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WEAK UNITS, UNIVERSAL CELLS, AND
COHERENCE VIA UNIVERSALITY FOR BICATEGORIES

AMAR HADZIHASANOVIC

ABSTRACT. Poly-bicategories generalise planar polycategories in the same way as bic-
ategories generalise monoidal categories. In a poly-bicategory, the existence of enough
2-cells satisfying certain universal properties (representability) induces coherent algeb-
raic structure on the 2-graph of single-input, single-output 2-cells. A special case of this
theory was used by Hermida to produce a proof of strictification for bicategories. No full
strictification is possible for higher-dimensional categories, seemingly due to problems
with 2-cells that have degenerate boundaries; it was conjectured by C. Simpson that
semi-strictification excluding units may be possible.

We study poly-bicategories where 2-cells with degenerate boundaries are barred, and
show that we can recover the structure of a bicategory through a different construction
of weak units. We prove that the existence of these units is equivalent to the existence of
1-cells satisfying lower-dimensional universal properties, and study the relation between
preservation of units and universal cells.

Then, we introduce merge-bicategories, a variant of poly-bicategories with more com-
position operations, which admits a natural monoidal closed structure, giving access
to higher morphisms. We derive equivalences between morphisms, transformations,
and modifications of representable merge-bicategories and the corresponding notions for
bicategories. Finally, we prove a semi-strictification theorem for representable merge-
bicategories with a choice of composites and units.

1. Introduction

This article is a study in the theory of bicategories with an eye towards weak higher
categories, in particular the open problems regarding their strictifiability.

Its most immediate influence is Hermida’s work [2000], which established a kind of
“Grothendieck construction” for monoidal categories (and, by extension, bicategories),
whereby the coherent structure that makes a category monoidal is subsumed by a property
of a multicategory, that of being representable: namely, the existence of enough universal
2-cells, through which other 2-cells factor uniquely whenever possible.

An interesting outcome of this construction was a new proof that each monoidal cat-
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egory is equivalent to a strict monoidal category, coming from the multicategorical side:
representable multicategories with a choice of universal 2-cells are seen as pseudoalgebras
for a 2-monad on the 2-category of multicategories, and such pseudoalgebras are equi-
valent to strict ones. Hermida dubbed this general strategy coherence via universality
[2001].

It is clear from the author’s words that this was meant as a first step towards higher-
dimensional generalisations: indeed, the construction of bicategorical structure from uni-
versal 2-cells is, essentially, a low-dimensional instance of the multitopic approach to
weak higher categories, proposed by Hermida, Makkai, and Power [2000], equivalent to
the opetopic approach of Baez and Dolan [1998]. However, years later, coherence theor-
ems for dimensions higher than 3 remain elusive. Our work is an attempt to advance the
programme.

A first, necessary observation is that the obvious generalisation of the strictification
theorem for bicategories is false: a result of C. Simpson [2009, Theorem 4.4.2] settled
definitively what was previously folklore, that general tricategories are not equivalent to
strict ones. The very case of tricategories as a pseudoalgebra for a 2-monad was picked by
Shulman [2012] as a counterexample to the idea that “most pseudoalgebras are equivalent
to strict ones”.

By varying the algebraic theory, we may hope to use the same general approach to
prove weaker, semi-strictification results. As Shulman’s work suggests, strictifiability is
theory-dependent, so we do not expect the general algebra of 2-monads to indicate the
right direction: we believe, rather, that a specific understanding of the combinatorics of
higher categories is necessary.

In fact, while we follow Hermida in studying strictification from the side of objects-
with-properties, rather than objects-with-structure, we diverge in most other aspects: in
particular, we do not use the same 2-categorical algebraic framework, and opt instead for
an elementary, combinatorial approach.

MANY INPUTS AND MANY OUTPUTS. String diagrams and their generalisations, such
as surface diagrams, are one of the main sources of intuition about higher categories.
Recently, they have been at the centre of an approach to semistrict algebraic higher
categories [Bar and Vicary, 2016] built around the proof assistant Globular [Bar, Kissinger,
and Vicary, 2016]; less recently, they have been the basis of many coherence theorems,
either implicitly [Kelly and Laplaza, 1980] or explicitly [Joyal and Street, 1991].

In most useful applications, string diagrams represent cells with many inputs and
many outputs, while multicategories and opetopic/multitopic sets only have many-to-one
cells. This makes the description of higher morphisms — transformations, modifications,
etc — quite unwieldy. The simplest description of such higher structure is based on a
monoidal closed structure on the category of higher categories, such as the (lax) Gray
product of strict w-categories, and corresponding internal homs [Steiner, 2004]. However,
opetopes/multitopes are not closed under such products; this is why, for example, the
only transformations of functors that appear naturally in a multicategorical approach to
bicategories are icons [Lack, 2010], that is, transformations whose 1-cell components are
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identities.

It is now due saying that an instance of “coherence via universality” earlier than Her-
mida’s appeared in the work of Cockett and Seely on linearly distributive categories and
representable polycategories [1997b], and later, with Koslowski, on linear bicategories and
representable poly-bicategories [2000; 2003]. Poly-bicategories, a “coloured” generalisa-
tion of polycategories, have 2-cells with many inputs and many outputs, but a restricted
form of composition, meant to interpret the cut rule of sequent calculus.

As such, representability of poly-bicategories induces not one, but two compatible
structures of bicategory — what was called a linear bicategory structure in [Cockett,
Koslowski, and Seely, 2000] — which is probably too expressive for our purposes. Moreover,
the cut-rule composition does not interact well with Gray products. This is why, in Sec-
tion 5, we will introduce merge-bicategories, a modified version of poly-bicategories whose
two potential bicategory structures collapse to one, and which admits a monoidal closed
structure.

So we favour spaces of cells with many inputs and many outputs, but apart from the
added complexity in the combinatorics of cell shapes, this choice presents several technical
subtleties. If we simply allow unrestricted w-categorical shapes, we obtain the category of
polygraphs or computads [Burroni, 1993; Street, 1976], which, unlike one would expect,
is not a presheaf category, as shown by Makkai and Zawadowski [2008].

In [2012], Cheng pointed at 2-cells with degenerate, 0-dimensional boundaries as the
source of this failure. These show up, directly or indirectly, in a number of other “no-
go” theorems: the aforementioned proof by C. Simpson that strict 3-groupoids are not
equivalent to 3-dimensional homotopy types, and the impossibility of defining proof nets
for multiplicative linear logic with units [Heijltjes and Houston, 2014], which would yield a
simpler proof of coherence for linearly distributive categories compared to [Blute, Cockett,
Seely, and Trimble, 1996].

Incidentally, in most examples of poly-bicategories that we know of, there is no natural
definition of 2-cells with no inputs and no outputs; this is true even of the main example
of [Cockett, Koslowski, and Seely, 2003], the poly-bicategorical Chu construction, as dis-
cussed in our Example 4.24. This leads us to our second technical choice.

THE REGULARITY CONSTRAINT. Our response is to restrict n-dimensional cell shapes (or
“pasting diagrams”) to those that have a geometric realisation that is homeomorphic to
an n-dimensional ball; we call this regularity, in analogy with a similar constraint on CW
complexes. In general, this leads to a notion of reqular polygraph, that we introduced in
[Hadzihasanovic, 2017, Section 3.2], and developed in [2018; 2019]. In the 2-dimensional
case that we consider here, regularity simply bars cells with no inputs or no outputs. We
introduce corresponding notions of regular poly-bicategory and regular multi-bicategory,
which have an underlying regular 2-polygraph.

The construction of a weakly associative composition from Cockett, Seely, and Her-
mida carries through to regular contexts with no alteration. On the other hand, these
authors relied on 2-cells with degenerate boundaries in order to construct weak units: for
this, we develop a new approach.
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We will see in Section 6 that strictification for associators also carries through from
Hermida’s work, leading to a proof of semi-strictification for bicategories. This is, of
course, weaker than the well-known full strictification result, to the point that it may
look like a meagre payoff at the end of the article. Nevertheless, after proving his no-go
theorem, C. Simpson offered evidence that, while homotopy types are not modelled by
strict higher groupoids, they may still be equivalent to higher groupoids that satisfy strict
associativity and interchange, but have weak units; this is now known as C. Simpson’s
conjecture. In this sense, this is a strictification method with the potential to generalise:
it is the proofs and the constructions, rather than the result, that we consider to be of
interest.

A variant of C. Simpson’s conjecture, restricted to the groupoidal case (all cells are
invertible), was recently proved by S. Henry [2018], who came independently to the regu-
larity constraint on polygraphs [2019]. In its original and most general form, the conjec-
ture is considered to have been settled only in the 3-dimensional case by Joyal and Kock
[2007]: for this purpose, they considered a notion of weak unit based on a suggestion of
Saavedra-Rivano [1972], whose defining characteristics are cancellability and idempotence.

The theory of Saavedra units was developed by J. Kock in [2008], the second largest
influence of our article. We will show that a notion of Saavedra unit can be formulated
in the context of regular poly-bicategories or merge-bicategories, and is subsumed by
the existence of 2-cells that satisfy two universal properties at once: the one typical of
“representing” cells as in Cockett, Seely, and Hermida, and the one typical of “internal
homs” or “Kan extensions”.

Most interestingly, we will show that the existence of these weak units is equivalent
to the existence of certain universal I-cells, where universality is formulated with respect
to an “internal” notion of composition, witnessed by universal 2-cells. These form an
elementary notion of equivalence, independent of the pre-existence of units, yet formulated
in such a way that dividing a universal 1-cell by itself, we obtain a weak unit. Universal
1-cells are similar to the universal 1-cells in the opetopic approach, but have some subtle
technical advantages, given by our consideration of different universal properties at once.
These advantages are not visible in the 2-dimensional case, and we will postpone their
discussion to future work.

ALL CONCEPTS ARE UNIVERSAL CELLS. The construction of units from universal cells al-
lows us to formulate representability for merge-bicategories — which induces the structure
of a bicategory — in a particularly uniform way, stated purely in terms of the existence of
universal 1-cells and 2-cells, and to define morphisms of representable merge-bicategories,
inducing functors of bicategories, as those that preserve universal cells. “Mapping univer-
sal cells to universal cells” makes sense even for higher morphisms, when dimensions do
not match and “mapping units to units” may produce a typing error; see the definition
of fair transformations in Section 5.

This reformulation of basic bicategory theory, centred on universality as the one funda-
mental notion, is the other main contribution of this article next to the semi-strictification
strategy. While the opetopic approach also constructs both composites and units from
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the single concept of universal cells, the correspondence is slightly different: in both ap-
proaches, n-dimensional composites come from “binary” universal (n + 1)-cells; however,
in the opetopic approach, n-dimensional units come from “nullary” universal (n+ 1)-cells,
while in ours they come from “unary” universal n-cells. As far as we know, the monoidal
closed structure, transformations, and modifications had not been treated in any earlier
work on the same line.

The reason why we think this is relevant, and not “yet another equivalent formalism”
for an established theory, is that, as observed among others by Gurski [2009], we may have
an idea of what a weakly associative composition looks like in arbitrary dimensions, be
it via Stasheff polytopes [Stasheff, 1970] or orientals [Street, 1987]; but we do not know
at all what the equations for weak units should be. Gurski’s coherence equations are
not generalisations of Mac Lane’s triangle in any obvious way, and the triangle equation
itself has been criticised for its reliance on associators in the formulation of a unitality
constraint [Kock, 2008].

Universal cells, on the other hand, have analogues in any dimension [Hadzihasanovic,
2018, Appendix BJ, and if we can argue that they subsume both composition and units,
then they have both a technical and a conceptual advantage. Taking the effort to show that
the main fundamental notions in bicategory theory can be recovered (with the exception,
admittedly, of lax functors, which do not translate well) establishes a stable ground for
the theory in higher dimensions, where clear reference points may not be at hand.

