-
tures of its source and target 1-cells; equivalently, the opmonoidal 2-cell ϕ0 : pu~ 1, ξ01,
ξ01

0 q Ñ pf, ϕ2, ϕ0q.pu~, ξ0, ξ0
0q is compatible with the binary parts of the opmonoidal

structures of its source and target 1-cells.

• The monoidal 2-cell ϕ0 : pf, ϕ2, ϕ0q.pu
�, ξ0, ξ

0
0q Ñ pu� 1, ξ10, ξ

01
0 q is compatible with the

binary parts of the monoidal structures of its source and target 1-cells; equivalently,
the opmonoidal 2-cell ϕ2 is compatible with the nullary parts of the opmonoidal
structures of its source and target 1-cells.

• The monoidal 2-cell ϕ0 is compatible with the nullary parts of the monoidal struc-
tures of its source and target 1-cells; equivalently, the opmonoidal 2-cell ϕ0 is com-
patible with the nullary parts of the opmonoidal structures of its source and target
1-cells.

Such a datum is termed a p1, 1q-oidal 1-cell. In the particular case of M � Cat, in [1] it
was called a bimonoidal functor.

Finally, a 2-cell pf, ϕ2, ϕ0, ϕ
2, ϕ0q Ñ pg, γ2, γ0, γ

2, γ0q in either one of the 2-categories
pM10q01 and pM01q10 is a 2-cell in M which is both

• a monoidal 2-cell pf, ϕ2, ϕ0q Ñ pg, γ2, γ0q and

• an opmonoidal 2-cell pf, ϕ2, ϕ0q Ñ pg, γ2, γ0q.

We say that it is a p1, 1q-oidal 2-cell in M.
This proves the isomorphism of the 2-categories pM10q01 and pM01q10. The obtained

isomorphism is clearly symmetric strict monoidal and 2-natural.
(4) Thanks to their commuting verified in item (3) above, we may apply the 2-functor

in part (1) q times and the 2-functor in part (2) p times in an arbitrary order, for any non-
negative integers q and p. Thereby we obtain a 2-functor p�qpq : sm-2Cat Ñ sm-2Cat (so
that p�q00 is the identity 2-functor). In particular, it takes any symmetric strict monoidal
2-category M to a symmetric strict monoidal 2-category Mpq. Recall that a 0-cell in
Mp�1,q � pMpqq10 is the same as a 0-cell in Mp,q�1 � pMpqq01; namely, a pseudomonoid
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in Mpq. Thus the notion of 0-cell in Mp,n�p only depends on the non-negative integer
n but not on the integer 0 ¤ p ¤ n. (For the particular 2-category M � Cat this was
discussed in Proposition 7.49 and Remark 7.51 of [2].)

2. p0, qq-oidal monads

The aim of this section is to prove the commutativity (up-to 2-natural isomorphism) of
the diagram

sm-2Cat
p�q01 //

Mnd
��

sm-2Cat

Mnd
��

sm-2Cat
p�q01

// sm-2Cat

(2.1)

of the 2-functors of Example 1.9 and Example 1.10 (1). Its iteration yields 2-natural
isomorphisms MndpM0qq � MndpMq0q for any symmetric strict monoidal 2-category M
and any non-negative integer q. A 0-cell in MndpM0qq � MndpMq0q is called a p0, qq-oidal
monad.

For 2-endofunctors on the 2-category 2Cat� of Cartesian monoidal 2-categories (in-
stead of our sm-2Cat), commutativity of the analogous diagram was proved (by actually
the same steps) in [31, Lemma 3.1]. A possible generalization, discussed here practi-
cally without any additional technical difficulty, is proposed in the introduction and the
concluding remarks of [31].

In order to prove the commutativity of (2.1) (up-to 2-natural isomorphism), we need
to compare first the actions of the 2-functors around it on an arbitrary 0-cell; that is,
symmetric strict monoidal 2-categoryM. A 0-cell in MndpM01q is a monad inM01 thus
it consists of the following data.

• A 0-cell of M01; that is, a pseudomonoid pA,m, u, α, λ, %q in M.

• A 1-cell pA,m, u, α, λ, %q Ñ pA,m, u, α, λ, %q in M01; that is, an opmonoidal 1-cell
pt : AÑ A, τ 2 : t.mÑ m.tt, τ 0 : t.uÑ uq in M.

• Multiplication and unit 2-cells inM01; that is, opmonoidal 2-cells µ : pt, τ 2, τ 0q.pt, τ 2,
τ 0q Ñ pt, τ 2, τ 0q and η : p1, 1, 1q Ñ pt, τ 2, τ 0q in M satisfying the associativity and
unit conditions.

On the other hand, a 0-cell in MndpMq01 is a pseudomonoid in MndpMq thus it consists
of the following data.

• A 0-cell in MndpMq; that is, a monad pA, t, µ, ηq in M.

• Multiplication and unit 1-cells in MndpMq; that is, monad morphisms pm : AA Ñ
A, τ 2 : t.mÑ m.ttq and pu : I Ñ A, τ 0 : t.uÑ uq in M.
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• Associativity and unitality 2-cells in MndpMq; that is, invertible monad transforma-
tions α : pm.m1, p1.τ 21q�pτ 2.1qq Ñ pm.1m, p1.1τ 2q�pτ 2.1qq, λ : pm.u1, p1.τ 01q�pτ 2.1qq
Ñ p1, 1q and % : pm.1u, p1.1τ 0q�pτ 2.1qq Ñ p1, 1q satisfying MacLane’s pentagon and
triangle conditions.

Both sets of data above amount to a pseudomonoid pA,m, u, α, λ, %q, an opmonoidal 1-
cell pt, τ 2, τ 0q : pA,m, u, α, λ, %q Ñ pA,m, u, α, λ, %q and a monad pA, t, µ, ηq in M with
common 1-cell part t; subject to the following compatibility conditions.

t.t.m
1.τ2 //

µ.1

��

t.m.tt
τ2.1 //m.tt.tt

1.µµ

��
t.m

τ2
//m.tt

t.t.u
1.τ0 //

µ.1

��

t.u
τ0 // u

t.u
τ0

// u

m

η.1
��

m

1.ηη
��

t.m
τ2
//m.tt

u

η.1
��

u

t.u
τ0
// u

The first two diagrams express the opmonoidality of the 2-cell µ; equivalently, the mul-
tiplicativity of the monad morphisms pm, τ 2q and pu, τ 0q, respectively. The last two dia-
grams express the opmonoidality of the 2-cell η; equivalently, the unitality of the monad
morphisms pm, τ 2q and pu, τ 0q, respectively. This structure is termed a p0, 1q-oidal or
opmonoidal monad.

Both in MndpM01q and MndpMq01 a 1-cell is an opmonoidal 1-cell pf, ϕ2, ϕ0q : pA,m, u,
α, λ, %q Ñ pA1,m1, u1, α1, λ1, %1q and a monad morphism pf,Φq : pA, t, µ, ηq Ñ pA1, t1, µ1, η1q
in M with common 1-cell part f such that the following compatibility conditions hold.

t1.f.m

Φ.1
��

1.ϕ2
// t1.m1.ff

τ 12.1 //m1.t1t1.ff

1.ΦΦ
��

f.t.m
1.τ2

// f.m.tt
ϕ2.1

//m1.ff.tt

t1.f.u

Φ.1
��

1.ϕ0
// t1.u1

τ 10
// u1

f.t.u
1.τ0

// f.u
ϕ0
// u1

The first diagram expresses the compatibility of the opmonoidal 2-cell Φ : pt1, τ 12, τ 10q.
pf, ϕ2, ϕ0q Ñ pf, ϕ2, ϕ0q.pt, τ 2, τ 0q with the binary parts of the opmonoidal structures of
its source and target 1-cells; equivalently, the requirement that ϕ2 : pf,Φq.pm, τ 2q Ñ
pm1, τ 12q.pff,ΦΦq is a monad transformation. The second diagram expresses the compat-
ibility of the opmonoidal 2-cell Φ with the nullary parts of the opmonoidal structures of its
source and target 1-cells; equivalently, the requirement that ϕ0 : pf,Φq.pu, τ 0q Ñ pu1, τ 10q
is a monad transformation.

Finally, both in MndpM01q and MndpMq01 a 2-cell is a 2-cell in M which is both
opmonoidal and a monad transformation.

With this we established an isomorphism between the 2-categories MndpM01q and
MndpMq01. It is clearly symmetric strict monoidal and it is straightforward to see its
2-naturality.
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3. q-oidal Eilenberg–Moore objects

For a symmetric strict monoidal 2-category M, any symmetric strict monoidal 2-functor
H : MndpMq ÑM induces a symmetric strict monoidal 2-functor

MndpM0qq � MndpMq0q
H0q //M0q (3.1)

whose object map sends a p0, qq-oidal monad to a q-oidal object of M. The aim of
this section is to investigate when the Eilenberg-Moore construction in M yields such a
symmetric strict monoidal 2-functor H : MndpMq Ñ M; hence the q-oidal structure of
the base object of a p0, qq-oidal monad inM lifts to the Eilenberg-Moore object along the
‘forgetful’ 1-cells (see (EM)). The results of this section extend [1, Theorem 8.2] and place
it in a broader context. We apply analogous ideas to those in [31]. In the particular case
when the strict monoidal structure of M is Cartesian, a stronger result — proving also
that H0q provides Eilenberg-Moore construction onM0q; cf. Remark 8.3 — was obtained
in [31, Theorem 5.1].

The Eilenberg-Moore construction for 2-categories was shortly recalled from [28] in
the Introduction. Namely, a 2-categoryM is said to admit Eilenberg-Moore construction
if the inclusion 2-functor M Ñ MndpMq possesses a right 2-adjoint H. The image of
a monad pA, tq under H is denoted by At and it is called the Eilenberg-Moore object of
the monad. The component of the counit of this 2-adjunction at any monad pA, tq is
necessarily of the form put, 1.εt : t.ut � ut.f t.ut Ñ utq : pAt, 1q Ñ pA, tq, where the 1-cell
ut : At Ñ A has a left adjoint f t inM and εt : f t.ut Ñ 1 is the counit of this adjunction,
see [28, pages 151-153]. The adjunction f t % ut : At Ñ A generates the monad pA, tq in
the sense that the 1-cell ut.f t is equal to t, the 2-cell 1.εt.1 : f t.ut.f t.ut Ñ f t.ut is equal to
the multiplication of the monad while the unit ηt : 1 Ñ ut.f t of the adjunction is equal to
the unit of the monad, see [28, Theorem 2]. By [28, Theorem 3], for any other adjunction
l % r : B Ñ A generating the same monad pA, tq, there is a unique comparison 1-cell k
rendering commutative the first diagram of

A
l //

f t

��

B

r

��

k

~~
At

ut
// A

k.l.r
1.ε // k

f t.ut.k
εt.1
// k.

(3.2)

With its help, the counit ε of the adjunction l % r fits in the second commutative diagram
of (3.2).

Consider now a strict monoidal 2-category which admits Eilenberg-Moore construc-
tion. The adjunction 1 % 1 : I Ñ I of identity functors on the monoidal unit I generates
the monad pI, 1q. Hence there is a comparison 1-cell I Ñ I1. For any monads pA, tq and
pB, sq, the adjunction f tf s % utus : AtBs Ñ AB generates the monad pAB, tsq. Hence
there is a unique comparison 1-cell AtBs Ñ pABqts.
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3.1. Definition. We say that a strict monoidal 2-category admits monoidal Eilenberg–
Moore construction if it admits Eilenberg–Moore construction and the comparison 1-cells
I Ñ I1 and AtBs Ñ pABqts are identities for the monoidal unit I and all monads pA, tq
and pB, sq.

For example, the strict monoidal 2-category Cat of Example 1.1 admits monoidal
Eilenberg-Moore construction. More generally, monoidality of the Eilenberg-Moore con-
struction in a Cartesian monoidal 2-category is a key assumption also in [31, Theorem
5.1].

3.2. Proposition. If a strict monoidal 2-categoryM admits monoidal Eilenberg–Moore
construction, then the Eilenberg–Moore 2-functor H : MndpMq ÑM is strict monoidal.
If in addition M is symmetric then also H is symmetric.

Proof. The monoidal unit I is preserved by the assumption that the comparison 1-cell
I Ñ I1 � HpI, 1q is the identity. The equality of 2-functors Hp� b �q � Hp�q b Hp�q
holds on any 0-cells pA, tq and pB, sq by the assumption that the comparison 1-cell AtBs Ñ
pABqts is the identity. By the second diagram of (3.2), εts � εtεs. Therefore for any 1-
cells ph, χq : pA, tq Ñ pA1, t1q and pg, γq : pB, sq Ñ pB1, s1q, the 2-natural isomorphism
MppABqts, pA1B1qt

1s1q � MndpMqpppABqts, 1q, pA1B1, t1s1qq sends both objects Hphg, χγq
and Hph, χqHpg, γq to the same object

phg.uts, t1s1.hg.uts
χγ.1 // hg.ts.uts � hg.uts.f ts.uts

1.1.εts // hg.uts q

which proves their equality. For any 2-cells ω and ϑ, both 2-cells Hpωϑq and HpωqHpϑq
are the liftings of the same monad transformation ωϑ hence they are equal.

Assume now the existence of a symmetry σ of M. For any monads pA, tq and pB, sq,
the 2-natural isomorphism MppABqts, pBAqstq � MndpMqpppABqts, 1q, pBA, stqq sends
both objects HpσA,B, 1q and σAt,Bs to the same object

pσA,B.u
ts, st.σA,B.u

ts � σA,B.ts.u
ts � σA,B.u

ts.f ts.uts
1.1.εts // σA,B.u

ts q

which proves their equality.

From (3.1) we obtain the following generalization of [1, Theorem 8.2].

3.3. Corollary. In a symmetric strict monoidal 2-category which admits monoidal
Eilenberg–Moore construction, the q-oidal structure of the base object A of any p0, qq-oidal
monad pA, tq lifts to the Eilenberg–Moore object At along the 1-cell ut : At Ñ A.

4. pp, 0q-oidal monads

Without entering the details, in this section we sketch the dual of the situation in Section
2. Although the omitted proofs are analogous to those in Section 2, they do not seem to
follow by any kind of abstract duality.
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The 2-functors Mndop of Example 1.9 and p�q10 of part (2) of Example 1.10 constitute
a diagram

sm-2Cat
p�q10 //

Mndop
��

sm-2Cat

Mndop
��

sm-2Cat
p�q10

// sm-2Cat

which is commutative up-to 2-natural isomorphism. So whenever there is a symmetric
strict monoidal 2-functor V from MndoppMq � MndpMopqop to some symmetric strict
monoidal 2-category M, it induces a symmetric strict monoidal 2-functor

MndoppMp0q � MndoppMqp0
Vp0 //Mp0 (4.1)

for any non-negative integer p. Its object map sends a pp, 0q-oidal monad to a p-oidal
object in M.

5. p-oidal Eilenberg–Moore objects

In this section we consider a symmetric strict monoidal 2-categoryM and a non-negative
integer p. Then we describe a setting in which the p-oidal structure of the base object
A of any pp, 0q-oidal monad pA, tq lifts to the Eilenberg–Moore object At along the 1-cell
f t : AÑ At. (A 1-cell h : At Ñ Bs is said to be a lifting of 1-cell h : AÑ B along the left
adjoint 1-cells f t : A Ñ At and f s : B Ñ Bs if f s.h � h.f t.) The results of this section
extend [1, Theorem 7.1] and give it a different explanation.

Let M be a 2-category which admits Eilenberg–Moore construction. For any 1-
cell ph, χq : pA, tq Ñ pB, sq in MndoppMq, consider the reflexive pair of morphisms in
MpAt, Bsq,

f s.h.ut.f t.ut 1.1.1.εt

**
f s.h.t.ut

1.χ.1
,,

f s.h.ut
πph,χq // Vph, χq.

f s.s.h.ut � f s.us.f s.h.ut εs.1.1.1

44

(5.1)

(A common section of the parallel morphisms is 1.1.ηt.1 in terms of the unit ηt of the
monad pA, tq.) Assuming that their coequalizer exists for all 1-cells ph, χq in MndoppMq,
and it is preserved by the horizontal composition on either side with any 1-cell inM, we
construct a 2-functor V : MndoppMq ÑM whose action on any 1-cell ph, χq is given by
the coequalizer in (5.1). Coequalizers of this form were studied in [23].

5.1. Lemma. Consider a 2-category M which admits Eilenberg–Moore construction and
take any monads pA, tq and pB, sq in M. If the coequalizer (5.1) exists for all objects of
MndoppMqppA, tq, pB, sqq, then there is a functor MndoppMqppA, tq, pB, sqq ÑMpAt, Bsq
whose object map is given by the coequalizer in (5.1).



312 GABRIELLA BÖHM

Proof. Take a morphism ω : ph, χq Ñ pk, κq in MndoppMqppA, tq, pB, sqq. By the univer-
sality of the coequalizer in the top row of the serially commutative diagram

f s.h.ut.f t.ut 1.1.1.εt

**
f s.h.t.ut

1.χ.1
,,

1.ω.1.1

��

f s.h.ut
πph,χq //

1.ω.1

��

Vph, χq

Vω

��

f s.s.h.ut � f s.us.f s.h.ut εs.1.1.1

44

f s.k.ut.f t.ut 1.1.1.εt

**
f s.k.t.ut

1.κ.1
,,

f s.k.ut
πpk,κq // Vpk, κq

f s.s.k.ut � f s.us.f s.k.ut εs.1.1.1

44

the image of ω under the desired functor V occurs in the right vertical. Functoriality
follows by construction.

In order to interpret the functors of Lemma 5.1 as the hom functors of a 2-functor, we
need to see their compatibility with the horizontal composition and the identity 1-cells.
The proof of this rests on the following.

5.2. Lemma. Consider a 2-category M which admits Eilenberg–Moore construction. As-
sume that the coequalizer (5.1) exists for some 1-cell ph, χq : pA, tq Ñ pB, sq in MndoppMq,
and it is preserved by the horizontal composition on either side with any 1-cell inM. Then

p f s.h.ut.f t
πph,χq.1 // Vph, χq.f t q � p f s.h.t

1.χ // f s.s.h � f s.us.f s.h
εs.1.1 // f s.h q.

Proof. By assumption Vph, χq.f t appears in the coequalizer

f s.h.t

f s.h.t.t

1.1.µt //

1.χ.1
,,

f s.h.ut.f t
πph,χq.1 // Vph, χq.f t

f s.s.h.t � f s.us.f s.h.ut.f t εs.1.1.1.1
33

(where µt denotes the multiplication of the monad pA, tq). So the claim follows by the
observation that

f s.h.t

f s.h.t.t

1.1.µt //

1.χ.1
,,

f s.h.t
1.χ //

1.1.1.ηt

aa f s.s.h � f s.us.f s.h εs.1.1 // f s.h

1.1.ηt

``
f s.s.h.t � f s.us.f s.h.t

εs.1.1.1 44

is a split coequalizer (where ηt is the unit of the monad t).
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5.3. Proposition. Consider a 2-category M which admits Eilenberg–Moore construc-
tion. If the coequalizer (5.1) exists for all 1-cells in MndoppMq, and it is preserved by the
horizontal composition on either side with any 1-cell in M, then the following hold.

(1) There is a 2-functor V : MndoppMq Ñ M which sends a monad pA, tq to the
Eilenberg–Moore object At and whose hom functors are defined as in Lemma 5.1.

(2) If moreover M is a strict monoidal 2-category which admits monoidal Eilenberg–
Moore construction, then the 2-functor V of part (1) is strict monoidal.

(3) If in addition M has a symmetry then the 2-functor V of part (1) is symmetric as
well.

Proof. (1) There is a monad t.p�q on the category MpAt, Aq whose Eilenberg–Moore
category is isomorphic to MndpMqppAt, 1q, pA, tqq �MpAt, Atq; and whose forgetful func-
tor differs by this isomorphism from

ut.p�q :MpAt, Atq ÑMpAt, Aq. (5.2)

Thus (5.2) is monadic and therefore the coequalizers of those forks exist and are preserved
by (5.2) which are sent by (5.2) to split coequalizers, see Proposition 3.5 on page 95 of
[4] or Theorem 4.4.4 in [7].

Now the functor (5.2) sends the fork

f t.t.ut � f t.ut.f t.ut
1.1.εt //
εt.1.1

// f t.ut
εt // 1 (5.3)

to the split coequalizer

ut.f t.t.ut � ut.f t.ut.f t.ut
1.1.1.εt //
1.εt.1.1

// ut.f t.ut 1.εt //

ηt.1.1.1

ff ut

ηt.1

ZZ

so that (5.3) is a coequalizer and thus V preserves identity 1-cells.
For the preservation of the horizontal composition recall that for arbitrary 1-cells

ph, χq : pA, tq Ñ pB, sq and pk, κq : pB, sq Ñ pC, zq in MndoppMq, Vpk, κq.Vph, χq and
Vppk, κq.ph, χqq are defined as the coequalizers of the respective pairs of parallel morphisms
in

Vpk, κq.f s.h.ut.f t.ut 1.1.1.1.εt

,,
Vpk, κq.f s.h.t.ut

1.1.χ.1
--

Vpk, κq.f s.h.ut

Vpk, κq.f s.s.h.ut � Vpk, κq.f s.us.f s.h.ut 1.εs.1.1.1
22

f z.k.h.ut.f t.ut 1.1.1.1.εt

,,
f z.k.h.t.ut

1.1.χ.1
,,

f z.k.h.ut.

f z.k.s.h.ut ÝÑ
1.κ.1.1

f z.z.k.h.ut � f z.uz.f z.k.h.ut
εz .1.1.1.1
33
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The vertical equalities hold by Lemma 5.2. The square with the lower ones of the parallel
arrows commutes since the following diagram commutes and its dotted arrow denotes an
epimorphism.

Vpk, κq.f s.us.f s 1.εs.1 // Vpk, κq.f s

f z.k.us.f s.us.f s
1.1.1.εs.1 //

πpk,κq.1.1.1
ii

f z.k.us.f s

πpk,κq.1
77

Lemma 5.2

f z.k.s.s
1.1.µs //

1.κ.1
��

f z.k.s

1.κ
�� Lemma 5.2

f z.z.k.s 1.1.κ // f z.z.z.k
1.µz .1 // f z.z.k

f z.uz.f z.k.s

εz .1.1.1uu

1.1.1.κ
// f z.uz.f z.uz.f z.k

εz .1.1.1.1
��

1.1.εz .1.1
// f z.uz.f z.k

εz .1.1 ''
f z.k.s

1.κ
// f z.z.k f z.uz.f z.k

εz .1.1
// f z.k

This also proves the equality

p Vpk, κq.f s.h.ut
1.πph,χq // Vpk, κq.Vph, χqq � p f z.k.h.ut

πppk,κq.ph,χqq // Vppk, κq.ph, χqqq. (5.4)

Part (2) is immediate. For part (3) recall that for the symmetry σ ofM, the action of
V on the symmetry pσ, 1q : pAB, tsq Ñ pBA, stq of MndoppMq is defined as the coequalizer
of the morphisms in the top row of

f sf t.σ.utus.f tf s.utus 1.1.1.εtεs

,,
f sf t.σ.ts.utus f sf t.σ.utus

f sf t.st.σ.utus � f sf t.usut.f sf t.σ.utus εsεt.1.1.1
22

σ.f tf s.utus.f tf s.utus 1.1.1.εtεs

,,
σ.f tf s.ts.utus σ.f tf s.utus.

σ.f tf s.ts.utus � σ.f tf s.utus.f tf s.utus 1.εtεs.1.1

22

Both the vertical equalities and serial commutativity of the diagram follow by the 2-
naturality of σ. The bottom row is the image under σ.p�q of parallel morphisms as in
(5.3) hence their coequalizer is σ.1 � σ as stated.

In view of Lemma 5.2, the action of V can be interpreted as a lifting along the left
adjoint 1-cells of the kind f t : AÑ At. So from (4.1) we obtain the following.
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5.4. Corollary. In the setting of Proposition 5.3 (3), the p-oidal structure of the base
object A of any pp, 0q-oidal monad pA, tq inM lifts to the Eilenberg-Moore object At along
the 1-cell f t : AÑ At.

5.5. Remark. The premises of Proposition 5.3 (3) hold in a suitable 2-subcategory of
the 2-category Cat of Example 1.1 which we describe next.

LetM be the symmetric strict monoidal 2-subcategory of Cat whose 0-cells are those
categories in which the coequalizers of reflexive pairs exist; whose 1-cells are those functors
which preserve reflexive coequalizers; and whose 2-cells are all natural transformations
between them.