LocicAL ASPECTS. We have given ample indication of how we expect to follow up on this
article, for what concerns the theory of higher categories. Here, we would like to briefly
discuss some logical aspects of our work, that we also hope to develop in the future.

As evidenced by Cockett and Seely in [1997b], there is a deep connection between uni-
versal 2-cells in polycategories and left and right introduction rules in sequent calculus:
roughly, division corresponds to one introduction rule for a connective, and composition
with the universal cell to the other; whether the first or the second is a left rule defines the
polarity of the connective [Andreoli, 1992]. When units are produced as “nullary compos-
ites”, witnessed by a universal 2-cell with a degenerate boundary, division corresponds to
an introduction rule, and the unit has the same polarity as the connective for which it is
a unit.

However, our notion of units as universal 1-cells does not fit properly into this scheme.
Even if we considered coherent witnesses of unitality, as in Theorem 4.1, to be the universal
2-cells associated to the unit as a logical connective, we would find that division produces
an elimination rule, and the unit has opposite polarity compared to its connective. It
would seem that the two notions of unit, even though they induce the same coherent
structure, are really logically inequivalent, a fact which needs further exploration on the
proof-theoretic side.

On a related note, the regularity constraint on polycategories, as a semantics for
sequent calculus, bars the emptying of either side of a sequent, and forces one to introduce
units before moving formulas from one side to the other. For example, the following are
attempts at proving double negation elimination in a “non-regular” and “regular” sequent
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calculus, respectively, for noncommutative linear logic (thanks to P. Taylor’s proof tree
macros):

AX AX
Ara AraT
AF LA " Al1F1A 07"
— 1 —— —op — AX — g
1 FA—ol A 1FL 1FAol A
Lo (Aol)F A - lo (Aol)1FL A ©

In the “regular” proof, there is a residual unit on both sides. This makes us wonder: is
the minimal number of residual units in a regular proof an interesting classifier for non-
regular proofs? And does the regularity constraint affect the complexity of proof search
or proof equivalence?

STRUCTURE OF THE ARTICLE. We start in Section 2 by defining regular poly-bicategories
and their sub-classes — regular multi-bicategories, polycategories, and multicategories —
and by fixing a notation for universal 2-cells. Unlike those of [Cockett, Koslowski, and
Seely, 2003], our poly-bicategories do not come with unit 2-cells as structure; we take
the opportunity to show their construction from universal 2-cells (Proposition 2.15), as a
warm-up to the construction of unit 1-cells from universal 1-cells.

In Section 3, we develop the elementary theory of weak units and universal 1-cells in
regular poly-bicategories. After introducing tensor and par universal 1-cells, we show that
they satisfy a “two-out-of-three” property, that is, they are closed under composition and
division (Theorem 3.6). Moreover, dividing a universal 1-cell by itself produces a unit, so
the existence of universal 1-cells is equivalent to the existence of units (Theorem 3.10).
In the rest of the section, we study conditions under which universality is equivalent to
invertibility (Proposition 3.17 and 3.18), and preservation of universal cells by a morphism
is equivalent to preservation of units.

Section 4 begins with the important technical result that the 2-cells witnessing the
unitality of unit 1-cells can be chosen in a “coherent” way (Theorem 4.1). We use this
to derive results analogous to those of [Hermida, 2000] (Corollary 4.10) and of [Cockett,
Koslowski, and Seely, 2003] (Corollary 4.20) under the regularity constraint: representable
regular multi-bicategories and tensor strong morphisms are equivalent to bicategories and
functors, and representable regular poly-bicategories and strong morphisms are equivalent
to linear bicategories and strong linear functors. We conclude the section with an analysis
of the Chu construction for poly-bicategories (Example 4.24), showing that unit 1-cells
cannot be constructed as “nullary composites”, which contradicts [Cockett, Koslowski,
and Seely, 2003, Example 2.5(4)], but can be constructed with our methods.

In Section 5, we introduce merge-bicategories as a setting for our strictification strategy,
and a first step for higher-dimensional generalisations. Their theory of universal cells is
simpler (Proposition 5.9 and Corollary 5.12), yet representable merge-bicategories and
their strong morphisms are equivalent to bicategories and functors (Theorem 5.18). We
show that merge-bicategories have a natural monoidal closed structure (Proposition 5.21),
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which gives us access to higher morphisms; we then relate them to higher morphisms of
bicategories (Theorem 5.33).

Finally, in Section 6, we prove a semi-strictification theorem for representable merge-
bicategories. We encode a strictly associative choice of units and composites in the struc-
ture of an algebra for a monad T the key point is that 7 splits into two components,
Z and M. Then, any representable merge-bicategory X admits an Z-algebra structure
(Proposition 6.6), and its inclusion into MX is an equivalence (Lemma 6.11), realising
the semi-strictification of X (Theorem 6.22).

ACKNOWLEDGEMENTS. The author would like to thank Joachim Kock and Jamie Vicary
for their feedback on the parts which overlap with the author’s thesis, Alex Kavvos and
the participants of the higher-categories meetings in Oxford for useful comments in the
early stages of this work, and Paul-André Mellies for pointing him to the work of Hermida
back in 2016. The revised version has benefitted from helpful comments by the anonymous
referee and by Pierre-Louis Curien.

2. Regular poly-bicategories and universal 2-cells

In this section, we present our variants of the definitions of [Cockett, Koslowski, and Seely,
2003], and some basic results. The following terminology is borrowed from [Burroni, 1993],
for what could equally be called a regular 2-computad, following [Street, 1976].

2.1. DEFINITION. A regular 2-polygraph X consists of a diagram of sets

a+
Xo o Xy
P
together with diagrams of sets
% i=1,....n
— (n,m) — L lh
X—— X" j=1,....m,
9;
for all n,m > 1, satisfying
0-0; =070,
oto, =otat .
oto; =07 0;,, , i=1,...,n—1,
8*(?]*:8’8;;1, j=1,....m—1.

The elements of Xo are called 0O-cells, those of X1 1-cells, and those of XQ("’m) 2-cells, for
any n,m. The functions 0~, J; are called (i-th) input, and the 0%, aj (j-th) output;
the inputs form the input boundary, and the outputs the output boundary of a cell.
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Given reqular 2-polygraphs X and Y, a morphism f : X — Y is a morphism of
diagrams, in the obvious sense. Regular 2-polygraphs and their morphisms form a large
category r2Pol.

(n,m)

We picture a 2-cell p € X, as

AT

where 0, p = a;, and 8;rp =bj, fori =1,...,n,and j = 1,...,m; then, 07b; = 27,
OTb; = x5, and so on. Dashed arrows stand for a (possibly empty) sequence of 1-cells,
while solid arrows stand for a single 1-cell. We will also write

pi(ay,...,a,) = (by,...,by)

to indicate the same cell together with the 1-cells in its boundary, which are implied to
have compatible boundaries (“be composable”). Similarly, we will write a : x — y for a
1-cell with 0~a = z, and 0ta = y. We will often use capital Greek letters I', A, ... for
composable sequences of 1-cells.

From any regular 2-polygraph, we obtain three others where the direction of 1-cells,
or 2-cells, or both, is reversed.

2.2. DEFINITION. Given a reqular 2-polygraph X, the reqular 2-polygraph X°P has the
same 0-cells as X, and

1. a I-cell a®® : y — x for each 1-cell a: x — y of X, and

2. a 2-cell p® : (aS®,...,al®) — (b, ..., b") for each p : (ay,...,a,) = (b1,...,bm)
of X.

The reqular 2-polygraph X has the same 0-cells as X, the same 1-cells as X, and a 2-cell
P (b1,...,bm) = (a1,...,ay) for each 2-cell p: (a1,...,a,) = (b1,...,by) of X.

Extending to morphisms in the obvious way, for example letting f°P(a’?) := f(a)®,
defines involutive endofunctors (=) and (=) on r2Pol.

A regular 2-polygraph X induces a 2-graph, or 2-globular set [Leinster, 2004, Section
1.4], by restriction to 2-cells that have a single input and a single output 1-cell.

2.3. DEFINITION. Given a regular 2-polygraph X, the 2-graph GX is the sub-diagram

o+ oy
Xo X1 x40,
- or
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of X.

Given a morphism f : X — Y of reqular 2-polygraphs, its restriction to GX induces
a morphism Gf : GX — GY of 2-graphs. This defines a functor G : r2Pol — 2Gph,
where 2Gph is the category of 2-graphs.

2.4. REMARK. The functor G has a left adjoint J : 2Gph — r2Pol, identifying a 2-graph
with a regular 2-polygraph which has only single-input, single-output 2-cells.

We now want to introduce an algebraic composition of 2-cells, where composable pairs
are those in any of the following geometric setups:

( ) ,/70-—\\

/ N

/ Y

.\ [ ]

Py
- \\ /I -
(a) 297 o Pl . o <7 T (o)

’ ’m S S=->e- it \
’ \ ’ \
1 % 1 %
[ ] [ ] [ ] [ ] (1)
\ N \ N
AN / >e \ m /
\\‘ ______ ”, /" \\\\ 3\.\ _____ ""

. N

’ v

[ ] [ ]

\ A

\ J/ ’

\\ ’/,

(@) e

and only regularity constraints apply outside of the shared boundary. The composition
corresponds to “merging” the two 2-cells, while fixing the overall boundary, as in the

following picture: \ / ][\
J \J

2.5. DEFINITION. A non—umtal ) regular poly-bicategory is a regular 2-polygraph X to-
gether with functions

(2)

(n,m) (p) Ui -1 -1
X} X o X§ _ X2(n+p ymq—1)

)

whenever i, j satisfy the two conditions on any side of the following square:
(a) (©) (3)

These interact with the boundaries as follows, depending on which pair of conditions is
satisfied:



892

(a) Oy cut;i(t,s) =0, t,

@m
O cut;1(t, s) = k3+15

k q+1

(b) O cutp,1(t,s) {ak ’

k n+18
ot
O cutpa(t,s) = L
O mi15s
k 7
(c) O, cuty;(t,s) Ol
k n-l—ls
O cuty (L, 5) = O s;
0, s
(d) O cuty,(t,s) =4 *7
k— p+1
a+
O cuty (t, 5) =
) ) +
oy th

AMAR HADZIHASANOVIC

J<k<j+q-—1,
Jte<k<m+q—-1,

1<k <n,
n+1<k<n+p-1,
1<k<m-1,
m<k<m+q-—1;

1<k<i-1,
1<k<i+n-—1,
t+n<k<n+p-—1,

p<k<n+p-1;
1<k<q,

g+1<k<m+q-1

All of these are evident from the geometric picture (1).

Moreover, the cut;; satisfy associativity and interchange equations, expressing the fact
that when three 2-cells can be composed in two different orders, the result is independent
of the order. Schemes of associativity equations are classified by the following 9 pictures,
where the direction of 2-cells is from bottom to top:

—————

,
G N
[ ] [ ]
S A
~ e

-
~~-e
-~
”¢7 Ss
[ ] ~
7

4 ~ 7’ ~
\_/ e / e
R N ° \
/ A \\
[ ] [ ]
S A N
\\J ’// .\
®o--- \\)._—’/
STTTSC
’ M} -
° o e ANY
AN AN L ~
7/
[ ] @ .\
N ; \4
A Y
IV . 0
® N 2
N A ) P
Sa - [

_______

for example, the leftmost picture in the top row should be read as the equation scheme
cut, 1 (¢, cut; 1(s,r)) = cutiyj_11(cut; (¢, s),7).
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Schemes of interchange equations are classified by the following 8 pictures:

“eo>e-~ S>e- e----30

e . 3 re-s. ; e se

1 s ’ , N °o-" \

[ ] ) / v / \ \ \
) \ L .\ ’ N ~ N
.\ . \\ ~l. * N /1. ? 7\.