For any monad pA, tq inM, the coequalizer of any reflexive pair in At exists and it is
preserved by the forgetful functor At Ñ A, see [23, Corollary 3] or [7, Proposition 4.3.2].
Since the forgetful functor is conservative, it also reflects the coequalizers of reflexive
pairs. Then if some functor h : A Ñ B preserves reflexive coequalizers, then so does
h.ut � us.Hph, χq for any monad functor ph, χq : pA, tq Ñ pB, sq and the Eilenberg–Moore
2-functor H. So since us reflects reflexive coequalizers, Hph, χq : At Ñ As preserves them.
Because in this way M is closed under the monoidal Eilenberg–Moore construction of
Cat, it admits monoidal Eilenberg–Moore construction itself.

Evaluating the parallel natural transformations of (5.1) at an arbitrary t-algebra we
get a reflexive pair in Bs. Their coequalizer exists by the considerations in the previous
paragraph and it is evidently preserved by any 1-cell in M. Then also the coequalizer
(5.1) exists and it is preserved by the horizontal composition.

Applying Corollary 5.4 to the 2-category of Remark 5.5, we obtain an alternative proof
of related [27, Theorem 2.6.4] and [1, Theorem 4.14]; as well as of [1, Theorem 7.1].

6. Multimonoidal structures in double categories

For a study of the lifting of the pp� qq-oidal structure of the base object of a pp, qq-oidal
monad in a symmetric strict monoidal 2-category, in the case when both p and q are
strictly positive integers, we leave the realm of 2-categories and operate, more generally,
with double categories. Therefore this section begins with the introduction of a 2-category
sm-DblCat of symmetric strict monoidal double categories. Its choice is motivated by two
requirements. On one hand, it should allow for the interpretation of the symmetry of a
symmetric strict monoidal double category in [8, Definition 5] as a suitable 2-cell in the
2-category of double categories. On the other hand, even more importantly, a definition
of sm-DblCat would serve our purposes if it admits several 2-functors constructed in this
section and the next one.

In Example 6.12 we introduce 2-endofunctors p�q01 and p�q10 on sm-DblCat; and show
that they commute up-to 2-natural isomorphism. Then iterating them in an arbitrary
order q and p times, respectively, we obtain a 2-endofunctor p�qpq on sm-DblCat. The
0-cells of Dpq, for any symmetric strict monoidal double category D, can be interpreted
as pp, qq-oidal objects in D.
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Ehresmann’s square or quintet construction [12] yields a 2-functor Sqr : sm-2Cat Ñ
sm-DblCat. Together with the 2-functor p�qpq : sm-2Cat Ñ sm-2Cat of Example 1.10 (4)
for any non-negative integers p and q, it fits in the commutative diagram

sm-2Cat
Sqr //

p�qpq
��

sm-DblCat

p�qpq
��

sm-2Cat
Sqr
// sm-DblCat.

The 2-functors around it take a symmetric strict monoidal 2-categoryM to the symmetric
strict monoidal double category SqrpMqpq � SqrpMpqq. Thus the pp, qq-oidal objects in
SqrpMq are the same as the pp� qq-oidal objects of M.

We begin with quickly recalling some basic definitions. More details can be found e.g.
in [8].

6.1. Definition. A double category is an internal category in the category of small
categories and functors. Thus a double category D consists of a category of objects V , a
category of morphisms V and structure functors

V i� // V
s�oo

t�
oo V �V Vc�oo

which are subject to the usual axioms of internal category.

The objects of V are called the 0-cells or objects of D and the morphisms of V are
called the vertical 1-cells of D. The objects of V are called the horizontal 1-cells of D and
the morphisms of V are called the 2-cells of D. The compositions of both categories V
and V are called the vertical composition (of 1-cells and 2-cells, respectively).The functor
c� is called the horizontal composition. A general 2-cell is depicted as

s~ps�Θq � s�ps~Θq s~Θ //

s�Θ
��

ù
ñ Θ

t�ps~Θq � s~pt�Θq

t�Θ
��

t~ps�Θq � s�pt~Θq
t~Θ
// t�pt~Θq � t~pt�Θq

where s~ denotes the source maps, and t~ denotes the target maps of both categories V and
V . In this graphical notation, vertical composition is denoted by vertical juxtaposition
and horizontal composition is denoted by horizontal juxtaposition.

In Definition 6.1 the roles of the vertical and horizontal structures turn out to be
symmetric. This leads to a symmetric description of the same double category D. It
can be seen equivalently as an internal category in the category of small categories and
functors with another category of objects H and another category of morphisms H. In
H the objects are again the 0-cells of D but now the morphisms are the horizontal 1-
cells. The objects of H are the vertical 1-cells and the morphisms are the 2-cells again.
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The compositions in H and H are provided by the horizontal composition of D. In this
description the structure functors of the internal category are

H i~ //H
s~

oo

t~

oo H �H H.c~

oo

Here the functor i~ sends any object A of H (equivalently, of V ) to the corresponding
identity morphism 1 : A Ñ A in V (regarded now as an object of H) and it sends a
horizontal morphism h to the identity morphism h Ñ h in V (regarded now as a non-
identity morphism in H).

Any double category D contains two 2-categories. In the horizontal 2-category HorpDq
the 0-cells are the 0-cells, and the 1-cells are the horizontal 1-cells of D. The 2-cells
are those 2-cells in D which are taken by s� and t� to identity vertical 1-cells. Both
horizontal and vertical compositions are the restrictions of the respective composition in
D. Symmetrically, in the vertical 2-category VerpDq the 0-cells are the 0-cells, and the
1-cells are the vertical 1-cells of D. The 2-cells are those 2-cells in D which are taken by
s~ and t~ to identity horizontal 1-cells. In this 2-category the horizontal composition is the
restriction of the vertical composition of D and vertical composition is the restriction of
the horizontal composition of D.

6.2. Definition. A double functor is an internal functor in the category of small cat-
egories and functors. Thus a double functor F : D Ñ D1 consists of compatible functors
pV Ñ V 1,V Ñ V 1q. Equivalently, it consists of compatible functors pH Ñ H 1,HÑ H1q.

The object maps of the functors V Ñ V 1 and H Ñ H 1 in Definition 6.2 are equal. The
morphism map of the functor V Ñ V 1 is equal to the object map of the functor HÑ H1

and the morphism map of the functor H Ñ H 1 is equal to the object map of the functor
V Ñ V 1. The morphism maps of the functors V Ñ V 1 and H Ñ H1 are equal again.
Any double functor F induces 2-functors HorpFq and VerpFq between the horizontal and
vertical 2-categories, respectively, which we call the horizontal and the vertical 2-functors,
respectively.

Between double functors F,G : D Ñ D1, there are two symmetric variants of internal
natural transformations. A horizontal transformation x : F Ñ G is an internal natural
transformation in the category of small categories and functors from pF : V Ñ V 1,F :
V Ñ V 1q to pG : V Ñ V 1,G : V Ñ V 1q. Thus it is a functor V Ñ V 1 sending any vertical
1-cell f : AÑ B to a 2-cell

FA
xA //

Ff

��

ù
ñ xf

GA

Gf

��
FB xB

//GB
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subject to the naturality condition

FA Fl //

Ff
��

ù
ñ Fω

FC

Fg

��

xC //

ù
ñ xg

GC

Gg

��
FB

Fk
// FD xD

//GD

�

FA
xA //

Ff
��

ù
ñ xf

GA

Gf
��

Gl //

ù
ñ Gω

GC

Gg

��
FB xB

//GB
Gk
//GD

for all

A l //

f
��

ù
ñ ω

C

g

��
B

k
// D

in D.

(6.1)

For any horizontal transformation x : FÑ G, the components xA : FAÑ GA constitute
a 2-natural transformation Horpxq : HorpFq Ñ HorpGq.

There is then a 2-category in which the 0-cells are the double categories, the 1-cells
are the double functors and the 2-cells are the horizontal transformations. The horizontal
composition is induced by the consecutive application of double functors and the vertical
composition is induced by the horizontal composition in the target double category. We
may see Hor as a 2-functor from this 2-category to 2Cat.

Symmetrically, a vertical transformation y : FÑ G is an internal natural transforma-
tion in the category of small categories and functors from pF : H Ñ H 1,F : H Ñ H1q to
pG : H Ñ H 1,G : H Ñ H1q. Thus it is a functor H Ñ H1 sending any horizontal 1-cell
l : AÑ C to a 2-cell

FA Fl //

yA
��

ù
ñ yl

FC

yC
��

GA
Gl
//GC

subject to the naturality condition

FA Fl //

Ff
��

ù
ñ Fω

FC

Fg

��
FB Fk //

yB
��

ù
ñ yk

FD

yD
��

GB
Gk
//GD

�

FA Fl //

yA
��

ù
ñ yl

FC

yC
��

GA

Gf

��

Gl //

ù
ñ Gω

GC

Gg

��
GB

Gk
//GD

for all

A l //

f
��

ù
ñ ω

C

g

��
B

k
// D

in D.

(6.2)

For any vertical transformation y : F Ñ G, the components yA : FAÑ GA constitute a
2-natural transformation Verpyq : VerpFq Ñ VerpGq.

There is then a 2-category of double categories, double functors and vertical transfor-
mations, and a 2-functor Ver from it to 2Cat.

The notion of double natural transformation, which is relevant for our purposes, sym-
metrically combines vertical and horizontal transformations. It is a particular case of
generalized natural transformations in [8].

6.3. Definition. For double functors F,G : D Ñ D1, a double natural transformation
FÑ G consists of

• a horizontal transformation x : FÑ G
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• a vertical transformation y : FÑ G

• a map θ associating to each 0-cell A of D a 2-cell

FA
xA //

yA

��

ù
ñ θA

GA

GA GA in D1

such that θ gives rise to natural transformation from the functor x : V Ñ V 1 to the functor
sending a vertical 1-cell f : AÑ B to the identity morphism 1 : Gf Ñ Gf in H1 (regarded
as a non-identity morphism of V 1); as well as a natural transformation from the functor
H Ñ H1 sending a horizontal 1-cell l : A Ñ C to the identity morphism 1 : Gl Ñ Gl in
V 1 (regarded as a non-identity morphism of H1) to y. Equivalently, θ is a modification in
the sense of [17, Section 1.6]. That is, in addition to the conditions (6.1) and (6.2), also
the further naturality conditions

FA
xA //

Ff
��

ù
ñ xf

GA

Gf
��

FB
xB //

yB
��

ù
ñ θB

GB

GB GB

�

FA
xA //

yA
��

ù
ñ θA

GA

GA

Gf

��

ù
ñ 1

GA

Gf

��
GB GB

FA Fl //

yA
��

ù
ñ yl

FC

yC
��

xC //

ù
ñ θC

GC

GA
Gl
//GC GC

�

FA

yA
��

xA //

ù
ñ θA

GA Gl //

ù
ñ 1

GC

GA GA
Gl
//GC

(6.3)
hold, for all vertical 1-cells f : AÑ B and horizontal 1-cells l : AÑ C.

Double categories are the 0-cells, double functors are the 1-cells and double natural
transformations are the 2-cells of the 2-category DblCat. For double functors F, G and
H : D Ñ D1, the vertical composite of double natural transformations px, θ, yq : F Ñ G
and px1, θ1, y1q : GÑ H has the component

FA
xA //

yA
��

ù
ñ θA

GA
x1

A //

ù
ñ 1

HA

GA

y1

A

��

ù
ñ 1

GA

y1

A

��

x1

A //

ù
ñ θ1A

HA

HA HA HA

(6.4)

for any 0-cell A of D. This is the diagonal composition of [8]. Double functors F : DÑ D1

and F1 : D1 Ñ D2 are composed as any internal functors. For another pair of double
functors G : DÑ D1 and G1 : D1 Ñ D2, and for double natural transformations px, θ, yq :
FÑ G and px1, θ1, y1q : F1 Ñ G1, the horizontal composite has the component

F1pFAq
F1xA //

F1yA
��

ù
ñ F1θA

F1pGAq
x1

GA //

ù
ñ 1

G1pGAq

F1pGAq

y1

GA

��

ù
ñ 1

F1pGAq
x1

GA //

y1

GA

��

ù
ñ θ1GA

G1pGAq

G1pGAq G1pGAq G1pGAq
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for any 0-cell A of D. We leave it to the reader to check that DblCat is a 2-category indeed;
in particular, to derive the middle four interchange law from (6.1), (6.2) and (6.3). There
are evident forgetful 2-functors from DblCat to the 2-category of double categories, double
functors and horizontal or vertical transformations.