S~ 7 Yo" 4 S~ _- \ L’

~~~~~~ - >e>e” Syere--
~re>e-< SO~ L amm=a

, N ’/? Sso @ -——-o__ - ~

f \5/ . S 7t “3e e bl

’ Al / - [ [ ]

° ° ° ° , By
h n 7 ° ° ~ /

’ S ’ \ ~ (] [ ]

o / N 4 \ \ ~

______ se Y G N S N 4
e---->e Sveve_- ~yede_.’

for example, the leftmost picture in the top row should be read as the equation scheme
cut; 1 (cutir1(t, s),s") = cutiyrig—11(cut;1(t, s"), s), where s’ has q outputs.

Given two reqular poly-bicategories X,Y, a morphism f : X — Y is a morphism
of the underlying regular 2-polygraphs that commutes with the cut;; functions. Regular
poly-bicategories and their morphisms form a large category rPolBiCat.

2.6. REMARK. When picturing 2-cells in diagrams, we will casually identify a pasting
diagram of 2-cells with its composite. Uniqueness of the composite, in the case where
there are different orders of composition, can be deduced from the soundness of the circuit
diagram language for poly-bicategories, stated in [Cockett, Koslowski, and Seely, 2000,
Appendix A], since circuit diagrams are dual to pasting diagrams.

There is an evident forgetful functor U : rPolBiCat — r2Pol, whose composition
with G : r2Pol — 2Gph we still denote with G. The functor U is monadic: the left
adjoint F' : r2Pol — rPolBiCat freely adds all cut-composable pasting diagrams of
2-cells to a regular 2-polygraph.

2.7. DEFINITION. A regular multi-bicategory is a regular poly-bicategory X such that
Xg(n’m) is empty whenever m > 1. A regular polycategory is a reqular poly-bicategory with
a single 0-cell. A regular multicategory is a regular multi-bicategory with a single 0-cell.

We write rMulBiCat, rPolCat, and rMulCat, respectively, for the corresponding
full subcategories of rPolBiCat.

2.8. REMARK. Any ordinary poly-bicategory or multi-bicategory yields a regular one by
restricting to 2-cells with at least one input and one output. While in some cases this
restriction may seem unnatural, in many others it is the other way around, and cells with
no inputs or outputs are added in an ad hoc manner, for instance by implicitly relying on
a unit 1-cell.

That is, in particular, the case for the poly-bicategorical version of the Chu construc-
tion, as discussed in Example 4.24.

2.9. ExaMPLE. Every lattice (L, A,V) can be identified with a regular polycategory L
which has a unique 2-cell (ay,...,a,) — (b1,...,by) whenever a; A...Aa, < by V...V,
in the induced poset. Notice that “having a greatest or least element” is a property of a
lattice, yet to define a non-regular polycategory one needs them as structure: 2-cells with
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nullary input are identified by construction with 2-cells with input (T), and 2-cells with
nullary output with 2-cells with output (L).

We now give an elementary definition of universality of a 2-cell at a 1-cell in its
boundary, which encompasses the strongly universal arrows of [Hermida, 2000], and the
homs, cohoms and representing cells of [Cockett, Koslowski, and Seely, 2003].

2.10. DEFINITION. Let t € Xén’m), 5 € XQ(M) be two 2-cells in a reqular poly-bicategory

X, and let 7', 7% be the two projections of X\™™

with (3). We say that

oF ¥a; Xz(p’q), for some 1,5 compatible

cut;;(t,z) = s

is a well-formed equation in the indeterminate x if, for any k, k', and o € {+,—} such
that Ogcut;; = Og ', it holds that Ofs = Oyt. Similarly,

cutj(y,t) =s
is a well-formed equation in the indeterminate y if s = 0%t whenever Ofcut;; = OX 2.

In other words, cut;;(t,x) = s is well-formed if there can exist some 7 such that
cut;;(t,7) = s, compatibly with the structure of a regular poly-bicategory; similarly for
the other case.

2.11. DEFINITION. Lett € Xz(n’m) be a 2-cell in a regular poly-bicategory X. We say that
t is universal at 8;? if, for all 2-cells s and well-formed equations cut,;;(t,xz) = s, there
exists a unique 2-cell v such that cut;;(t,r) = s. We say that t is universal at 0; if, for
all 2-cells s and well-formed equations cut;;(x,t) = s, there exists a unique 2-cell v such
that cut,;(r,t) = s.

We say that t is everywhere universal if it is universal at 0; and at 8;' for all
1=1,....n,and 3 =1,...,m.

If n=m =1, we simply say that t is universal if it is universal at 9 and at Oy .

So universality of a 2-cell ¢ at a location in its boundary means that any 2-cell that
can, in principle, be factorised as the composition of ¢ with another 2-cell at that same
location, does factor through ¢, and does so uniquely.

2.12. REMARK. Any universal property of a 2-cell implies a cancellability property. For
example, if ¢ is universal at 8;“, uniqueness of factorisations through ¢ implies that for any
pair of 2-cells r; and 7y such that cut,;(¢,71) and cut;;(t,72) are defined,

cut;;(t,7) = cut;;(t,72) implies ry =ro.

2.13. DEFINITION. A 2-cell id, : (a) — (a) in a regular poly-bicategory X is a unit on
the 1-cell a if, for all t € XQ(n’m), if 0t = a then cut;y(t,id,) = t, and if 97t = a then
CU_tLZ‘(ida, t) =1.

It is clear that any unit is a universal 2-cell. The reason why we did not require regular
poly-bicategories to have units as structure is because we want to show the following
constructions, which, while quite trivial by themselves, are a simpler analogue of the
constructions of Section 3, and can serve as a warm-up for our later results.
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2.14. LEMMA. Let p: (a) — (d’) be a universal 2-cell in a regular poly-bicategory X, and
let id, : (a) — (a), ide : (a') — (a’) be the unique 2-cells such that
cuty 1 (id,, p) = p, cuty 1(p,idy) = p.

Then id, is a unit on a, and idy is a unit on a'.
PROOF. Consider a 2-cell ¢ : (I';,a,T) — (A) in X; by universality of p at 9], there
exists a unique ¢’ : (I'1,a/,I'y) — (A) such that cuty;(p,¢") = ¢. Then,

cuty i(ide, ¢) = cuty ;(ida, cutyi(p, ¢')) = cuty ;(cuty 1 (ida, p), ¢') = cutyi(p, ¢') = q.

Next, consider a 2-cell r : (I') — (Ay, a, Ay). Post-composing it with p, we find
cut;1(r, p) = cut;q(r, cuty 1 (idg, p)) = cut;1(cut;1(r,id,), p);

therefore, by uniqueness of factorisations through p, we obtain r = cut;;(r,id,). This

proves that id, is a unit on a; the same proof applied to X proves that id, is a unit on

a'. =

2.15. PROPOSITION. Let X be a regular poly-bicategory. The following are equivalent:
1. for all 1-cells a of X, there exist a 1-cell @ and a universal 2-cell p : (a) — (a@);
2. for all 1-cells a of X, there exist a 1-cell @ and a universal 2-cell p' : (@) — (a);
3. for all 1-cells a of X, there exists a (necessarily unique) unit id, on a.

PROOF. Let a be a 1-cell of X. If there exists a unit id, : (a) — (a), it is clearly universal,
and fulfils the other two conditions for a.

Conversely, by Lemma 2.14, from any universal 2-cell e : (a) — (@), and from any
universal 2-cell €' : (@) — (a), we can construct a unit on a. "

2.16. DEFINITION. A regular poly-bicategory X is unital if it satisfies any of the equival-
ent conditions of Proposition 2.15.

In the presence of units, we retrieve the usual notion of universal 2-cells as isomorph-
isms, that is, 2-cells with an inverse, and one-sided universality suffices for a 2-cell to be
an isomorphism.

2.17. PROPOSITION. Let X be a unital reqular poly-bicategory, and p : (a) — (a') a 2-cell
of X with a single input and output. The following are equivalent:

1. p is universal at 05 ;
2. p is unwersal at 0y ;

3. p is an isomorphism, that is, it has a unique inverse p~' : (a’) — (a) such that
cuty 1 (p,p~!) = ida, and cuty, (p~*,p) = ida.
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PROOF. Suppose p is universal at ;. Dividing id, by p, we obtain a unique 2-cell

p~':(a') = (a) such that cuty(p,p~*) = id,. Since

cuty 1(p, CUtl,l(pilap)) = CUtl,l(CHtl,l(PapA),P) = cuty 1 (ide, p) = p = cuty1(p,ida),

it follows by uniqueness that cuty;(p~,p) = id,. Similarly when p is universal at J; .
The converse implication is obvious. [

Given two 1-cells a,b : x — y in a unital regular poly-bicategory, we will write a ~ b
to mean “there exists an isomorphism p : (a) — (b)”.

2.18. PROPOSITION. Let X,Y be unital reqular poly-bicategories, and f : X — Y a
morphism. Then f preserves units if and only if it preserves universal 2-cells.

2.19. REMARK. In the statement, “universal” is without restriction, hence applies only to
single-input, single-output 2-cells; other universal properties are not necessarily preserved.

PROOF. If f preserves units, then it also preserves isomorphisms, hence universal 2-cells.
Conversely, if f preserves universal 2-cells, because units are universal, f(id,) is universal
in Y for each unit id, in X. Then,

Cutl,l(f(ida)a idf(a)) = f(lda) = f(CUtl,l(idaa lda)) = Cutl,l(f<ida)7 f(lda))7
and by uniqueness of factorisations through f(id,), it follows that f(id,) = id (). [

2.20. DEFINITION. A morphism f : X — Y of unital reqular poly-bicategories is unital
if it satisfies either of the equivalent conditions of Proposition 2.18.

The homs and input-representing 2-cells of [Cockett, Koslowski, and Seely, 2003] cor-
respond to the three possible universal properties of 2-cells p : (a,b) — (¢) with two inputs
and one output.

2.21. DEFINITION. Let a, b be two 1-cells in a reqular poly-bicategory X, with compatible
boundaries as required separately by each definition.

A tensor of a and b is a 1-cell a ® b, together with a 2-cell t,p : (a,b) — (a @ b)
that is universal at 0y . A right hom from a to b is a 1-cell a—ob, together with a 2-cell
ery : (a,a—b) — (b) that is universal at 0y . A left hom from a to b is a 1-cell bo—a,
together with a 2-cell el : (bo—a,a) — (b) that is universal at Oy .

We say that X s tensor 1-representable, right 1-closed, and left 1-closed, respectively,
if it is unital and has tensors, right homs, and left homs, respectively, for all pairs of 1-cells
in the appropriate configuration.

Dually, the notions of cohoms and output-representing 2-cells correspond to the dif-
ferent universal properties of 2-cells p’ : (¢) — (a,b).
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2.22. DEFINITION. Let a, b be two 1-cells in a reqular poly-bicategory X, with compatible
boundaries as required separately by each definition.

A par of a and b is a 1-cell a B b, together with a 2-cell cup = (a ¥ b) — (a,b) that
is universal at 07 . A right cohom from a to b is a 1-cell a\b, together with a 2-cell
clty o (b) = (a,a\b) that is unwersal at 9y . A left cohom from a to b is a I-cell b/a,
together with a 2-cell c, - (b) — (b/a,a) that is universal at 07 .

We say that X is par 1-representable, right 1-coclosed, and left 1-coclosed, respect-
wely, if it is unital and has pars, right cohoms, and left cohoms, respectively, for all pairs
of 1-cells in the appropriate configuration.

A tensor (left hom, right hom) in X is the same as a par (left cohom, right cohom) in
X, and a left hom (left cohom) in X is the same as a right hom (right cohom) in X°P.
The following is easily proved in the same way as [Hermida, 2000, Corollary 8.6].

2.23. LEMMA. Let p be a 2-cell in a unital reqular poly-bicategory, and suppose p is
universal at 3;. Then:

(a) if p' is another 2-cell universal at 8;, which has the same boundaries as p except at
8;, then factorising p’' through p produces an isomorphism q : (a;p) — (8;-“]9’);

(b) if ¢ : (0 p) — (a) and ¢' : (b) — (9,p) are isomorphisms, the 2-cells cuty1(p, q)
and cuty 1 (¢, p) are also universal at 3;“.

Dual results hold when p is universal at O; .

In particular, in a unital regular poly-bicategory, tensors, pars, homs, and cohoms are
unique up to isomorphism. In the next section, we will need the following technical lemma
about 2-cells satisfying two different universal properties at once.

2.24. LEMMA. Let t : (a,b) — (c) be a 2-cell in a unital regular poly-bicategory X, and
suppose t satisfies two different universal properties. Then:

e if t is universal at Of and Oy , then any 2-cell u : (a,b) — (') that is universal at
0f is also universal at 9y , and any 2-cell u : (a,V') — (c) that is universal at 0y is
also universal at Oy ;

e if t is universal at 0] and Oy , then any 2-cell u : (a’,b) — (c) that is universal at
Oy is also universal at 0y , and any 2-cell u : (a,b') — (c) that is universal at 0y is
also universal at 0y .

All duals of these statements through (=) and (=) also hold.

PROOF. We only consider the case where ¢ is universal at 9 and 95 , and u : (a,b') — (c)
is universal at J,; the others are completely analogous. By factorising u through ¢, we

obtain
C
o— e °
b
T )=\ 1A
[ ]
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for a unique p : (b') — (b), which, since X is unital, must be an isomorphism. As
composition with isomorphisms does not affect universal properties, and ¢ is universal at
0, it follows that u is also universal at 0; . u

Appropriate compositions of binary tensors, homs, pars, and cohoms can be used
to produce n-ary ones. Moreover, certain divisions preserve universal properties. The
following lemma collects some useful closure properties of this sort.

2.25. LEMMA. Let t € XV ¢ e XD be 2-cells in a reqular poly-bicategory X, such
that 07t = 0 r, and let s := cuty ;(t,7).

(a) Suppose t is universal at ;. Then:

o 1 is universal at O) if and only if s is universal at O; ;

o if i # 1, then r is universal at 0y if and only if s is universal at Oy .

(b) Suppose i =1 and r is universal at O] . Then t is universal at 0] if and only if s is
universal at 0y .

All duals of these statements through (=) and (=) also hold.

PROOF. Suppose ¢ and 7 are both universal at 9. If cuty j(s, z) = p is a well-formed equa-
tion, then so is cuty;1;_1(¢,z) = p, which has a unique solution p’. Then cuty ;(r,z) = p/
is also well-formed and has a unique solution ¢, so

cuty (s, q) = cuty j(cuty;(¢,7), q) = cuty iy;—1(t, cuty j(r,q)) = cutl,iﬂ_l(t,pl) =p.

Cancellability of both ¢ and r implies that this solution is unique. This proves that s is
universal at 0y .

Now, suppose that ¢ and s are both universal at 9", and let cuty ;(r,z) = p’ be a
well-formed equation. Then cuty ;(s,z) = cuty;y;—1(¢,p') is also well-formed, and has a
unique solution ¢. It follows that

cuty iy j1(f,p") = cuty j(s, q) = cuty j(cuty;(t, ), q) = cuty ;1 (¢, cuty;(r, q)),

and by cancellability of ¢, we have p’ = cuty ;(r, ¢); uniqueness of the solution follows from
the cancellability of s.

The proof of point () is entirely analogous.

Suppose i # 1, t is universal at 9;", and r is universal at d;. Let p € X9 be such
that cutyi(x,s) = p is well-formed. Then cutyy;—1(¢t,2) = p is also well-formed for
k' =k —n —m+ 2, and has a unique solution p’, with the property that cut(z,r) = p/
is well-formed. Solving it yields a unique ¢ such that

cute(q, s) = cutpa(q, cuty (¢, 7)) = cuty -1 (¢, cutea(q,r)) = cuty g1 (¢, p") = p.

Uniqueness is a consequence of the cancellability properties of ¢ and r. This proves that
s is universal at 0 .
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Finally, suppose i # 1, t is universal at d;", and s is universal at 9;. If p’ € X (k.0
is such that cutg;(z,r) = p’ is well-formed, then cuty,(z,s) = cutypyi1(t,p') is also
well-formed for &' = k — m + 1. Its unique solution ¢ satisfies

cuty i1 (8, p') = cute(q, s) = cute(q, cuty;(¢,7)) = cuty i1 (¢, cute(q, 7)),

so p’ = cuty1(q,r). Again, uniqueness follows from cancellability of ¢ and s. ]

The theory of universal 2-cells in a unital regular poly-bicategory is just a specialisation
of the one developed by Hermida, Cockett, Seely, and Koslowski; we refer to [Cockett,
Koslowski, and Seely, 2003] for more details, and move on to the original treatment of
weak units.

3. Weak units and universal 1-cells

In the proof of Proposition 2.15, we assumed a representability condition, which provided
us with 2-cells that are “equivalences” for an elementary, unit-independent notion of equi-
valence. From that, we constructed units for a strictly associative, algebraic composition.
That proof is going to be our blueprint for the construction of weak unit 1-cells, relative
to the two internal, weakly associative notions of composition given by tensors and pars.
We will proceed as follows:

1. first, we will define a notion of weak unit 1-cell which is appropriate for regular
poly-bicategories;

2. then, we will introduce an elementary notion of universal 1-cell, and prove that weak
units can be constructed from universal 1-cells, so their existence is equivalent to a
lower-dimensional representability condition;

3. finally, in Section 4 we will show that our weak units induce the intended coherent
structure on GX.

Our notion of weak units is based on Saavedra units in monoidal categories, as defined
by J. Kock in [2008], based on Saavedra-Rivano’s work [1972]. Kock summarises the
defining properties of a Saavedra unit 7 in a monoidal category as cancellability (morphisms
i®a—i®band a®i — b®1 correspond uniquely to morphisms a — b) and idempotence
(1 ® 1 is isomorphic to 7).

From the first condition applied to i ® (i ® a) ~ (1 ® i) ® @ ~ i ® a, one obtains
left actions 7 ® a — a of the unit on any object, themselves isomorphisms; similarly one
obtains right actions. This means that Saavedra units can always be introduced to the
left or right of any object; cancellability means that after their introduction, they can be
eliminated, as long as there is an object on which they are acting.

This should be contrasted with the way units are obtained in [Hermida, 2000; Cockett,
Koslowski, and Seely, 2003] and related works: being exhibited by universal 2-cells with
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a degenerate, O-dimensional boundary, units can always be eliminated by composition,
even when they are “on their own”; that is, from a 2-cell (i) — (a), one can obtain a
2-cell () — (a) by composition with a universal 2-cell.

We claim that the notion of Saavedra unit is captured at the poly-bicategorical level
by the following definition, where we restrict our attention to tensor units first. Because
compositions of 1-cells are subsumed by universal properties, we do not need to formulate
any property with respect to a specified composition, and can use universality as the one
fundamental concept.

3.1. DEFINITION. Let x be a 0-cell in a reqular poly-bicategory X. A 1-cell 1, : x — x is
a tensor unit on x if, for each a : x — y and each b: z — x, there exist 2-cells

€T a Y 2 b x
o———— e o———— e
Tt 1+
1, a b 1,

[} ) °
T xr

that are, respectively, universal at 0f and 0, , and universal at 0y and Oy : that is, I,
exhibits a as both 1, ® a and 1, —a, and ry, exhibits b as both b ® 1, and bo—1,.

3.2. REMARK. By Lemma 2.24, if X is unital, and 1, : + — x is a tensor unit on z, a
seemingly stronger claim can be made: if a 2-cell of the form ¢ : (1,,a) — (@) is universal
at 95, then it is also universal at 95 ; if a 2-cell of the form u : (1,,a’) — (a) is universal
at 0y , then it is also universal at 9, and so on.

In particular, any tensor ¢1, , : (1;,a) = (1, ® a) satisfies both universal properties.
If we fix such a tensor for each 1-cell x+ — y, we obtain a bijection between 2-cells
P (1l ®a) — (1, ®b) and 2-cells p : (a) — (b) by considering

1, ®b 1, ®b

either as an equation to be solved for p given p/, using the universality of ¢;,, at 0, or
as an equation to be solved for p’ given p, using the universality of ¢, , at 0.

Dually, any tensor t,:, : (a,1,) — (a ® 1,) induces a bijection between 2-cells
(a®1,) = (b®1,) and 2-cells (a) — (b). In this sense, tensor units subsume the
cancellability of Saavedra units. Idempotence, on the other hand, is witnessed by the
universality at 9, of either [;, or ry,, which produces an isomorphism between 1, ® 1,
and 1,.

Next, we define an elementary notion of universality of 1-cells, relative to the compos-
ition exhibited by universal 2-cells.
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3.3. DEFINITION. Let e : ©x — x’ be a 1-cell in a reqular poly-bicategory X. We say that
e is tensor left universal if, for each a : x — y and each o' : ©' — vy, a right hom and
z, e®a Y

tensor
x a Y
o —>0 —_—_—e
Wefﬂ ][te’al
(& e—oq e a/
[ ] J [ ]
' '

exist and are universal both at 0y and at 0, : that is, efj
and t. o also exhibits a’ as e—o (e ® a').

Dually, we say that e is tensor right universal if, for each b : z — x and each
b :z— 2, aleft hom and tensor

. also exhibits a as e ® (e—a),

z I ' z hb®e ’
o— e e— e
][65’ " /w\tb,e
Vo—e € b €
[ ] ) [ ]
T x

exist and are universal both at 9 and at Oy : that is, eﬁb, also exhibits b’ as (b'o—e) ® e,
and ty. also exhibits b as (b ® e)o—e.
A 1-cell e is tensor universal if it is both tensor left and tensor right universal.

3.4. REMARK. If X is unital and e is tensor left universal, since efja and t. ., both exist
and are universal at d;, factorising one through the other produces a unique isomorphism
e ® (e—oa) ~ a; similarly, factorising ¢, , through efe@)a/ produces a unique isomorphism
e—o(e®ad)~ad.

Dually, if e is tensor right universal, we obtain unique isomorphisms (b'c—e) ® e ~ ¥/
and (b® e)o—e ~b.

3.5. REMARK. A quasigroup, in the equational formulation [Smith, 2006, Section 1.2], is
a set () together with three binary operations -, /,\_satisfying the axioms

z - (2\y) =y, e\(7-y) =y,
(y/z) z=y, (y-z)/z=y.

The isomorphisms enforced by tensor universality, in a unital regular poly-bicategory, can
be seen as a categorified version of these equations, with ® corresponding to -, —o to \,
and o— to /.

An important property of tensor universal 1-cells in a unital regular poly-bicategory
is that they satisfy a “two-out-of-three” property — a common requirement for classes of
weak equivalences — in the following sense.
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3.6. THEOREM. Lete:x — o', ¢ : 2/ — 2", ¢

poly-bicategory X, and suppose that

"x — x” be 1-cells in a unital reqular

satisfies two different universal properties. If two of the three 1-cells e, €', and € are
tensor universal, then the third is also tensor universal, and p is everywhere universal.

PROOF. Suppose first that e and €’ are tensor universal. Because p satisfies two different
universal properties, it is universal at 0; or at 0, . Factorising it through 65,76,,, in the
first case, or through ee 2 in the second case, we find that it is also universal at 9, that
is, it exhibits €’ as e ® €’. Finally, factorising through ¢. ., which, by tensor universality
of both e and ¢’ and an application of Lemma 2.24, is everywhere universal, we obtain
that p has the same property.

To check that e¢” is tensor left universal, consider an arbitrary 1-cell a : x — y. By
universality of p at 9, the equation

holds for a unique 2-cell g. By Lemma 2.25, the left-hand side is universal both at ;"
and at 95 (for the latter, use the (—)°"-dual of point (b)); it follows from point (a) and
its duals that ¢ is universal both at 9" and at 95 .

Similarly, given an arbitrary 1-cell o’ : 2”7 — y, the unique 2-cell ¢’ obtained in the
factorisation

using the universality of p at 9, is universal both at 9; and at 9, . This proves that ¢”