Although double natural transformations as in Definition 6.3 were introduced in [8]
(without using this name for them), we did not manage to find an explicit description of
the above 2-category DblCat anywhere in the literature.

The 2-category DblCat can be made monoidal with the Cartesian product of double
categories as the monoidal product. Then it has a symmetry X as well, provided by the
flip double functors D� CÑ C� D, sending a pair of 2-cells pω, ϑq to pϑ, ωq.

6.4. Remark. The author is grateful to Ross Street for kindly pointing out the following
derivation of the 2-category DblCat via the ‘change of enriching category construction’ in
[13].

The category dblcat of double categories and double functors is Cartesian closed. (In
the internal hom double category rA,Bs the 0-cells are the double functors A Ñ B, the
horizontal/vertical 1-cells are the horizontal/vertical transformations and the 2-cells are
the modifications in [17, Section 1.6].) Hence it can be seen as a dblcat-enriched category.

Now let us consider the following monoidal functor F from dblcat to the category cat of
small categories and functors. It sends a double category D to the category whose objects
are the 0-cells of D; whose morphisms P Ñ Q are the triples consisting of a horizontal
1-cell x, a vertical 1-cell y and a 2-cell

P
x //

y

��

ù
ñ θ

Q

Q Q

in D; and whose composition is the diagonal composition as in (6.4). A double functor
H is taken by F to the functor which acts on the objects as H does; and acts on the
morphisms componentwise.

Following [13], the monoidal functor F induces a 2-functor from the 2-category of
dblcat-enriched categories to the 2-category 2Cat of cat-enriched categories. This induced
2-functor sends the dblcat-enriched category dblcat precisely to the 2-category DblCat
above.

6.5. Example. There are several notions of duality for double categories (see e.g. [17,
Section 1.2]). In addition to the horizontal and vertical opposites as for 2-categories, there
is a further possibility to take the diagonal dual or transpose D� of a double category D.
Its 0-cells are the 0-cells of D, its horizontal 1-cells are the vertical 1-cells of D and vice
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versa, its vertical 1-cells are the horizontal 1-cells of D. A 2-cell in D� as on the left,

A
h //

f
�� ��

C

g

��
B

k
// D

A
f //

h

��

ù
ñ

B

k

��
C g

// D

is a 2-cell in D on the right. The horizontal composition in D� is the vertical composition
in D and the vertical composition in D� is the horizontal composition in D.

Any double functor F : DÑ C induces a double functor F� : D� Ñ C�. On the 0-cells
and on the 2-cells it acts as F. Its action on the horizontal and vertical 1-cells is the
action of F on the vertical and horizontal 1-cells, respectively.

The components of a double natural transformation px, θ, yq : FÑ G on the left

FA x //

y

��
θ��

GA

GA GA

FA
y //

x

��
θ��

GA

GA GA

can be seen as the components on the right of a double natural transformation px, θ, yq� :
F� Ñ G�.

This defines 2-functors p�q� from the 2-category of double categories, double functors
and horizontal/vertical transformations to the 2-category of double categories, double
functors and vertical/horizontal transformations; as well as a 2-endofunctor p�q� on the 2-
category DblCat of double categories, double functors and double natural transformations.

6.6. Definition. [8, Definition 4] A strict monoidal double category is a monoid in the
category of double categories and double functors considered with the Cartesian product
of double categories as the monoidal product. That is, a strict monoidal double category
consists of a double category D together with double functors b — the monoidal product
— from the Cartesian product double category D�D to D and I — the monoidal unit —
from the singleton double category (with a single 0-cell and only identity higher cells) to
D such that b is strictly associative with the strict unit I.

The action of the monoidal product double functor b on any cells will be denoted by
juxtaposition. Note that in a strict monoidal double category D all constituent categories
V , H, V and H are strict monoidal, and so are the horizontal and vertical 2-categories
HorpDq and VerpDq.

6.7. Definition. [8, Definition 4] A strict monoidal double functor is a monoid mor-
phism in the category of double categories and double functors considered with the Carte-
sian product of double categories as the monoidal product. That is, a double functor
F : DÑ D1 such that Fp� b �q � Fp�q b1 Fp�q and FI � I 1.
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6.8. Definition. A monoidal horizontal transformation between strict monoidal double
functors pD,b, Iq Ñ pD1,b1, I 1q is a horizontal transformation z such that z : V Ñ V 1
is a strict monoidal functor. Symmetrically, a monoidal vertical transformation between
strict monoidal double functors is a vertical transformation v such that v : H Ñ H1 is a
strict monoidal functor. A monoidal double natural transformation is a double natural
transformation pz, θ, vq between strict monoidal double functors F and G : pD,b, Iq Ñ
pD1,b1, I 1q such that z : V Ñ V 1 and v : H Ñ H1 are strict monoidal functors and θ, seen
as a natural transformation in either way, is monoidal. That is to say, the equalities of
2-cells

pFAqpFBq
zAzB //

vAvB
��

ù
ñ θAθB

pGAqpGBq

pGAqpGBq pGAqpGBq

�

FpABq
zAB //

vAB ��

ù
ñ θAB

GpABq

GpABq GpABq

FI
zI //

vI

��

ù
ñ θI

GI

GI GI

�

I 1

ù
ñ 1

I 1

I 1 I 1

hold for all 0-cells A and B in D.

Strict monoidal double categories are the 0-cells and strict monoidal double functors
are the 1-cells in various 2-categories. The 2-cells can be chosen to be monoidal hor-
izontal transformations, monoidal vertical transformations, or monoidal double natural
transformations.

6.9. Definition. [8, Definition 5] A symmetric strict monoidal double category consists
of a strict monoidal double category pD,b, Iq together with a double natural transformation
px, σ, yq : b Ñ b.X (where X denotes the relevant component of the symmetry of the 2-
category DblCat, that is, the flip double functor D � D Ñ D � D). It is required to be
involutive in the sense that

b x //

y

��

ù
ñ σ

b.X x.1 //

ù
ñ 1

b

b.X

y.1

��

ù
ñ 1

b.X

y.1

��

x.1 //

ù
ñ σ.1

b

b b b

�

b

ù
ñ 1

b

b b

and the hexagon condition is required to hold, which says that the 2-cells of Figure 1 are
equal.

The symmetry px, σ, yq of a symmetric strict monoidal double category D induces
symmetries on all constituent categories V , H, V and H.

It follows from Definition 6.9 that for any 0-cell A,

IA x //

y

��

ù
ñ σ

AI

AI AI

�

A ù
ñ 1

A

A A

�

AI x //

y

��

ù
ñ σ

IA

IA IA.
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b
.p
b
�

1q
1
.p
x
�

1
q
//

1
.p
y
�

1
q
��

ùñ

1.
pσ
�

1q

b
.p
b
�

1q
.p
X
�

1q
b
.p

1
�
b
q.
pX
�

1q
1
.p

1
�
x
q.

1
//

ùñ

1

b
.p

1
�
b
q.
p1
�
X
q.
pX
�

1q

b
.p
b
�

1q
.p
X
�

1q

b
.p

1
�
b
q.
pX
�

1q

1
.p

1
�
y
q.

1

��

ùñ

1

b
.p

1
�
b
q.
pX
�

1q

1
.p

1
�
y
q.

1

��

1
.p

1
�
x
q.

1
//

ùñ

1.
p1
�
σ
q.

1

b
.p

1
�
b
q.
p1
�
X
q.
pX
�

1q

b
.p

1
�
b
q.
p1
�
X
q.
pX
�

1q
b
.p

1
�
b
q.
p1
�
X
q.
pX
�

1q
b
.p

1
�
b
q.
p1
�
X
q.
pX
�

1q

b
.p
b
�

1q

ùñ

1

b
.p

1
�
b
q

x
.1

//

y
.1

��

ùñ

σ
.1

b
.X
.p

1
�
b
q

b
.p
b
�

1q
.p

1
�
X
q.
pX

�
1q

b
.p

1
�
b
q.
p1
�
X
q.
pX

�
1q

b
.p

1
�
b
q

y
.1

��
b
.X
.p

1
�
b
q

b
.X
.p

1
�
b
q

b
.X
.p

1
�
b
q

ùñ

1
b
.p
b
�

1q
.p

1
�
X
q.
pX

�
1q

b
.p

1
�
b
q.
p1
�
X
q.
pX

�
1q

b
.p

1
�
b
q.
p1
�
X
q.
pX

�
1q
.
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Recall from [8, Section 4] that in a strict monoidal double category pD,b, Iq with sym-
metry px, σ, yq, the 2-cell σ has a horizontal inverse σh on the left, and a vertical inverse
σv on the right of

AB
x //

y

��

ù
ñ σ

BA

BA

y

��

ù
ñ 1

BA

y

��
AB AB

AB
x //

y

��

ù
ñ σ

BA
x //

ù
ñ 1

AB

BA BA x
// AB.

From these explicit expressions it follows for any vertical 1-cells f : AÑ A1 and g : B Ñ B1

that
AB

x //

ù
ñ σh

BA

y

�� ù
ñ 1

BA

gf
��

ù
ñ 1

BA

gf
��

AB

fg

��

ù
ñ 1

AB

fg

��

B1A1

y

��

ù
ñ σv

B1A1

A1B1 A1B1 A1B1
x
// B1A1

�

AB
x //

fg
��

ù
ñ x

BA

gf
��

A1B1
x
// B1A1

(6.5)

and it also follows for any horizontal 1-cells f : AÑ A1 and g : B Ñ B1 that

AB
x //

ù
ñ σh

BA
gf //

y

��

ù
ñ y

B1A1

y

��

ù
ñ σv

B1A1

AB AB
fg
// A1B1

x
// B1A1

�

AB
x //

ù
ñ 1

BA
gf // B1A1

AB
fg
// A1B1

x
// B1A1.

(6.6)

6.10. Definition. A symmetric strict monoidal double functor is a strict monoidal dou-
ble functor F : pD,b, Iq Ñ pD1,b1, I 1q which preserves the symmetry in the sense of the
equalities

F.x � x1.pF� Fq F.y � y1.pF� Fq F.σ � σ1.pF� Fq.

(of functors V �V Ñ V 1 and H �H Ñ H1, and of natural transformations, respectively).

6.11. Definition. Consider some symmetric strict monoidal double functors F,G : DÑ
D1. A monoidal horizontal transformation h : F Ñ G is said to be symmetric if the
strict monoidal functor h : V Ñ V 1 is symmetric. Symmetrically, a monoidal vertical
transformation v : FÑ G is said to be symmetric if the strict monoidal functor v : H Ñ
H1 is symmetric. A monoidal double natural transformation ph, θ, vq : F Ñ G is said to
be symmetric if h and v are symmetric.

Symmetric strict monoidal double categories are the 0-cells and symmetric strict mono-
idal double functors are the 1-cells in various 2-categories. The 2-cells can be chosen to
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be symmetric monoidal horizontal transformations, symmetric monoidal vertical trans-
formations or symmetric monoidal double natural transformations. We denote this latter
2-category by sm-DblCat. Its vertical and horizontal compositions are given by the same
expressions as in DblCat.

This finishes our review of the basic theory of double categories.

6.12. Example. (1) For any strict monoidal double category D there is a double category
D01 which we describe next. Its 0-cells are the pseudomonoids

pA, AA m // A , I
u // A ,

AAA m1 //

ù
ñ α

AA m // A

AAA
1m
// AA m

// A

,

A u1 //

ù
ñ λ

AA m // A

A A

,

A 1u //

ù
ñ %

AA m // A

A A

q

in the horizontal 2-category HorpDq of D (which we call the horizontal pseudomonoids in
D), and the horizontal 1-cells are the opmonoidal 1-cells

p A h // A1 ,

AA
m //

ù
ñ χ2

A
h // A1

AA
hh
// A1A1

m1

// A1

,

I
u //

ù
ñ χ0

A
h // A1

I
u1

// A1

q

in the horizontal 2-category of D. A vertical 1-cell consists of a vertical 1-cell on the left,
together with 2-cells on the right of

A

f
��
A1

AA m //

ff
��

ù
ñ ϕ2

A

f
��

A1A1

m1

// A1

I u //

ù
ñ ϕ0

A

f
��

I
u1

// A1

which are required to satisfy the following coassociativity and counitality conditions.