is tensor left universal; a dual argument shows that it is tensor right universal.

Next, we consider the case in which e and e” are tensor universal. Because p satisfies
two different universal properties, it is universal at 9 or at 0, ; factorising it through
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tee, in the first case, or through ege,,, in the second case, we find that it must actually
satisfy both of them.

To check that €’ is tensor left universal, consider a 1-cell b : 2 — y. The unique 2-cell
r obtained in the factorisation

e®b

using the universality of ., at 05 is universal at d; by Lemma 2.25. To prove that it is
also universal at d;, consider a 2-cell

p/ . (F176/7€”_0(6® b)7F2) - (A)

Suppose that (I'y) = (I'},¢) for some ¢ : z — 2'; then, we can perform the following
sequence of factorisations (labels of 0-cells are omitted):

lnh

for unique 2-cells p and p”, where we used first the universality at d;" of the two sides
of equation (7), then the universality at ;" of ef.. Cancelling the latter, we obtain a
necessarily unique factorisation of p’ through r. In case I'y is empty, let (A) = (¢, A')
for some ¢ : 2’ — z, and apply the same reasoning to the postcomposition of p’ with
tee i (e,d) > (e®).

Next, consider a 1-cell b : " — y. The unique 2-cell ' obtained in the factorisation
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using the universality of efe,,@)b, at 0, is universal at 9, by Lemma 2.25, and at 9; by a
similar argument. This proves that €’ is tensor left universal.

The proof that €' is tensor right universal is similar, and involves the 2-cells s, s’
obtained from factorisations

Once we have established that ¢’ is tensor universal, the fact that p is also universal at
07 is a consequence of Lemma 2.24.

Finally, the statement in the case where €’,¢e” are tensor universal follows from the
previous case applied to X°P. [

3.7. COROLLARY. The class of tensor universal 1-cells in a unital reqular poly-bicategory
1s closed under tensors, left homs, and right homs.

PROOF. If ¢’ is obtained as a tensor, right hom, or left hom of tensor universal 1-cells,
then the 2-cell that exhibits it falls under the hypotheses of Theorem 3.6. It follows that
e’ is also tensor universal. n

Armed with this result, we can prove a lower-dimensional version of Lemma 2.14 and
of Proposition 2.15.

3.8. LEMMA. Lete : x — 2’ be a tensor universal 1-cell in a unital reqular poly-bicategory.
Then eo—e : x — x 18 a tensor unit on x, and e—oe : ' — 2’ is a tensor unit on x’.

PROOF. Let a : © — y be a 1-cell. The unique 2-cell p obtained in the factorisation

using the universality of eff at 9 is universal at 9; by Lemma 2.25. By Corollary 3.7,

e,a

eo—e is tensor universal, so by Lemma 2.24 p is also universal at 0, .
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Similarly, take any @’ : ' — y. The unique 2-cell p’ obtained in the factorisation

e®a

using the universality of ¢ .- at 05 is itself universal at 9, . Since e —oe is tensor universal,
p' is also universal at ;.

This proves the left tensor unit condition for both eo—e and e —oe; a dual argument
in X°P leads to the right tensor unit condition. [

3.9. REMARK. Note that the converse does not hold: even if eo—e and e—e are tensor
units, e may not be tensor universal.

For example, a Boolean algebra (B, T, L,A,V,—) can be identified with a regular
polycategory, as a special case of Example 2.9. Then B is unital, and has T as a tensor
unit.

For all a,b € B, the element —a V b is a right and left hom from a to b, witnessed by
a/N(—aVb)=aAb<b, soin particular a—oa = ao—a = -aVa =T for all a; but T is
the only tensor universal 1-cell.

3.10. THEOREM. Let X be a unital reqular poly-bicategory. The following conditions are
equivalent:

1. for all 0-cells x of X, there exist a 0-cell T and a tensor universal 1-cell e : x — T;
2. for all O-cells © of X, there exist a 0-cell T and a tensor universal 1-cell €' : T — x;
3. for all O-cells x of X, there exists a tensor unit 1, on x.

PROOF. Let x be a 0-cell of X. If there exists a tensor unit 1, : x — z, then it is clearly
tensor universal, and fulfils the condition for x on both sides.

Conversely, suppose e : x — T is a tensor universal 1-cell, and define 1, := eo—e. By
Lemma 3.8, 1, is a tensor unit on x. Similarly, if ¢’ : T — x is tensor universal, then
1,/ := ¢’ —o¢€’ is a tensor unit on z. This completes the proof. [

3.11. DEFINITION. A unital reqular poly-bicategory X is tensor O-representable if it sat-
isfies any of the equivalent conditions of Theorem 3.10.

Instantiating the definitions in X, we obtain dual notions of par units L, : x — x, par
universal 1-cells, and par 0-representability; the dual of Theorem 3.10, that the existence
of par units is equivalent to the existence of enough par universal cells, holds.
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3.12. DEFINITION. A regular poly-bicategory X is tensor representable if it is tensor 0-
representable and tensor 1-representable; it is par representable if it is par 0-representable
and par 1-representable.

We say that X is right closed (left closed) if it is tensor O-representable and right
1-closed (left 1-closed); it is right coclosed (left coclosed) if it is par 0-representable and
right 1-coclosed (left 1-coclosed).

We say that X is representable if it is tensor representable and par representable. We
say that X is x-autonomous if it is representable, left and right closed, and left and right
coclosed.

In the next section, we will see how representability conditions on X induce coherent
algebraic structure on GX. Consequently, we want to restrict our attention to morphisms
that preserve this structure in a suitably weak sense: for tensors, pars, homs, and cohoms,
this is achieved by requiring morphisms to preserve the corresponding universal properties
of 2-cells.

However, while Theorem 3.10 shows that the existence of enough universal 1-cells is
equivalent to the existence of tensor units, preservation of the two classes is not equivalent
for arbitrary morphisms of regular poly-bicategories: for example, if f : X — Y does not
preserve any universal property of 2-cells, even if f(1,) is universal in Y for a tensor unit
1., it may not be “tensor-idempotent” in Y.

3.13. EXAMPLE. The regular multicategory S with a single 1-cell a and a single 2-cell
(a,...,a) — (a) for each n > 1 is tensor representable: a is the tensor unit, and all 2-
——

Cellsnare everywhere universal. If X is a tensor representable regular multicategory whose
every 1-cell is tensor universal (for example, the regular multicategory corresponding to
a Picard groupoid [Bénabou, 1967, Section 7]), then any morphism f : S — X preserves
tensor universality of 1-cells, even though it may not send a to a tensor unit.

We will now show that if a morphism also preserves certain universal properties of
2-cells, it will map tensor units to tensor units.

3.14. DEFINITION. A morphism f : X — Y of unital reqular poly-bicategories is tensor
strong if it is unital, preserves tensor universality of 1-cells, and preserves tensors of 1-
cells. It is par strong if f : X — Y s tensor strong. It is strong if it is tensor strong
and par strong.

3.15. PROPOSITION. Let X,Y be unital reqular poly-bicategories, and f : X — Y a
tensor strong morphism. Then f maps tensor units in X to tensor units in Y.

PROOF. Let 1, : # — x be a tensor unit in X. Then f(1,) : f(x) — f(z) is tensor
universal, so we can divide it by itself, and obtain a tensor universal f(1,)—o f(1,), and
an everywhere universal 2-cell p : (f(1,), f(1:) — f(1)) = (f(1)), as in Theorem 3.6.
Because f preserves tensors, a 2-cell ¢ : (1,,1,) — (1,) exhibiting the idempotence of
1, is mapped to a 2-cell f(t) : (f(1.), f(1.)) — (f(1,)) that is universal at 9;". By tensor
universality of f(1,), we can also construct ¢ : (f(1.), f(1:)) — (f(1:) ® f(1;)) that is
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everywhere universal;, by Lemma 2.24, f(t) is also everywhere universal, and factorising
p through f(t), we obtain an isomorphism f(1,) ~ f(1,) — f(1,). Lemma 3.8 allows us
to conclude that f(1,) is a tensor unit. =

3.16. PROPOSITION. Let X, Y be unital reqular poly-bicategories, and f : X — Y a unital
morphism. Suppose that f preserves right homs (or left homs) and tensor universality of
1-cells. Then f maps tensor units in X to tensor units in'Y .

PROOF. Let 1, : # — z be a tensor unit in X; by assumption, f(1,) : f(z) — f(x) is
tensor universal in X.

Suppose that f preserves right homs; then f(1,) — f(1,) ~ f(1,—1,) ~ f(1,). But
by Lemma 3.8, we know that e—oe is a tensor unit for all tensor universal 1-cells e. The
proof when f preserves left homs is similar. [

There are, as usual, dual results concerning par strong morphisms, or ones that pre-
serve right or left cohoms.

Notice that both Proposition 3.15 and Proposition 3.16 have a “local” character: if a
tensor unit exists on a O-cell in X, it will be mapped to a tensor unit in Y, irrespective
of any property of Y (except being unital, which is the minimal assumption for most of
our results).

In order to have a converse result, that a morphism preserving tensor units also pre-
serves tensor universality, we are forced to renounce this local character: if e : x — 2/ is
tensor universal in X, even if f : X — Y preserves tensor units and all universal proper-
ties of 2-cells, there is no guarantee, for instance, that tensors of f(e) with arbitrary 1-cells
a: f(r') > yand b:z — f(z) of Y should exist. Therefore a “global” representability
condition must be imposed.

3.17. PROPOSITION. Let X be a tensor 1-representable reqular poly-bicategory. Then, for
a I-cell e : x — vy, the following are equivalent:

1. e s tensor universal;

2. there exist tensor units 1, onx and 1, ony, a 1-cell e* : y — x, and 2-cells exhibiting
e®e* ~1, ande* ®e~1,.

PROOF. Suppose e : x — y is tensor universal; by Lemma 3.8, we know that there are
tensor units 1, on x and 1, on y. Dividing 1, and 1, by e, we obtain 1-cells e — 1, and
1, o— e, and 2-cells exhibiting e ® (e — 1,) ~ 1., and (1, 0—¢) ® e ~ 1,. A standard
argument then shows that e—1, ~ 1,0—e, so we can call either of them e*. This proves
one implication.

Now, suppose there are tensor units 1, on  and 1, on y, a 1-cell e* : y — z, and
2-cells I : (e,e*) — (1,) and I : (e*,e) — (1,), both universal at 9;". We will show that
e is tensor left universal.

Let a : y — z be an arbitrary 1-cell; by tensor 1-representability, there is a tensor
t: (e,a) — (e ®a). We use it to construct other tensors of the same type, by the
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following sequence of factorisations (as usual, we omit labels of 0-cells):

a

for a unique 2-cell s, universal at 9;; then,

e®a
o— . e
lz /w\le(}?a —
e /Wh e®a
.\_/).
e*

for a unique 2-cell ¢, universal at 9;"; finally,

(10)

for a unique #, universal at 9;". All these universal properties follow from Lemma 2.25.
We will show that # is also universal at &, (which by Lemma 2.24 implies that ¢ and ¢
are, t00).

Let p: (e,T') = (e ®a,A) be a 2-cell, and precompose it with [, : (1,,e) — (e) and
then h : (e,e*) — (1,). We have the following sequence of factorisations:

e®a e®a

I °
eRa
1;”\ e®a
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ex®a

for some unique p/, p”, and p. Comparing the first and the last diagram, and cancelling [,