AAA
m1 //

ù
ñ α

AA
m // A

AAA 1m //

fff
��

ù
ñ 1ϕ2

AA m //

ff
��

ù
ñ ϕ2

A

f
��

A1A1A1

1m1

// A1A1

m1

// A1

�

AAA
m1 //

fff
��

ù
ñ ϕ21

AA
m //

ff
��

ù
ñ ϕ2

A

f
��

A1A1A1 m11 //

ù
ñ α1

A1A1 m1

// A1

A1A1A1

1m1

// A1A1

m1

// A1

A u1 //

ù
ñ λ

AA m // A

A

f
��

ù
ñ 1

A

f
��

A1 A1

�

A u1 //

f
��

ù
ñ ϕ01

AA m //

ff
��

ù
ñ ϕ2

A

f
��

A1 u11 //

ù
ñ λ1

A1A1 m1

// A1

A1 A1
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A 1u //

ù
ñ %

AA m // A

A

f
��

ù
ñ 1

A

f
��

A1 A1

�

A 1u //

f
��

ù
ñ 1ϕ0

AA m //

ff
��

ù
ñ ϕ2

A

f
��

A1 1u1

//

ù
ñ %1

A1A1 m1

// A1

A1 A1

A 2-cell in D01 with boundaries on the left of

A
ph,χ2,χ0q //

pf,ϕ2,ϕ0q
��

C

pg,γ2,γ0q
��

B
pk,κ2,κ0q

// D

A
h //

f

��

ù
ñ ω

C

g

��
B

k
// D

is a 2-cell of D on the right, subject to the opmonoidality conditions

AA
m //

ù
ñ χ2

A
h // C

AA
hh //

ff

��

ù
ñ ωω

CC
m //

gg

��

ù
ñ γ2

C

g

��
BB

kk
// DD m

// D

�

AA
m //

ff

��

ù
ñ ϕ2

A
h //

f

��

ù
ñ ω

C

g

��
BB

m //

ù
ñ κ2

B
k // D

BB
kk
// DD m

// D

I
u //

ù
ñ χ0

A
h // C

I u //

ù
ñ γ0

C

g

��
I u

// D

�

I
u //

ù
ñ ϕ0

A
h //

f

��

ù
ñ ω

C

g

��
I u //

ù
ñ κ0

B k // D

I u
// D

(where all occurring pseudomonoid structures are denoted by the same symbols pm,u,
α, λ, %q). Horizontal 1-cells are composed by the composition rule of opmonoidal 1-cells
in a 2-category, see Example 1.10. Vertical 1-cells are vertically composed according to
the rule

A

f
��
B

g

��
C

AA m //

ff
��

ù
ñ ϕ2

A

f
��

BB m //

gg

��

ù
ñ γ2

B

g

��
CC m

// C

I u //

ù
ñ ϕ0

A

f
��

I u //

ù
ñ γ0

B

g

��
I u

// C.

Horizontal and vertical compositions of 2-cells are computed in D. The horizontal 2-
category of the resulting double category D01 can be obtained by applying the 2-functor
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p�q01 of Example 1.10 to the horizontal 2-category of D. That is, HorpDq01 � HorpD01q.
(The analogous statement fails to hold for the vertical 2-category.)

If in addition the strict monoidal double category pD,b, Iq has a symmetry px, σ, yq,
then the above double category D01 can be equipped with a strict monoidal structure. The
monoidal unit is the monoidal unit I of D seen as a trivial pseudomonoid, see Example
1.10. The monoidal product of 0-cells and of horizontal 1-cells is their monoidal product
as pseudomonoids and opmonoidal 1-cells, respectively, in the horizontal 2-category, see
again Example 1.10. The monoidal product of vertical 1-cells pf, ϕ2, ϕ0q : A Ñ A1 and
pg, γ2, γ0q : B Ñ B1 is

AB

fg
��

A1B1

ABAB 1x1 //

fgfg
��

ù
ñ 1x1

AABB mm //

ffgg
��

ù
ñ ϕ2γ2

AB

fg
��

A1B1A1B1
1x1
// A1A1B1B1

m1m1

// A1B1

I uu //

ù
ñ ϕ0γ0

AB

fg
��

I 1
u1u1

// A1B1.

The monoidal product of 2-cells is their monoidal product as 2-cells of D. What is more,
the above strict monoidal double category D01 has a symmetry with components

AB
px,1,1q//

py,ν2,ν0q
��

ù
ñ σ

BA

BA BA

where the binary part ν2 and the nullary part ν0 of the opmonoidal 1-cell y are the 2-cells

ABAB 1x1 //

ù
ñ 1

AABB
mm //

ù
ñ 1

AB

ABAB xx //

ù
ñ 1

BABA 1x1 // BBAA
x22 //

ù
ñ 1

AABB mm // AB

ABAB
xx //

yy
��

ù
ñ σσ

BABA
1x1 //

ù
ñ 1

BBAA
mm // BA

x //

ù
ñ σh

AB

y

��
BABA BABA

1x1
// BBAA mm

// BA BA

I uu //

ù
ñ 1

AB

I uu //

ù
ñ 1

BA x //

ù
ñ σh

AB

y

��
I uu

// BA BA

respectively, (where σh stands for the horizontal inverse of σ in D).
For any strict monoidal double functor F : D Ñ D1 there is a double functor F01 :

D01 Ñ D1
01. On the horizontal 2-category it acts as the 2-functor obtained by applying

the 2-functor p�q01 of Example 1.10 to the 2-functor induced by F between the horizontal
2-categories. It takes a vertical 1-cell pf, ϕ2, ϕ0q to

FA

Ff
��

FB

pFAqpFAq

pFfqpFfq
��

ù
ñ 1

FpAAq

Fpffq
��

Fm //

ù
ñ Fϕ2

FA

Ff

��
pFBqpFBq FpBBq

Fm
// FB

I ù
ñ 1

FI Fu //

ù
ñ Fϕ0

FA

Ff
��

I FI
Fu
// FB
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and it acts on the 2-cells as F.
If the strict monoidal double categories pD,b, Iq and pD1,b1, I 1q are symmetric and

F preserves the symmetry, then F01 is symmetric strict monoidal with respect to the
symmetric strict monoidal structures of D01 and D1

01 in the previous paragraphs.
Finally, take any strict monoidal double functors F and G. For any monoidal hori-

zontal transformation z : F Ñ G, there is a horizontal transformation z01 : F01 Ñ G01

with the components pzA, 1, 1q at any pseudomonoid pA,m, u, α, λ, %q in D, and xf at any
vertical 1-cell f in D. Whenever F and G are symmetric as well — so that F01 and G01

are strict monoidal too — z01 is monoidal too; and it is symmetric if z is so.
For any monoidal vertical transformation v : FÑ G there is a vertical transformation

v01 : F01 Ñ G01 with the components pvA, vm, vuq at any pseudomonoid pA,m, u, α, λ, %q
in D; and vh at any horizontal 1-cell h in D. It is symmetric monoidal whenever v is a
symmetric monoidal vertical transformation between symmetric strict monoidal double
functors.

For any monoidal double natural transformation pz, θ, vq : F Ñ G there is a double
natural transformation F01 Ñ G01 with the components z01, v01 and

FA
pz,1,1q //

pv,vm,vuq
��

ù
ñ θ

GA

GA GA

at any pseudomonoid pA,m, u, α, λ, %q in D. It is monoidal whenever F, G and v are
symmetric as well; and symmetric if so is z in addition.

These maps define various 2-functors p�q01:

(i) from the 2-category of strict monoidal double categories, strict monoidal double func-
tors and monoidal horizontal transformations to the 2-category of double categories,
double functors and horizontal transformations,

(ii) from the 2-category of strict monoidal double categories, strict monoidal double func-
tors and monoidal vertical transformations to the 2-category of double categories,
double functors and vertical transformations,

(iii) from the 2-category of strict monoidal double categories, strict monoidal double
functors and monoidal double natural transformations to the 2-category DblCat of
double categories, double functors and double natural transformations,

(iv) from the 2-category of symmetric strict monoidal double categories, symmetric strict
monoidal double functors and symmetric monoidal horizontal transformations to
itself,

(v) from the 2-category of symmetric strict monoidal double categories, symmetric strict
monoidal double functors and symmetric monoidal vertical transformations to itself,
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(vi) from the 2-category sm-DblCat of symmetric strict monoidal double categories, sym-
metric strict monoidal double functors and symmetric monoidal double natural
transformations to itself.

(2) The ‘diagonal duality’ 2-functors p�q� (see Example 6.5) induce 2-functors between
the (domain, respectively, codomain) 2-categories in items (i) and (ii), as well as those
in items (iv) and (v); and they induce 2-endofunctors on the 2-categories in items (iii)
and (vi) of the list of part (1) above. Hence symmetrically to part (1), we define 2-
functors p�q10 :� ppp�q�q01q

� of all kinds in this list. They send a strict monoidal double
category D to the double category D10 whose 0-cells are the pseudomonoids in the vertical
2-category of D (i.e. the vertical pseudomonoids in D), and the vertical 1-cells are the
monoidal morphisms in the vertical 2-category of D. The horizontal 1-cells are monoidal
horizontal 1-cells with respect to the vertical pseudomonoids and the 2-cells are the 2-cells
of D which are monoidal in a suitable sense. If in addition the strict monoidal double
category D is symmetric then also D10 is symmetric strict monoidal.

(3) Next we show that the diagram

sm-DblCat
p�q01 //

p�q10
��

sm-DblCat

p�q10
��

sm-DblCat
p�q01

// sm-DblCat

of the 2-functors in parts (1) and (2) commutes up-to 2-natural isomorphism. (The same
proof shows, in fact, the commutativity of the 2-endofunctors p�q01 and p�q10 also in
items (iv) and (v) of the list of part (1).)

For any symmetric strict monoidal double category D, a 0-cell of pD01q10 is a vertical
pseudomonoid in D01,

ppA,m�, u�, α�, λ�, %�q, pm~, ζ, ζ0q, pu
~, ζ0, ζ0

0 q, α
~, λ~, %~q.

Symmetrically, a 0-cell of pD10q01 is a horizontal pseudomonoid in D10,

ppA,m~, u~, α~, λ~, %~q, pm�, ξ, ξ0q, pu�, ξ0, ξ
0
0q, α

�, λ�, %�q.

A bijective correspondence between them is given by ζ0
0 � ξ0

0 , ζ0 � ξ0, ζ0 � ξ0 and ζ equal
to

AAAA 1x1 //

1y1
��

ù
ñ 1σ1

AAAA m�m�
//

ù
ñ 1

AA

AAAA
1y1
�� ù

ñ ξ

AAAA
m�m�

// AA

m~

��

AAAA

m~m~

��
AA

m�
// A.
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Similarly to Example 1.10 (3), the following properties are pairwise equivalent (for check-
ing it use also (6.5)).

• Associativity and unitality of the monoidal horizontal 1-cell pm�, ξ, ξ0q are equivalent
to the compatibilities of the opmonoidal 2-cells α~, λ~ and %~ with the binary parts
of their source and target opmonoidal vertical 1-cells.

• Associativity and unitality of the monoidal horizontal 1-cell pu�, ξ0, ξ
0
0q are equiv-

alent to the compatibilities of the opmonoidal 2-cells α~, λ~ and %~ with the nullary
parts of their source and target opmonoidal vertical 1-cells.

• Compatibilities of the monoidal 2-cells α�, λ� and %� with the binary parts of their
source and target monoidal horizontal 1-cells are equivalent to the coassociativity
and counitality of the opmonoidal vertical 1-cell pm~, ζ, ζ0q.

• Compatibilities of the monoidal 2-cells α�, λ� and %� with the nullary parts of their
source and target monoidal horizontal 1-cells are equivalent to the coassociativity
and counitality of the opmonoidal vertical 1-cell pu~, ζ0, ζ0

0 q.

A horizontal 1-cell in pD01q10 is a monoidal horizontal 1-cell in D01,

ppf, ϕ2, ϕ0q, ϕ2, ϕ0q

while a horizontal 1-cell in pD10q01 is an opmonoidal horizontal 1-cell in D10,

ppf, ϕ2, ϕ0q, ϕ
2, ϕ0q.

Both of them amount to a monoidal structure pϕ2, ϕ0q on f with respect to the vertical
pseudomonoids and an opmonoidal structure pϕ2, ϕ0q on f with respect to the horizontal
pseudomonoids, which are subject to four compatibility conditions.

• Compatibility of the opmonoidal 2-cell ϕ0 with the nullary parts of its surrounding
opmonoidal 1-cells coincides with the compatibility of the monoidal 2-cell ϕ0 with
the nullary parts of its surrounding monoidal 1-cells.

• Compatibility of the opmonoidal 2-cell ϕ0 with the binary parts of its surrounding
opmonoidal 1-cells is the same condition as the compatibility of the monoidal 2-cell
ϕ2 with the nullary parts of surrounding monoidal 1-cells.

• Symmetrically, compatibility of the opmonoidal 2-cell ϕ2 with the nullary parts of
its surrounding opmonoidal 1-cells coincides with the compatibility of the monoidal
2-cell ϕ0 and the binary parts of its surrounding monoidal 1-cells.

• Compatibility of the opmonoidal 2-cell ϕ2 with the binary parts of its surrounding
opmonoidal 1-cells, and compatibility of the monoidal 2-cell ϕ2 with the binary parts
of its surrounding monoidal 1-cells are equivalent to each other (for its proof also
(6.6) is used).
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So a bijective correspondence between the horizontal 1-cells of pD01q10 and pD10q01 is
obtained by re-ordering the constituent 2-cells.

A bijection between the vertical 1-cells of pD01q10 and pD10q01 is obtained symmetri-
cally.

Finally, the 2-cells both in pD01q10 and pD10q01 are those 2-cells of D which are both

• monoidal (with respect to the monoidal structures of the surrounding 1-cells),

• opmonoidal (with respect to the opmonoidal structures of these 1-cells).

So there is a trivial (identity) bijection between them.
The above bijections combine into an iso double functor pD01q10 Ñ pD10q01 which is

symmetric strict monoidal and 2-natural.
(4) By the commutativity of the first diagram of part (3), we may apply in any order

the 2-functor in its columns p times and the 2-functor in its rows q times. This yields a
2-functor p�qpq : sm-DblCat Ñ sm-DblCat. Analogously we obtain 2-endofunctors p�qpq
on the 2-categories in items (iv) and (v) of the list of part (1). For any symmetric strict
monoidal double category D, we term the 0-cells of Dpq as the (p,q)-oidal objects of D. In
particular, the p0, 1q-oidal objects are the horizontal pseudomonoids in D while the p1, 0q-
oidal objects are the vertical pseudomonoids. Thus in contrast to part (4) of Example
1.10, the structure of pp, qq-oidal objects in D depends both on p and q not only their
sum.

6.13. Example. We may regard Ehresmann’s square or quintet construction [12] as a
2-functor Sqr : sm-2Cat Ñ sm-DblCat.

Recall that for any 2-category M, the 0-cells of the double category SqrpMq are the
0-cells ofM. Both the horizontal and the vertical 1-cells in SqrpMq are the 1-cells ofM.
The 2-cells of the form

A
h //

f

��

ù
ñ ω

C

g

��
B

k
// D

in SqrpMq are the 2-cells ω : g.h Ñ k.f in M. Both the horizontal composition of
horizontal 1-cells, and the vertical composition of vertical 1-cells in SqrpMq are given by
the composition of 1-cells in M. The horizontal composition results in

t.n.h
ϑ.1 // p.g.h

1.ω // p.k.f for 2-cells

A h //

f
��

ù
ñ ω

C

g

��
B

k
// D

C n //

g

��

ù
ñ ϑ

E

t
��

D p
// F

(6.7)
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while the vertical composition results in

p.g.h
1.ω // p.k.f ϑ.1 // t.n.f for 2-cells

A
h //

f

��

ù
ñ ω

C

g

��
B

k
// D

B

n

��

k //

ù
ñ ϑ

D

p

��
E

t
// F.

(6.8)

Both the horizontal and the vertical 2-categories of SqrpMq are isomorphic to M.
WheneverM possesses a strict monoidal structure, it induces an evident strict mono-

idal structure on SqrpMq. If moreoverM has a symmetry x then a symmetry on SqrpMq
is given by the horizontal and vertical transformations in the first two diagrams, and 2-cell
part in the third diagram of

AB x //

fg
��

ù
ñ 1

BA

gf
��

A1B1
x
// B1A1

AB
fg //

x

��
ù
ñ 1

A1B1

x

��
BA

gf
// B1A1

AB x //

x

��

ù
ñ 1

BA

BA BA

for any 1-cells f : AÑ A1 and g : B Ñ B1 in M.
For any 2-functor F :M Ñ N , there is a double functor SqrpFq : SqrpMq Ñ SqrpN q.

Its action on the 0-cells is equal to the action of F on the 0-cells. Its action both on the
horizontal and vertical 1-cells is equal to the action of F on the 1-cells. Its action on the
2-cells is equal to the action of F on the 2-cells. Whenever F is strict monoidal, clearly
SqrpFq is strict monoidal; and whenever F is symmetric, so is SqrpFq.

Finally, a 2-natural transformation ω : F Ñ G induces a double natural transformation
Sqrpωq : SqrpFq Ñ SqrpGq with the horizontal and vertical transformations in the first two
diagrams, and 2-cell part in the third diagram of

FA
ωA //

Ff
��

ù
ñ 1

GA

Gf
��

FB ωB

// GB

FA

ωA

��

Ff //

ù
ñ 1

FB

ωB

��
GA

Gf
// GB

FA
ωA //

ωA

��

ù
ñ 1

GA

GA GA

for any 1-cell f : AÑ B in M. It is symmetric monoidal whenever ω is monoidal.
The so constructed 2-functor Sqr : sm-2Cat Ñ sm-DblCat, together with the 2-functors

of Example 1.10 and Example 6.12 in the columns, render strictly commutative the dia-
grams of 2-functors

sm-2Cat
Sqr //

p�q01
��

sm-DblCat

p�q01
��

sm-2Cat
Sqr
// sm-DblCat

sm-2Cat
Sqr //

p�q10
��

sm-DblCat

p�q10
��

sm-2Cat
Sqr
// sm-DblCat.

Then Sqr commutes also with the 2-functors p�qpq of Example 1.10 (4) and Example
6.12 (4) for any non-negative integers p and q.
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7. pp, qq-oidal monads

In this section we describe a 2-functor Mnd : sm-2Cat Ñ sm-DblCat. Its object map sends
a symmetric strict monoidal 2-category M to the double category of monads in SqrpMq
in the sense of [14] (so the horizontal 2-category of MndpMq is MndpMq and its vertical
2-category is MndoppMq). Together with the 2-functor p�qpq : sm-2Cat Ñ sm-2Cat of
Example 1.10 (4) and the 2-functor p�qpq : sm-DblCat Ñ sm-DblCat of Example 6.12 (4)
for any non-negative integers p and q, it fits in the diagram

sm-2Cat Mnd //

p�qpq
��

sm-DblCat

p�qpq
��

sm-2Cat
Mnd

// sm-DblCat

which commutes up-to 2-natural isomorphism. The 2-functors around it take a sym-
metric strict monoidal 2-category M to a symmetric strict monoidal double category
MndpMqpq � MndpMpqq. Thus the pp, qq-oidal objects in MndpMq are the same as the
pp, qq-oidal monads in M. Consequently, any symmetric strict monoidal double functor
K : MndpMq Ñ SqrpMq induces a symmetric strict monoidal double functor

MndpMpqq �MndpMqpq
Kpq // SqrpMqpq � SqrpMpqq

whose object map sends a pp, qq-oidal monad in M to a pp� qq-oidal object in M.
As anticipated above, for any 2-categoryM we take the double category MndpMq of

monads in the sense of [14] in the double category SqrpMq of Example 6.13. Thus a 0-cell
in MndpMq is a monad in M. Below it will be written as a pair pA, tq where A is the
0-cell part and t : AÑ A is the 1-cell part. Whenever needed, the multiplication and unit
2-cells will be denoted by µ : t.t Ñ t and η : 1 Ñ t, respectively, but in most cases they
will not be explicitly written. A horizontal 1-cell in MndpMq is a 1-cell in MndpMq, see
Example 1.9. A vertical 1-cell in MndpMq is a 1-cell in MndoppMq, see again Example
1.9. A 2-cell in MndpMq with boundaries as in the first diagram of

pA, tq
ph,Ξq //

pf,Φq
��

ù
ñ ω

pC, zq

pg,Γq
��

pB, sq
pk,Θq

// pD, vq

A
h //

f

��

ù
ñ ω

C

g

��
B

k
// D

g.z.h
1.Ξ //

Γ.1

��

g.h.t
ω.1 // k.f.t

1.Φ

��
v.g.h

1.ω
// v.k.f

Θ.1
// k.s.f

is a 2-cell in M as in the second diagram, such that the third diagram of 2-cells in M
commutes. The horizontal composition of horizontal 1-cells is the composition of 1-cells
in MndpMq and the vertical composition of vertical 1-cells is the composition of 1-cells
in MndoppMq. The horizontal and vertical compositions of 2-cells are given by the same
formulae as in (6.7) and (6.8), respectively.

A strict monoidal structure pb, Iq ofM induces a strict monoidal structure on MndpMq
analogously to Example 1.9, and a symmetry x on pM,b, Iq induces a symmetry of
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MndpMq with horizontal and vertical transformations in the first two diagrams, and 2-
cell part in the third diagram of

pAB, tsq
px,1q //

pfg,ΦΓq
��

ù
ñ 1

pBA, stq

pgf,ΓΦq
��

pA1B1, t1s1q
px,1q
// pB1A1, s1t1q

pAB, tsq

px,1q
��

phk,ΞΘq//

ù
ñ 1

pA1B1, t1s1q

px,1q
��

pBA, stq
pkh,ΘΞq

// pB1A1, s1t1q

pAB, tsq
px,1q //

px,1q
��

ù
ñ 1

pBA, stq

pBA, stq pBA, stq

for any 1-cells ph,Ξq : pA, tq Ñ pA1, t1q and pk,Θq : pB, sq Ñ pB1, s1q in MndpMq and
pf,Φq : pA, tq Ñ pA1, t1q and pg,Γq : pB, sq Ñ pB1, s1q in MndoppMq.

Any 2-functor F : M Ñ N gives rise to a double functor MndpFq : MndpMq Ñ
MndpN q. On the 0-cells it acts as MndpFq of Example 1.9; equivalently, as MndoppFq
of Example 1.9. On the horizontal and vertical 1-cells, MndpFq acts as MndpFq and
MndoppFq, respectively. On the 2-cells MndpFq acts as F. The double functor MndpFq is
strict monoidal whenever F is strict monoidal and it is symmetric whenever F is so.

A 2-natural transformation ω : F Ñ G induces a double natural transformation
Mndpωq : MndpFq Ñ MndpGq with horizontal and vertical transformations in the first
two diagrams, and 2-cell part in the third diagram of

pFA,Ftq
pωA,1q //

pFf,FΦq
��

ù
ñ 1

pGA,Gtq

pGf,GΦq
��

pFB, Fsq
pωB ,1q

// pGB,Gsq

pFA,Ftq

pωA,1q
��

pFh,FΞq//

ù
ñ 1

pFB, Fsq

pωB ,1q
��

pGA,Gtq
pGh,GΞq

// pGB,Gsq

pFA,Ftq
pωA,1q //

pωA,1q
��

ù
ñ 1

pGA,Gtq

pGA,Gtq pGA,Gtq

for any 1-cells ph,Ξq : pA, tq Ñ pB, sq in MndpMq and pf,Φq : pA, tq Ñ pB, sq in
MndoppMq. It is symmetric monoidal whenever ω is monoidal.

With this we constructed a 2-functor Mnd : sm-2Cat Ñ sm-DblCat which we want to
relate next to the 2-functors p�q01 of Example 1.10 and Example 6.12 .

For any symmetric strict monoidal 2-categoryM, a 0-cell of MndpMq01 is a horizontal
pseudomonoid in MndpMq. Since the horizontal 2-category of MndpMq is MndpMq, this
is the same as a pseudomonoid ppA, t, µ, ηq, pm, τ 2q, pu, τ 0q, α, λ, %q in MndpMq; equiva-
lently, a 0-cell of MndpMq01. Thus the isomorphism of Section 2 takes it to the 0-cell
ppA,m, u, α, λ, %q, pt, τ 2, τ 0q, µ, ηq of MndpM01q; that is, a 0-cell of MndpM01q (which was
termed an opmonoidal monad in M).