and h, we obtain a factorisation of p through ¢, which is easily determined to be unique.

Next, let b : x — 2’ be another 1-cell. By tensor 1-representability, there is a tensor
u: (e*,b) — (e* ®b); then the factorisation

produces a 2-cell v : (e,e* ® b) — (b) that is universal at 9;". Proceeding as in the first
part of the proof, we can show that v is also universal at 0, . This proves that e is tensor
left universal.

Due to the symmetry between e and e* in the hypothesis, we immediately obtain that
e* is also tensor left universal; then, a dual argument in X°P shows that both e and e*
are also tensor right universal. This completes the proof. [

*

3.18. PROPOSITION. Let X be a right and left 1-closed reqular poly-bicategory. Then, for
a I-cell e : © — vy, the following are equivalent:

1. e is tensor universal;

2. there exist tensor units 1, onx and 1, ony, a I-celle* : y — x, and 2-cells exhibiting
e®e" ~1, ande* ®e~1,.

PROOF. The implication from (a) to (b) is proved in the same way as in Proposition 3.17.
For the other implication, suppose there are tensor units 1, on = and 1, on y, a 1-cell
e*:y — x, and 2-cells h: (e,e*) = (1,) and I : (e*,e) — (1,), both universal at 9. We
will show that e is tensor left universal.

Let a : © — 2z be a 1-cell; since X is right closed, it has a right hom ¢ : (e,e—a) — (a).
We use it to construct other right homs of the same type, as follows. Factorise

N/ -\ e
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for a unique 2-cell u, universal at 0, ; then,

(12)

(13)

for a unique 2-cell £, also universal at d,. All these universal properties follow from
Lemma 2.25. We will show that ¢ is also universal at d;", implying that ¢ and t' are, too.

Let p: (I'1,e,e—a,I'y) — (A) be a 2-cell, and precompose it with 7. : (e,1,) — (e)
and with 2" : (e*,e) — (1,). We have the following sequence of factorisations:
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for some unique p’, p”, and p. Comparing the first and the last diagram, and cancelling
r. and b/, we obtain a unique factorisation of p through f.

Next, let b : y — 2’ be another 1-cell, and take a right hom u : (e*,e*—b) — (b). The
factorisation

produces a 2-cell v, universal at 0, . Proceeding as in the first part of the proof, we can
show that v is also universal at d;". This proves that e is tensor left universal.

Due to the symmetry between e and e* in the hypothesis, we immediately obtain
that e* is also tensor left universal; then, a dual argument in X°P, which is right closed
because X is also left closed, shows that both e and e* are also tensor right universal.
This completes the proof. [

3.19. REMARK. The proofs show that the implication from (a) to (b) holds in any unital
regular poly-bicategory: that is, a tensor universal 1-cell is always a “tensor equivalence”,
in the sense of having an “inverse up to isomorphism” with respect to a tensor unit. The
converse, however, only holds in a tensor 1-representable, or a right and left 1-closed
regular poly-bicategory.

3.20. COROLLARY. Let X,Y be unital reqular poly-bicategories, and let f : X —'Y be a
morphism that is unital, preserves tensor units, and preserves tensors of 1-cells. Suppose
that Y is tensor 1-representable, or that Y s right and left 1-closed. Then f is tensor
strong.

PROOF. Let e : x — y be a tensor universal 1-cell in X; by Lemma 3.8, we know that
there are tensor units 1, on z and 1, on y. Dividing 1, and 1, by e, as in the proof of
Proposition 3.17, we obtain a 1-cell e* : y — x and 2-cells exhibiting e ® e* ~ 1,, and
e ®e~1,.

Because f preserves tensors, there are 2-cells of Y that exhibit f(e) ® f(e*) ~ f(1,)
and f(e*)® f(e) ~ f(1,), and because f preserves tensor units, f(1,) and f(1,) are tensor
units in Y. Proposition 3.17 or 3.18 allows us to conclude that f(e) is tensor universal.m

In particular, when restricting to tensor 1-representable, or to left and right closed
regular poly-bicategories, we can replace the condition of “preserving tensor universal-
ity” with the condition of “preserving tensor units” in the definition of a tensor strong
morphism.

However, for morphisms that preserve homs, but not tensors, preservation of tensor
units is strictly weaker than preservation of tensor universal 1-cells, as shown by the
following example.
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3.21. EXAMPLE. Let X be the regular multicategory with two 1-cells, 0 and 1, and a
unique 2-cell (by,...,b,) — (b) whenever > 1" b, = bmod 2, for all b;,b € {0,1}. Then X
has 0 as a tensor unit, it is tensor representable, and it is closed on both sides, with

0 ifb="0,

b =bob=b—ob :=
{1 i£h£Y,

for all b0’ € {0,1}.

Let Y be the regular multicategory with N as the set of 1-cells, and a unique 2-cell
(k1, ..., k,) — (k) whenever Y1 | k; = k + 2m for some m > 0, for all k;,k € N. Then Y
has 0 as a tensor unit, it is tensor representable, and it is closed on both sides, with

k®j =k+y,
j—k if k< 7,

jo—k=Fk—j = . . .
(k—j)mod2 ifk>j,

for all k,5 € N.

Consider the obvious inclusion of multicategories » : X — Y. This preserves the tensor
unit and all homs in X, but does not preserve tensors, as ¢(1 ® 1) = 0 is not isomorphic
to 2(1) ® 2(1) = 2. Moreover, 1 is tensor universal in X, but it is not tensor universal in
Y, as there are no 2-cells (0) — (1 ® n) for any n in Y.

Thus, there is no converse to Proposition 3.16, and it makes sense to distinguish
between closed morphisms that preserve units, and others that preserve universal 1-cells.
We will only name the first, as we do not know if the latter have any significance.

3.22. DEFINITION. A morphism f : X — Y of unital reqular poly-bicategories is right
closed if it is unital, preserves tensor units, and preserves right homs. It is left closed f
fOP is right closed, and right coclosed (left coclosed) if f°° is right closed (left closed).

We now define some categories on which we will focus in the next section.

3.23. DEFINITION. We write rMulBiCatg, for the subcategory of tensor representable
reqular multi-bicategories and tensor strong morphisms in rMulBiCat, and rMulCatg
for its full subcategory on reqular multicategories.

We write rPolBiCatg for the subcategory of representable regular poly-bicategories
and strong morphisms in rPolBiCat, and rPolCatg for its full subcategory on reqular
polycategories.

We write rPolCat, for the subcategory of x-autonomous reqular polycategories and
strong morphisms in rPolCat.

3.24. REMARK. While we prefer to keep foundational aspects at a minimum, it is due
remarking that the “coherence via universality” theorems concern the production of a
uniformly defined coherent structure from a representability property, given as a “for
all... there exists” statement; some form of choice is therefore required, which may or
may not be problematic depending on one’s preferred foundations.
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4. Coherence for units via universality

The definition of tensor 0-representability asks that “locally” for each 0-cell x, some 1-cell
1, : * — x exists, and for each 1-cell a : x — y and b : z — x, some 2-cells [,, r, exist and
are appropriately universal; no compatibility between them is required. The following
result shows that any uniform choice of units and witnesses of unitality can be made to
satisfy poly-bicategorical versions of “naturality” and of “triangle” equations.

4.1. THEOREM. Let X be a tensor O-representable regular poly-bicategory, and suppose
tensor units {1, : * — x} have been chosen for all x € Xy. Then there exist witnesses
{Za :(1z,a) = (a),7q @ (a,1,) = (a)} of unitality, indexed by 1-cells a : x — y of X, such
that for all 2-cells p,p’, q as pictured, the following equations hold:

° ° ° °
a a
C C
// // /
.: p/][ c ]P"c ° = .: p 1[ a ° (15)
AN AN Ty
I \\j %\ T’ \\ ,Tr% y
oo Y j.\_/). Yy
a a
AL A
/”’ q \\\.‘J /”’ q][ \\\.‘J
0\\\ a /w\ , 7\' _ '\\\ d I-\ (16)
Iy e /[r;. . I Iy e 7 . Iy
a ldT
a\‘.1—>./d‘ a\‘.l—)./d'
¥ y

PROOF. Pick arbitrary witnesses of unitality {l,,7,} for each 1-cell of X; by Theorem 3.6,
for all units 1,, we can assume that l;, = ry, : (1., 1) — (1), since they are both every-
where universal. Then, we define a new family {l~a, 7o} as follows: let I, = cuty 1 (la, €q),
where e, : (a) — (a) is the unique automorphism obtained by the factorisation
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!/
a

and 7, := cuty 1(r,, €},), where €/, : (a) — (a) is obtained by the factorisation

To prove equation (14), precompose the left-hand side with [;,. We have two possible
factorisations:

1,0\. AR
1\%/@)
Comparing the two, and using the cancellability of [, = cuty 1 (lp, €5) at Oy, we obtain
equation (14). Equation (15) is proved similarly.
For equation (16), we adapt the argument of [Kock, 2008, Proposition 2.6]. Consider
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the following two factorisations: first,

for a unique g given by universality of Iy at 0;, where the second equation uses the
definition of l;; symmetrically,

for some unique g given by universality of 7, at 9. Comparing the two, and using the
cancellability of /;,, we obtain equation (16). n

In order to fix the notation, we recall the definition of bicategory [Bénabou, 1967].
4.2. DEFINITION. A bicategory B is a 2-graph

ot ot
BO Bl BQ )
o~ o~

together with the following data, where we write p : a — b for a I1-cell or 2-cell with
O p=aand 0Tp=b:
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. a family of 2-cells, the vertical composites {p;q : a — ¢}, indexed by composable

pairs of 2-cellsp:a — b and q : b — c¢;
a family of 2-cells, the vertical units {id, : @ — a}, indexed by the 1-cells of B;

a family of 1-cells {a®b: x — 2z}, indexed by composable pairs of 1-cells a : x — y,
b:y— z, and a family of 2-cells {p®q: a®c— bR d}, indexed by pairs of 2-cells
p:a—b,q:c— d such that 070 p = 0~ 0 q, both called horizontal composites;

a family of 1-cells, the horizontal units {1, : x — x}, indexed by the 0-cells of B;

a family of 2-cells, the associators {agp. : (@ ®b) ®c = a® (b® c)}, indered by
composable triples of 1-cellsa:x —y, by — 2z, c: 2z — w;

two families of 2-cells, the left unitors {A, : 1, ® a — a} and the right unitors
{pa:a®1, — a}, indexed by 1-cells a : x — y.

These are subject to the following conditions:

1.

3.

vertical composition is associative and unital with the vertical units, that is, the
equations (p;q);r = p; (q;r) and p;id, = p = id,; q hold whenever both sides make
sense;

horizontal composition is natural with respect to vertical composition and units, that
is, (p1;02) @ (q1;q2) = (P1R@1); (P2®q2) and id, ®id, = id,gp, whenever the left-hand
side makes sense;

the associators and the unitors are natural in their parameters, that is, for all
p:a—a,q:b—=0V,andr:c— , the following diagrams commute:

a,b,c )\a a
(a®b)®c&>a®(b®c) l,®a —— a 2 a®1,
(p®q)®rl lp@(q@r) 1z®pl lp lp@ly
(@eV)ed —doled) , Led—o—=dg-dal
commaute;

the associators and unitors satisfy the pentagon and triangle equations, that is, for
alla:x—y,b:y— 2z, ¢c:2z—w,d: w—v, the following diagrams commute:

Qa@b,c,d

(a®b)@c)®d (a®b) @ (c®d)
Qg b ® iddl laa,b,c®d

(a®@b®c)®d —— a® (b®c)®d) —— a® (b® (c®d)),

Xg,b@e,d 1da ® Qpc.d
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aa,lJ,b

(a®1)®b ———— a® (1, ®Db)

lida @ \p
Pa ® ldb

a®b

5. the associators and unitors are isomorphisms, that is, they have inverses with respect
to vertical composition.

We say that B is strict if the associators and unitors are vertical units. We say that B is
strictly associative if the associators are vertical units. A bicategory with a single 0-cell
15 called a monoidal category.

Given two bicategories B, C', a functor f : B — C' is a morphism of the underlying
2-graphs that commutes with vertical composition and units, together with

1. a family of isomorphisms in C { fap : f(a)® f(b) — f(a®Db)}, indexed by composable
pairs of 1-cellsa :x — y, b:y — z of B, and

2. a family of isomorphisms in C {fy : 15y — f(12)}, indexed by 0-cells x of B,
where the first one is natural in its parameters, that is, for allp : a — da’, q: b — V', the
diagram

fa,b
fla)® f(b) —— f(a®D)
1) ® fla)| |feea
fld) @ f(t)) —— fla'®b)
ol b
commutes, and both families are compatible with the associators and unitors, in the sense
that, for alla:x — 1y, b:y— z, c: z — w, the following diagrams commute:

IONIONO) df(a) ® foe

(fla)® f(b) ® flc) == fla)® (f(b) ® f(c)) —— fla)® f(b®c)
fap ® idf(c)l lfa,b@c
fla®b)® f(c) T f((a®b) ®c) W fla® (b®c)) ,
L ® f(a) 2228 1(1,) @ fla) —222 f(1, ®a)
Lro) (17)
Af(a)
fla)
@) @1 2298ty e 10,) 22 fao1,)
|60 (18)
Pf(a)
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Bicategories and functors form a large category BiCat. We write MonCat for its full
subcategory on monoidal categories.

4.3. CONSTRUCTION. Let X be a tensor representable regular poly-bicategory. We endow
the induced 2-graph GX with families of cells as required by the definition of a bicategory:

1.

for each composable pair of 2-cells p : (a) — (b) and ¢q : (b) — (c), let p;q be
cuty 1 (p, q);

for each 1-cell a, let id, : @ — a be the unique unit on a, whose existence is
guaranteed by X being unital,

for each composable pair of 1-cells ¢ : = — y, b : y — z, choose a tensor
tap : (a,0) — (a®b), and let a @ b be their horizontal composite; for each pair
of 2-cells p : (a) = (¢), q : (b) — (d), such that 070Tp = 9-0 ¢, let p ® q be the
unique 2-cell obtained by the factorisation

c®d

T e,

.\_/
= a®b ;
/w\ta,b
a b

. for each 0-cell z, choose a tensor unit 1, : x — x as a horizontal unit;

. for each composable triple of 1-cells a,b,c, let a4, be the unique isomorphism

obtained by the factorisation

b®( a® (b®c)

,n\aabc

.tab®c][ b®C a®b ®C
(l®b a@bc
tb(‘
ab/"\

6. choose a coherent family of witnesses of unitality {l,,7,} as in Theorem 4.1, and let

A and p, be the unique isomorphisms obtained by the factorisations

a
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Cl

a
./P. pa
" = a® 1
al
Now, let Y be another tensor representable regular poly-bicategory, and f : X — Y a

tensor strong morphism. Having picked families of cells for GY as done for GX, we endow
Gf : GX — GY with the structure required by the definition of a functor, as follows:

1. for each composable pair of 1-cells a,b in X, let f,;, be the unique 2-cell of Y
obtained by the factorisation

fla®b) fla®b)

which is an isomorphism because f(t,3) is also universal at 9;";

2. for each O-cell z of X, let f, be the inverse of the 2-cell f, obtained by the factor-
isation

f(lz)

\M

Since f is tensor strong, f(1,) is tensor universal, and because f ({1,) is universal at
07 , it is in fact everywhere unlversal, this implies that f, is indeed an isomorphism.

(19)

4.4. PROPOSITION. Let X be a tensor representable reqular poly-bicategory. Then GX
with the structure defined in Construction 4.5 is a bicategory.

If f : X — Y is a tensor strong morphism of tensor representable reqular poly-
bicategories, Gf : GX — GY with the structure defined in Construction 4.3 is a functor
of bicategories.

PROOF. The conditions relative to vertical composition and coherent associativity of the
horizontal composition are handled exactly as in [Hermida, 2000, Definition 9.6], so we
only need to show that the unitors are natural in their parameters, and that they satisfy
the triangle equations. By our definition of the unitors, these are all simple consequences
of Theorem 4.1.

Now, if f : X — Y is a tensor strong morphism, the fact that Gf : GX — GY
is compatible with the associators is shown as in [Hermida, 2000, Proposition 9.7]. For
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compatibility with the unitors, observe that, by our definition of f, (omitting labels of
1-cells),

where the first equation is an instance of (15), as [;, = 7y, for all y. This implies that, in
GY, the diagram

)\1 z
i) ® 1y - L)
Lot 2
f(1x> ® f(lx) - f(lx ® 11) — f(1x>
fio s F(A)

commutes; by [Kock, 2008, Proposition 3.5], this suffices to prove that all the diagrams
(17) and (18) commute. =

4.5. COROLLARY. A choice of structure as in Construction 4.3 for each tensor repres-
entable regular multi-bicategory X and tensor strong morphism f : X — Y determines a
functor G : rMulBiCats — BiCat, restricting to G : rMulCats — MonCat.

The inverse construction, from bicategories to tensor representable regular multi-
bicategories, does not present any significant difference compared to Hermida’s [2000,
Definition 9.2], so we will treat it only briefly, skipping the details. In what follows,
we only need a partial version of the coherence theorem for bicategories and functors.
We write [a1 ® ... ® ay]s for a bracketing B of a1 ® ... ® a,; for example, we can have
a®b@clg=(a®b) @cora® (b®:c).

4.6. THEOREM. [Joyal and Street, 1993, Corollary 1.8] Let f : B — C be a functor of
bicategories. Then, for any sequentially composable sequence ay, . ..,a, of 1-cells of B,
and any pair of bracketings 5,7 of n elements, there is a unique 2-cell built from

1. wertical units, associators and their inverses in C,
2. the images through f of the associators and their inverses in B, and
3. the structural 2-cells fq1 of f

between f([a1 ® ... ® ayg) and [f(a1) @ ... f(an)],-

4.7. COROLLARY. [Mac Lane, 1963, Theorem 3.1] Let B be a bicategory. Then, for
any sequentially composable sequence aq,...,a, of 1-cells of B, there is a unique 2-cell
built from wvertical units, associators and their inverses between any two bracketings of
aq ® e ® Ay, .
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4.8. CONSTRUCTION. Let B be a bicategory; we define a regular multi-bicategory [ B as
follows. The O-cells and 1-cells of [ B are the same as the 0-cells and 1-cells of B. For any
compatible choices of 1-cells, the 2-cells (ai,...,a,) — (b) in [B correspond to 2-cells
p:(..(m1®ag)...®a,_1)®a, — bin B. Composition is induced by the composition in
B, using the unique coherence 2-cells as in Corollary 4.7 to re-bracket as needed.

Given a functor f : B — C' of bicategories, we define a morphism [f: [B — [C of
regular multi-bicategories, which is the same as f on 0-cells and 1-cells, and maps a 2-cell
(ay,...,a,) — (a), corresponding to p: (... (a1 ®ag)...) ® a, — b, to the 2-cell obtained
by precomposing f(p) with the unique coherence 2-cell

fl(.(ag®ag)...)®@a,) = (... (fla1) ® f(az))...) ® f(an)

given by Theorem 4.6. The theorem also guarantees that [ f commutes with compositions
in [Band [C.

4.9. PROPOSITION. Let B be a bicategory. Then [B is a tensor representable regular
multi-bicategory. Moreover, if f : B — C' is a functor, [f: [B — [C is a tensor strong
morphism.

PRrROOF. This is [Hermida, 2000, Proposition 9.4, combined with the fact that the unitors
of B induce a coherent family of witnesses of unitality in [ B, and Corollary 3.20 for the
fact that preservation of tensor units implies preservation of tensor universal cells for f fom

We can then adapt [Hermida, 2000, Theorem 9.8] to obtain the following.

4.10. COROLLARY. Construction 4.8 defines a functor [ : BiCat — rMulBiCatg,
restricting to a functor [ : MonCat — rMulCatg, inverse to G up to natural iso-
morphism.

4.11. REMARK. Combined with the bicategorical version of [Hermida, 2000, Theorem
9.8], this result implies that a unit constructed in a non-regular poly-bicategory from uni-
versal cells with degenerate boundaries is also a tensor unit in our sense, so the restriction
of a non-regular poly-bicategory with units to its regular 2-cells is tensor O-representable.

4.12. REMARK. We do not wish at the moment to extend the equivalence to the level
of natural transformations; this is because there does not seem to be a good theory of
transformations between morphisms of poly-bicategories that are not equal on 0-cells
(something that is not problematic when limited to multicategories and monoidal cat-
egories, as in Hermida’s treatment). Instead, we will develop it for merge-bicategories in
the next section.

4.13. REMARK. The connection between tensor representable multi-bicategories and bic-
ategories becomes weaker in the regular case when considering laz functors instead of
strong ones. In particular, while arbitrary morphisms of non-regular tensor representable
multi-bicategories automatically induce lax functors, in the regular case units are not even
preserved in the lax sense. It is plausible that the definitions of [Kock, 2008, Section 6]
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can be adapted to the poly-bicategorical context, but we will only treat proper functors
here.

An analogue of Hermida’s theory for closed categories [Eilenberg and Kelly, 1966] and
closed (non-regular) multicategories was developed by Manzyuk in [2012]. It is straight-
forward to adapt our arguments relating to units to that setting, and prove a version of
[Manzyuk, 2012, Proposition 4.3] for regular multicategories; we leave it as an exercise to
fill in the details.

4.14. PROPOSITION. There are equivalences between the following pairs of large categor-
1€8:

(a) right closed (left closed) reqular multicategories with right closed (left closed) morph-
isms, and right closed (left closed) categories with strong right closed (left closed)
functors;

(b) tensor representable, right and left closed reqular multicategories with tensor strong,
right and left closed morphisms, and closed monoidal categories with strong closed
monoidal functors.

Although it is easy to define, we do not know of any applications of the variant of
closed categories with “many 0-cells”, corresponding to closed multi-bicategories.

Poly-bicategories were defined by Cockett, Koslowski, and Seely in order to have a
coherence-via-universality approach to linear bicategories [2000], which in turn they had
defined as the variant with many 0-cells of linearly distributive categories [Cockett and
Seely, 1997b]. While they developed a sophisticated theory of linear functors [Cockett
and Seely, 1999], that preserve linear adjoints while being as lax as possible, we will
only consider their “strongest possible” (but not strict in any sense) variant, where many
structural cells and coherence equations are identified. This is because we are interested in
linear bicategories only as a stepping stone towards an alternative approach to bicategories
and functors.

4.15. DEFINITION. A linear bicategory B is a 2-graph together with two structures of
bicategory, sharing the same vertical composites and units, but with two different families
of horizontal composites and structural 2-cells:

1. the tensors {a ® b : x — z} of 1-cells and {p® q: a ® c — b d} of 2-cells, with
their tensor units {1, : © — x}, associators {ay,.: (a®b) @ c—a® (b@c)}, and

unitors {2 : 1, ® a —a}, {p? :a®1, — a}, and

2. the pars {a ¥ b:x — 2z} of I-cells and {pDB q:a® c— bNd} of 2-cells, with their
par units {1, : x — 2}, associators {a), . : (@ Bb) B c—aB (bW c)}, and unitors

a,b,c

N1, Ba—al, {pY:aD1, —a},

together with two additional families of 2-cells,