In the same way, a horizontal 1-cell of MndpMq01 is a 1-cell of MndpMq01, taken
by the isomorphism of Section 2 to a 1-cell of MndpM01q; that is, a horizontal 1-cell of
MndpM01q.

A vertical 1-cell of MndpMq01 is an opmonoidal vertical 1-cell of MndpMq,

pA, tq

pf,Φq
��

pA1, t1q

pAA, ttq

pff,ΦΦq
��

pm,τ2q //

ù
ñ ϕ2

pA, tq

pf,Φq
��

pA1A1, t1t1q
pm1,τ 12q

// pA1, t1q

pI, 1q
pu,τ0q //

ù
ñ ϕ0

pA, tq

pf,Φq
��

pI, 1q
pu1,τ 10q

// pA1, t1q.
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It means a 1-cell pf,Φq : pA, tq Ñ pA1, t1q in MndoppMq and a 1-cell pf, ϕ2, ϕ0q : pA,m, u, α,
λ, %q Ñ pA1,m1, u1, α1, λ1, %1q inM01 such that in addition ϕ2 and ϕ0 are 2-cells of MndpMq;
that is, the following diagrams of 2-cells in M commute.

f.t.m 1.τ2 //

Φ.1
��

f.m.tt
ϕ2.1 //m1.ff.tt

1.ΦΦ
��

t1.f.m
1.ϕ2

// t1.m1.ff
τ 12.1

//m1.t1t1.ff

f.t.u 1.τ0 //

Φ.1
��

f.u
ϕ0
// u1

t1.f.u
1.ϕ0

// t1.u1
τ 10
// u1.

Now these conditions can be interpreted, equivalently, as the opmonoidality of the 2-cell
Φ : pf, ϕ2, ϕ0q.pt, τ 2, τ 0q Ñ pt1, τ 12, τ 10q.pf, ϕ2, ϕ0q in M01. This amounts to saying that
ppf,Φq, ϕ2, ϕ0q is a vertical 1-cell of MndpMq01 if and only if ppf, ϕ2, ϕ0q,Φq is a vertical
1-cell of MndpM01q.

Finally, a 2-cell of MndpMq01 is an opmonoidal 2-cell in MndpMq; that is, a 2-cell of
M as in the first diagram of

A
h //

f

��

ù
ñ ω

C

g

��
B

k
// D

pA, tq
ph,Ξq //

pf,Φq
��

ù
ñ ω

pC, zq

pg,Γq
��

pB, sq
pk,Θq

// pD, vq

A
ph,χ2,χ0q //

pf,ϕ2,ϕ0q
��

ù
ñ ω

C

pg,γ2,γ0q
��

B
pk,κ2,κ0q

// D

which is both a 2-cell in MndpMq as in the second diagram and a 2-cell inM01 as in the
third diagram. Now these are the same conditions characterizing a 2-cell of MndpM01q.

With this we constructed an iso double functor MndpMq01 Ñ MndpM01q which is
symmetric strict monoidal and 2-natural. This proves the commutativity, up-to the above
2-natural isomorphism, of the first diagram of 2-functors in

sm-2Cat Mnd //

p�q01
��

sm-DblCat

p�q01
��

sm-2Cat
Mnd

// sm-DblCat

sm-2Cat Mnd //

p�q10
��

sm-DblCat

p�q10
��

sm-2Cat
Mnd

// sm-DblCat.

Commutativity of the second diagram follows by symmetric steps (although it does not
seem to result from any kind of abstract duality). Then Mnd commutes also with the
2-functors p�qpq of Example 1.10 (4) and Example 6.12 (4) for any non-negative integers
p and q.

8. pp� qq-oidal Eilenberg–Moore objects

In this final section we consider a symmetric strict monoidal 2-category M which sat-
isfies the assumptions in all parts of Proposition 5.3. Then we construct a symmet-
ric strict monoidal double functor K : MndpMq Ñ SqrpMq. Its horizontal 2-functor
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is the Eilenberg–Moore 2-functor H : MndpMq Ñ M and its vertical 2-functor is V :
MndoppMq ÑM of Proposition 5.3. Throughout, the hypotheses of Proposition 5.3 (in-
cluding those in parts (2) and (3)) are assumed to hold and the notation of Proposition
5.3 (and its proof) is used.

A 0-cell of MndpMq is a monad pA, tq in M hence it can be seen as a 0-cell in either
2-category MndpMq or MndoppMq. Then we may apply to it either one of the Eilenberg–
Moore 2-functor H : MndpMq ÑM or the 2-functor V : MndoppMq ÑM of Proposition
5.3. Both of them yield the Eilenberg-Moore object KpA, tq :� At.

A horizontal 1-cell of MndpMq is a 1-cell ph,Ξq of MndpMq so it makes sense to put
Kph,Ξq :� Hph,Ξq. Similarly, a vertical 1-cell of MndpMq is a 1-cell pf,Φq of MndoppMq
so we may put Kpf,Φq :� Vpf,Φq.

For the definition of the action of the desired double functor K on a 2-cell

pA, tq
ph,Ξq //

pn,Φq
��

ù
ñ ω

pC, zq

pg,Γq
��

pB, sq
pk,Θq

// pD, vq,

universality of the coequalizer in the top row of

f v.g.uz.f z.uz.Hph,Ξq 1.1.1.εz .1
''

f v.g.z.uz.Hph,Ξq

1.Γ.1.1 **

f v.g.uz.Hph,Ξq
πpg,Γq.1 // Vpg,Γq.Hph,Ξq

Kω

��

f v.v.g.uz.Hph,Ξq �
f v.uv.f v.g.uz.Hph,Ξq εv .1.1.1.1

99

f v.g.z.h.ut

1.1.Ξ.1 ��

f v.g.h.ut

1.ω.1

��

f v.g.h.t.ut

1.ω.1.1 ��
f v.k.n.t.ut

HΘ.1.1.1

��

f v.k.n.ut

HΘ.1.1

��
Hpk,Θq.f s.n.ut.f t.ut 1.1.1.1.εt

''
Hpk,Θq.f s.n.t.ut

1.1.Φ.1 **

Hpk,Θq.f s.n.ut
1.πpn,Φq// Hpk,Θq.Vpn,Φq

Hpk,Θq.f s.s.n.ut �
Hpk,Θq.f s.us.f s.n.ut

1.εs.1.1.1

99

(8.1)

is used, see (5.1). Note that for any 1-cell pk,Θq : pB, sq Ñ pD, vq in MndpMq the
multiplicativity condition

v.v.k
µ.1 //

1.Θ
��

v.k

Θ
��

v.k.s
Θ.1
// k.s.s

1.µ
// k.s

(8.2)
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holds, where µ : v.v Ñ v is the multiplication of the monad pD, vq and µ : s.s Ñ s is
the multiplication of the monad pB, sq. This can be interpreted as Θ being a 2-cell in
MndpMq as on the left of

pB, 1q
pk,1q //

ps,µq
��

ù
ñ Θ

pD, 1q

pv,µq
��

pB, sq
pk,Θq

// pD, vq

B
k //

fs

��

ù
ñ HΘ

D

fv

��
Bs

Hpk,Θq
// Dv.

Thus the Eilenberg–Moore 2-functor H takes it to a 2-cell ofM on the right. The resulting
2-cell HΘ occurs at the bottom of the vertical paths of (8.1).

In order for the 2-cell Kω to be well-defined, the diagram of (8.1) should serially
commute. The square on its left commutes if we take the upper ones of the parallel
arrows: use that for the Eilenberg–Moore 2-functor H the diagram

z.uz.Hph,Ξq uz.f z.uz.Hph,Ξq 1.εz .1 // uz.Hph,Ξq

z.h.ut
Ξ.1

// h.t.ut � h.ut.f t.ut
1.1.εt

// h.ut

(8.3)

commutes by the 2-naturality of the counit put, 1.εtq of the Eilenberg–Moore 2-adjunction,
and use the middle four interchange law in the 2-category M. Commutativity of the
square on the left of (8.1) with the lower ones of the parallel arrows is slightly more
involved; it is checked in Figure 2. The region marked by p�q commutes because ω
is a 2-cell of MndpMq. The image of the square marked by p��q under the functor
uv.p�q :MpAt, Dvq ÑMpAt, Dq commutes by (8.2). Hence this square commutes by the
faithfulness of uv.p�q :MpAt, Dvq ÑMpAt, Dq.

We turn to showing that the so defined maps combine into a double functor K. The
maps in question preserve horizontal and vertical identity 1-cells, as well as the horizontal
composition of horizontal 1-cells and the vertical composition of vertical 1-cells since the
2-functors H and V preserve identity 1-cells and compositions of 1-cells (see Proposition
5.3 about V). Preservation of identity 2-cells as on the left of

pA, tq

pn,Φq
��

ù
ñ 1

pA, tq

pn,Φq
��

pB, sq pB, sq

pA, tq
ph,Ξq //

ù
ñ 1

pC, zq

pA, tq
ph,Ξq

// pC, zq

is obvious since then also the middle column of (8.1) is an identity 2-cell. For an identity
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f
v.g
.z.u

z.H
ph
,Ξ
q

1
.Γ
.1
.1

//f
v.v
.g
.u
z.H

ph
,Ξ
q

f
v.u

v.f
v.g
.u
z.H

ph
,Ξ
q

ε
v
.1
.1
.1
.1

//f
v.g
.u
z.H

ph
,Ξ
q

f
v.g
.z.h

.u
t

1
.Γ
.1
.1

//

1
.1
.Ξ
.1
��

p�
q

f
v.v
.g
.h
.u
t

1
.1
.ω
.1

��

f
v.u

v.f
v.g
.h
.u
t

ε
v
.1
.1
.1
.1

//f
v.g
.h
.u
t

1
.ω
.1

��
f
v.g
.h
.t.u

t

1
.ω
.1
.1
��

f
v.v
.k
.n
.u
t

1
.Θ
.1
.1

��
p�
�
q

f
v.u

v.f
v.k
.n
.u
t

ε
v
.1
.1
.1
.1

//f
v.k
.n
.u
t

H
Θ
.1
.1

��

f
v.k
.n
.t.u

t
1
.1
.Φ
.1

//

H
Θ
.1
.1
.1
��

f
v.k
.s.n

.u
t

H
Θ
.1
.1
.1

��
H
pk
,Θ
q.f

s.n
.t.u

t
1
.1
.Φ
.1

//H
pk
,Θ
q.f

s.s.n
.u
t

H
pk
,Θ
q.f

s.u
s.f

s.n
.u
t

1
.ε
s
.1
.1
.1

//H
pk
,Θ
q.f

s.n
.u
t

F
igu

re
2:

S
erial

com
m

u
tativ

ity
of

(8.1)
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2-cell as on the right, (8.1) takes the form

f z.z.uz.Hph,Ξq //// f z.uz.Hph,Ξq εz .1 // Hph,Ξq

f z.z.h.ut

1.Ξ.1 ��

f z.h.ut

HΞ.1

��

f z.h.t.ut

HΞ.1.1 ��
Hph,Ξq.f t.t.ut //// Hph,Ξq.f t.ut

1.εt
// Hph,Ξq.

The square on its right is taken by the functor uz.p�q : MpAt, Czq Ñ MpAt, Cq to
the commutative square of (8.3). Hence it commutes by the faithfulness of uz.p�q :
MpAt, Czq ÑMpAt, Cq so that also identity 2-cells of this kind are preserved by K.

For 2-cells

pA, tq
ph,Ξq //

pn,Φq
��

ù
ñ ω

pC, zq

pg,Γq
��

pB, sq
pk,Θq

// pD, vq

and

pC, zq
ph1,Ξ1q //

pg,Γq
��

ù
ñ ω1

pE, yq

pl,Λq
��

pD, vq
pk1,Θ1q

// pF,wq

of MndpMq, the 2-cells p1.Kωq�pKω1.1q and Kpp1.ωq�pω1.1qq are defined as the unique
2-cells making the respective diagrams of Figure 3 commute. The top and bottom rows
of the diagrams of Figure 3 are equal epimorphisms. So from the equality of their left
columns we infer the equality of their right columns. This proves that K preserves the
horizontal composition of 2-cells.

For 2-cells

pA, tq
ph,Ξq //

pn,Φq
��

ù
ñ ω

pC, zq

pg,Γq
��

pB, sq
pk,Θq

// pD, vq

and

pB, sq
pk,Θq //

pn1,Φ1q
��

ù
ñ ω1

pD, vq

pg1,Γ1q
��

pE, yq
pl,Λq

// pF,wq

of MndpMq, the 2-cells Kppω1.1q�p1.ωqq and pKω1.1q�p1.Kωq are defined as the unique 2-
cells making commute the diagram of Figure 4 and the diagram of Figure 5, respectively.
The top and bottom rows of the diagrams of Figure 4 and Figure 5 are equal epimorphisms.
So from the equality of their left columns we infer the equality of their right columns.
This proves that K preserves the vertical composition of 2-cells. Here again, in Figure 4
the region marked by p�q commutes since ω1 is a 2-cell of MndpMq and the region marked
by p��q commutes by the same reason as the region p��q of Figure 2.

8.1. Theorem. Consider a 2-category M which admits Eilenberg–Moore construction.
If the coequalizer (5.1) exists for all 1-cells in MndoppMq, and it is preserved by the
horizontal composition on either side with any 1-cell in M, then the following hold.
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f
w
.l.u

y.H
ph

1,Ξ
1q.H

ph
,Ξ
q

π
pl,Λ

q.1
//V
pl,Λ

q.H
ph

1,Ξ
1q.H

ph
,Ξ
q

K
ω

1.1

��

f
w
.l.u

y.H
ph

1,Ξ
1q.H

ph
,Ξ
q

π
pl,Λ

q.1
//V
pl,Λ

q.H
ph

1,Ξ
1q.H

ph
,Ξ
q

K
pp1
.ω
q �pω

1.1
qq

��

f
w
.l.h

1.u
z.H

ph
,Ξ
q

1
.ω

1.1
.1

��

f
w
.l.u

y.H
pph

1,Ξ
1q.ph

,Ξ
qq

f
w
.k
1.g
.u
z.H

ph
,Ξ
q

H
Θ

1.1
.1
.1

��

f
w
.l.h

1.h
.u
t

1
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(1) The maps, constructed preceding the theorem, constitute a double functor K :
MndpMq Ñ SqrpMq.

(2) If moreover M is a strict monoidal 2-category which admits monoidal Eilenberg–
Moore construction, then the double functor K of part (1) is strict monoidal.

(3) If in addition the strict monoidal 2-category M has a symmetry then the strict
monoidal double functor K of part (2) is symmetric as well.

Proof. We checked part (1) during the construction. Parts (2) and (3) clearly follow
from the strict monoidality and the symmetry, respectively, of the 2-functors H and V
under the stated conditions (see Proposition 3.2 and Proposition 5.3).

In the setting of Theorem 8.1 (3), the object map of the induced symmetric strict
monoidal double functor

MndpMpqq �MndpMqpq
Kpq // SqrpMqpq � SqrpMpqq

sends a pp, qq-oidal monad pA, tq in M to its pp � qq-oidal Eilenberg–Moore object At.
While q ones of the pseudomonoid structures of At are liftings of the respective pseu-
domonoid structures of A along the 1-cell ut : At Ñ A, the other p pseudomonoid struc-
tures of At are liftings of the corresponding pseudomonoid structures of A along the 1-cell
f t : AÑ At.

Applying this to the particular symmetric strict monoidal 2-category of Remark 5.5,
we obtain very similar results to [1, Corollary 6.4 and Theorem 9.1]. The only difference
is that our assumptions are slightly stronger. Recall that a pp, qq-oidal object in the
symmetric strict monoidal 2-category of Remark 5.5 is in fact a pp � qq-odial category
with some further properties. They include, in particular, that all monoidal products
preserve reflexive coequalizers — not only the first p ones as required in [1, Theorem 9.1].

8.2. Remark. As already discussed in the Introduction, a 2-categoryM is said to admit
Eilenberg–Moore construction if the inclusion 2-functor MÑ MndpMq possesses a right
2-adjoint H. As it is explained below, under the standing assumptions of Theorem 8.1
(see also Proposition 5.3), there is an analogous interpretation of the double functor
K : MndpMq Ñ SqrpMq of Theorem 8.1 (1) as the right adjoint of an inclusion type
double functor, in the sense of [15]. In the terminology of [15] this means that K provides
Eilenberg–Moore construction for the double category SqrpMq. We are grateful to an
anonymous referee for raising this question.

(1) Any 0-cell of a 2-category M can be seen as a monad with identity 1-cell part
and identity multiplication and unit 2-cells. Any 1-cell inM can be regarded as a monad
morphism between these trivial monads — that is, as a horizontal 1-cell in MndpMq
— with identity 2-cell part. Symmetrically, it can be regarded as a vertical 1-cell in
MndpMq with identity 2-cell part. Finally, any 2-cell of SqrpMq yields a 2-cell in MndpMq
surrounded by the above trivial 1-cells. These maps constitute the inclusion double functor
I : SqrpMq ÑMndpMq.

Assume now that M admits Eilenberg–Moore construction; and that in M the co-
equalizer (5.1) exists for all 1-cells in MndoppMq and it is preserved by the horizontal
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composition on either side with any 1-cell inM. Then the double functor K of Theorem
8.1 (1) is available and it turns out to be the right adjoint of the above inclusion double
functor I in the 2-category of double categories, double functors and horizontal transfor-
mations. The unit of the adjunction is trivial while the counit has the horizontal 1-cell
part and the 2-cell part

pAt, 1q
put,1.εtq// pA, tq g.ut

ηs.1.1 // us.f s.g.ut
1.πpg,γq // us.Vpg, γq (8.4)

respectively, for any monads pA, tq and pB, sq inM, and any vertical 1-cell pg, γq : pA, tq Ñ
pB, sq in MndpMq.

However, we were not able to construct vertical transformations for the unit and counit
of the adjunction I % K, let alone double natural transformations.

(2) If in additionM is a strict monoidal 2-category which admits monoidal Eilenberg–
Moore construction then I % K of part (1) is an adjunction in the 2-category of strict
monoidal double categories, strict monoidal double functors and monoidal horizontal
transformations.

(3) If, moreover, the strict monoidal 2-category M has a symmetry then I % K of
part (2) is an adjunction in the 2-category of symmetric strict monoidal double cate-
gories, symmetric strict monoidal double functors and symmetric monoidal horizontal
transformations.

(4) Recall that for any monad pA, tq in a 2-category M admitting Eilenberg-Moore
construction, the forgetful 1-cell ut : At Ñ A possesses a left adjoint f t in M (with unit
and counit denoted by ηt : 1 Ñ ut.f t and εt : f t.ut Ñ 1, respectively). Extending this
observation, for the double functors of part (1) there is a vertical transformation 1 Ñ I.K
with vertical 1-cell part and 2-cell part

pA, tq

pf t,εt.1q��
pAt, 1q

f s.h
1.1.ηt // f s.h.ut.f t f s.us.Hph, χq.f t ε

s.1.1 // Hph, χq.f t (8.5)

respectively, for any monads pA, tq and pB, sq in M, and any horizontal 1-cell ph, χq :
pA, tq Ñ pB, sq in MndpMq. The transformations of (8.4) and (8.5) turn out to be
orthogonal adjoints in the sense of [18] — termed conjoints in [11] — in the double category
whose 0-cells are the double functors, horizontal and vertical 1-cells are the horizontal and
vertical transformations, respectively, and whose 2-cells are the modifications in the sense
of [18, Section 1.6]. By [18, Section 1.3] or [11, page 314] this means the existence of
modifications

pAt, 1q
put,1.εtq//

ù
ñ εt

pA, tq

pf t,εt.1q
��

pAt, 1q pAt, 1q

pA, tq

pf t,εt.1q
��

ù
ñ ηt

pA, tq

pAt, 1q
put,1.εtq

// pA, tq
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satisfying the triangle conditions requiring that

pAt, 1q
put,1.εtq//

ù
ñ εt

pA, tq

pf t,εt.1q

��

ù
ñ ηt

pA, tq

pAt, 1q pAt, 1q
put,1.εtq

// pA, tq

and

pA, tq

pf t,εt.1q
��

ù
ñ ηt

pA, tq

pAt, 1q
put,1.εtq//

ù
ñ εt

pA, tq

pf t,εt.1q
��

pAt, 1q pAt, 1q

are identity 2-cells of M.

In Section 6 we described a 2-functor Hor from the 2-category of double categories,
double functors and horizontal transformations to 2Cat (it assigns to a double category
its horizontal 2-category). Applying it to the adjunction I % K of Remark 8.2 (1) we
re-obtain the inclusion 2-functor M Ñ MndpMq and its right 2-adjoint H in Section 3;
that is, the Eilenberg–Moore construction inM. However, since from the same 2-category
of double categories, double functors, and horizontal transformations there seems to be
no analogous 2-functor taking the vertical 2-category of a double category, Remark 8.2
should have no message about the 2-functor V of Proposition 5.3 being a right 2-adjoint
or not.

8.3. Remark. Whenever a strict monoidal 2-category M admits monoidal Eilenberg–
Moore construction, the 2-functor H of Section 3 is right adjoint of the inclusion 2-functor
J : M Ñ MndpMq in the 2-category of strict monoidal 2-categories, strict monoidal 2-
functors and monoidal natural transformations. Then we may apply to this adjunction
the 2-functor p�q01 in item (i) of the list in Example 1.10 (1) so to infer that H01 is the
right 2-adjoint of the inclusion

M01
J01 //MndpMq01

� //MndpM01q.

This shows that under the stated assumptions alsoM01 admits Eilenberg–Moore construc-
tion described by H01. This argument can be found in [31, Theorem 5.1] for Cartesian
monoidal 2-categories M.

On the contrary, since the 2-functors Mnd and p�q10 do not commute, no similarly
simple argument seems available showing that under suitable circumstances alsoM10 ad-
mits Eilenberg–Moore construction. However, an application of the adjunction of Remark
8.2 (2) yields an easy proof. The so obtained result extends Theorem 4.1 of [30]. The
author is grateful to an anonymous referee for indicating this question.

As in Remark 8.2 (2), consider a strict monoidal 2-categoryM which admits monoidal
Eilenberg–Moore construction, and in which the coequalizer (5.1) exists for all 1-cells in
MndoppMq and it is preserved by the horizontal composition on either side with any 1-cell
in M.

In Example 6.12 (2) we constructed a 2-functor p�q10 from the 2-category of strict
monoidal double categories, strict monoidal double functors and monoidal horizontal
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transformations to the 2-category of double categories, double functors and horizontal
transformations (see item (ii) of the list in Example 6.12 (1)). It takes the adjunction
I % K of Remark 8.2 (2) to an adjunction I10 % K10 which induces a further adjunction

MndpM10q
� //MndpMq10

K10

  
J SqrpMq10

I10

``
� // SqrpM10q

in the 2-category of double categories, double functors and horizontal transformations.
Applying to it the 2-functor Hor to 2Cat in Section 6, we obtain a right 2-adjoint of the
inclusion 2-functor M10 Ñ MndpM10q, proving that under the stated assumptions M10

admits Eilenberg–Moore construction.
Even the explicit form of this right 2-adjoint can be read off this proof. Its action on

a 0-cell; that is, the Eilenberg–Moore object of a monad ppA,m, u, α, λ, %q, pt, τ2, τ0q, µ, ηq
in M10 is equal to its image pAt � VpA, t, µ, ηq, Vpm, τ2q,Vpu, τ0q,Vα,Vλ,V%q under the
2-functor

MndoppM10q
� //MndoppMq10

V10 //M10.

A 1-cell pph, χ2, χ0q,Ξq of MndpM10q is sent to the 1-cell pKph,Ξq � Hph,Ξq,Kχ2,Kχ0q
ofM10 and a 2-cell ω is taken to Kω � Hω. Thus it describes a lifting along the forgetful
1-cell ut : At Ñ A.

If, furthermore, the strict monoidal 2-categoryM has a symmetry then, based on Re-
mark 8.2 (3), the above arguments can be iterated to obtain Eilenberg-Moore construction
in Mpq for any non-negative integers p, q.
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


	Multimonoidal structures in 2-categories
	(0,q)-oidal monads
	q-oidal Eilenberg–Moore objects
	(p,0)-oidal monads
	p-oidal Eilenberg–Moore objects
	Multimonoidal structures in double categories
	(p,q)-oidal monads
	(p+q)-oidal Eilenberg–Moore objects