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3. the left distributors {6%,.:a ® (b % ¢) = (a ®b) ¥ ¢}, and the right distributors
{00 s (@Bb)@c = aB (b®c)}, both indeved by composable triples of 1-cells

a:x—y,b:y—z andc:z—w.

In addition to the conditions that make B a bicategory in two separate ways, there are
many conditions relating the distributors to the rest of the structure, that we omait here;
see [Cockett and Seely, 1997b, Section 2.1] for all the details. A linear bicategory with a
single 0-cell is called a (non-symmetric) linearly distributive category.

Given two linear bicategories B,C, a strong linear functor f : B — C' is a morph-
ism of the underlying 2-graphs that is a functor for both bicategory structures separ-
ately, with separate families of structural isomorphisms {fy, : f(a) ® f(b) = f(a ®b)},
[F2 1y = F(L)} and {2, F(a) B F(B) — FlaD )L {7 Ly — F(Ls)}, which

furthermore make the diagrams

idg(e o)t i b),f(c
@) ® 103 2 vy @ (1) 3 £(0) LU () © F0) 3 ()
f?b??cl lffb 2l idf(c) (20)
Fa® 63 e) ———— f(@@H) T ) ——— [a®) T ](0).
St @idy 0%, b),f(c
a0 @ 12 V@) 3 10) © £ LS (0) D (1) @ 1))
M| [ (@)
F@FD) 06— [0 (b8 ) = F(0) 3 [ 0]

commaudte.
Linear bicategories and strong linear functors form a large category LinBiCat. We
write LinDistCat for its full subcategory on linearly distributive categories.

4.16. CONSTRUCTION. Let X be a representable regular poly-bicategory; we endow G X
with families of cells as required by the definition of a linear bicategory, as follows. For the
two bicategory structures, first use tensor representability, as in Construction 4.3, then use
par representability, applying the same construction to X . Finally, for each composable
triple of 1-cells a, b, ¢, let 8%, be the unique 2-cell obtained by the factorisation

a,b,c
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and 0}, . the unique 2-cell obtained by the factorisation

o b®c
a
tiy,b@(jr a7§’(b®c

If Y is another representable regular poly-bicategory, and f : X — Y a strong morphism,
we give G'f the structure required by the definition of a strong linear functor, using the
fact that f is tensor strong as in Construction 4.3, then the fact that f is par strong,
applying the same construction to f.

Once the general structure of these coherence-via-universality proofs has been under-
stood, it should be a straightforward exercise to prove the following variation on Propos-
ition 4.4, which, for what concerns associators and distributors, overlaps with [Cockett
and Seely, 1997b, Theorem 2.1].

4.17. PROPOSITION. Let X be a representable reqular poly-bicategory. Then GX with
the structure defined in Construction 4.16 is a linear bicategory. If f : X — Y 1is a strong
morphism of representable regular poly-bicategories, Gf : GX — GY with the structure
defined in Construction 4.16 is a strong linear functor of linear bicategories.

The following construction is also described in the proof of [Cockett and Seely, 1997b,
Theorem 2.1].

4.18. CONSTRUCTION. Let B be a linear bicategory; we define a regular poly-bicategory
[ B as follows. The 0-cells and 1-cells of [B are the same as the 0-cells and 1-cells of
B. For any compatible choices of 1-cells, the 2-cells p : (ay,...,a,) = (b1,...,b,) in [B
correspond to 2-cells

p:(...(a1®a2)...®an_1)®an—>(...(b175’b2)...7}?bn_1)75’bn

in B. Composition is induced by the composition in B, using associators and distributors
to re-bracket as needed; for example, given 2-cells p : (a) — (b,¢) and ¢ : (¢,d) — (e),
corresponding to 2-cells p : a — bW c and ¢ : ¢ ® d — e of B, their composite
cuta1(p, q) : (a,d) — (b,e) in [ B corresponds to the 2-cell

id i, id, 2%
c0d 2% 0% 0d 28 03 (cod) =5 by,

of B.

Given a strong linear functor f : B — C' of linear bicategories, we define a morphism
[f:[B— [C, which maps a 2-cell (ay,...,a,) — (b,...,b,), corresponding to a 2-cell
p of B, to the 2-cell (f(a1),..., f(an)) — (f(b1),..., f(bs)), obtained by precomposing
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f(p) with the appropriate unique coherence cell for tensors, and postcomposing it with
the appropriate unique coherence cell for pars. The coherence theorem for bicategories,
applied to the two structures separately, together with the commutativity of diagrams
(20) and (21) ensure that composition is preserved.

The following is also an easy consequence of [Cockett and Seely, 1997b, Theorem 2.1]
together with our treatment of units in the case of bicategories, now to be applied twice,
for tensor and par units.

4.19. PROPOSITION. Let B be a linear bicategory. Then [B is a representable regular
poly-bicategory. Moreover, if f : B — C' is a strong linear functor, [f: [B — [C is a
strong morphism.

4.20. COROLLARY. A choice of structure as in Construction 4.16 for each representable
reqular poly-bicategory X and each strong morphism f : X — Y determines a functor
G: rPolBiCatg — LinBiCat, restricting to a functor G : rPolCatg — LinDistCat.

Construction 4.18 defines a functor [ : LinBiCat — rPolBiCatg, restricting to a
functor [ : LinDistCat — rPolCatg, inverse to G up to natural isomorphism.

Before moving on, we briefly treat the theory of linear adjunctions, as defined in
[Cockett, Koslowski, and Seely, 2000, Definition 3.1].

4.21. DEFINITION. Let B be a linear bicategory, and a : x — y, b:y — x two 1-cells in
B. A linear adjunction (¢,n) : a 4 b is a pair of 2-cells ¢ : b® a — 1, (the counit) and
n:1, — a®b (the unit), such that the diagrams

>\®

a

1, ®a a

| [

(aBb)®a T a®d(b®a) — a® L1,

a,b,a

)

b®1, b
| [

b,a,b

commute i B. In a linear adjunction, a is called the left linear adjoint of b, and b the
right linear adjoint of a.

The equational characterisation of linear adjunctions in a poly-bicategory of [Cockett,
Koslowski, and Seely, 2003, Equation 4] relies on degenerate boundaries, so it cannot be
used as is. Nevertheless, an equivalent characterisation based on homs and cohoms still
works, relativised to a choice of weak units.
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4.22. PROPOSITION. Let X be a unital reqular poly-bicategory, a : x — y, b :y — x be
I-cells, and 1, : * — x, L, : y — y a tensor and a par unit in X, respectively. The
following are all equivalent:

1. there exists a 2-cell € : (b,a) — (L) universal at Oy ;

— (L
2. there exists a 2-cell ¢ : (b,a) — (L) universal at 0, ;
%

(
3. there exists a 2-cell n : (1) — (a,b) universal at O ;

4. there exists a 2-cell n: (1) — (a,b) universal at 05 .

Moreover, if X s representable, each condition is equivalent to the existence of a linear
adjunction a 4 b in GX.

PROOF. Fix coherent witnesses of tensor and par unitality as in Theorem 4.1 and its
dual. Then the proof of [Cockett, Koslowski, and Seely, 2003, Proposition 1.7], based on
a characterisation of ordinary adjunctions by Street and Walters [1978, Proposition 2],
goes through, relative to this choice. n

If any of the conditions of Proposition 4.22 holds, we call a a left linear adjoint of b
and b a right linear adjoint of a in X.

If X is left and right closed (respectively, coclosed), and has both tensor and par
units, then every 1-cell has both a left and a right linear adjoint. A choice of adjoints
induces an equivalence between X and (X°P)®; in particular, X is automatically left
and right coclosed (respectively, closed), and it is tensor representable if and only if it
is par representable. Conversely, a representable regular poly-bicategory where every 1-
cell has both a left and a right linear adjoint is closed and coclosed on both sides: this
follows immediately from the analogous statement for linear bicategories, pulled through
the equivalence.

As discussed in [Cockett, Koslowski, and Seely, 2000, Section 3], a linearly distributive
category where every 1-cell has a left and a right linear adjoint is the same as a nonsym-
metric *x-autonomous category, in the sense of [Barr, 1995]. Therefore, we immediately
obtain the following. Let xAutCat be the full subcategory of LinDistCat on nonsym-
metric *-autonomous categories.

4.23. PROPOSITION. The equivalence between rPolCatg and LinDistCat restricts to
an equivalence between rPolCat, and xAutCat.

We conclude this section by re-evaluating one of the main examples of [Cockett,
Koslowski, and Seely, 2003].

4.24. EXAMPLE. In [Cockett, Koslowski, and Seely, 2003, Example 1.8(2)], the following
generalisation of the Chu construction [Barr, 1979, Appendix] was outlined.

Let M be a (regular or non-regular) multi-bicategory; we construct a poly-bicategory
Chu(M) as follows. The 0-cells of Chu(M) are endo-1-cells a : © — z, and a 1-cell
A:(a:x —z) = (b:y — y) of Chu(M) is given by a pair of 1-cells A : z — y,
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Aty — z, and a pair of 2-cells e4 : (A, AY) — (a), eqr : (AL, A) — (b) of M. There is
an evident involution A + A+ on the 1-cells of Chu(M), reversing the roles of the 1-cells
and 2-cells of M.

For all n > 1, given a sequence (Aj,...,A,) of 1-cells with 0TA; = 90~ A;;; for
i=1,...,n—1, and 0T A, = Ay, a Chu band p of type (A1,..., A,) is defined as
an n-tuple of 2-cells

in M, satisfying

cutyi(pr,eq2) = cutyo(pa,€a,),
cuty,i(p2, €4r) = cutya(ps, €a,),
cuty 1 (Pn,€ar) = cutia(pr,ea,).

A 2-cell (Ay,...,A,) = (By,...,By), with n+m > 1, is defined to be a Chu band of
type (Ay,..., A,, BL, ... Bi). Notice that this only defines 2-cells with nullary input
() = (B1,...,Bn) or 2-cells with nullary output (Ai,...,A4,) — () when n > 1 and
m > 1.

Given two composable 2-cells, there is only one way of putting their components
together that is consistent with the typing; for example, given 2-cells p : (A) — (B, C)
and ¢ : (C, D) — (E), corresponding to Chu bands p of type (4,C*, BY) and ¢ of type
(C,D, E*), their composite cuty(p, q) has to be a Chu band r of type (A, D, E+, B+);
the typing forces us to define

ry = cutyq(q,p1): (D, B+, BY) — (A1),
ry = cutya(pa, ¢2) : (EL,B JA) — (D1),
r3 = cuty(pa, q3) : (B, A, D) — (E),
ry = cutya(qi,ps): (A, D El) — (B).

It is an exercise to check that this is, indeed, a Chu band.

If M is non-regular, and A is an endo-1-cell A : (a : v — z) — (a : x — x), it is
possible to define a unary Chu band of type (A) as a single 2-cell p : () — (A) of M,
satisfying cuty 1 (p, es1) = cuty2(p, ea). On the other hand, there is no sensible notion of
nullary Chu band, nor a way of composing a Chu band of type (A) and one of type (A'),
which would be necessary in order to compose a 2-cell () — (A) and a 2-cell (4) — ().
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Thus, contradicting [Cockett, Koslowski, and Seely, 2003, Example 2.5(4)], we claim
that Chu(M) should be defined as a regular poly-bicategory or, at least, a poly-bicategory
with no 2-cells with zero inputs and one output, nor 2-cells with one input and zero
outputs.

In particular, the construction of units from universal 2-cells with nullary input or
output does not apply, as it requires 2-cells () — (1,) and (L,) — (), unless done in an
entirely circular way (defining the “missing” 2-cells to be those of the linear bicategory
one wants to induce, strictified in order to recover an associative composition). That is,
Chu(M) is never “representable for tensor units” in the sense of [Cockett, Koslowski, and
Seely, 2003, Section 2].

Nevertheless, it is true that, if M is tensor O-representable, Chu(M) is both tensor and
par O-representable. Fix a tensor unit 1, : x — = on each O-cell x of M, and a coherent
family of witnesses of unitality {l,,7,} as in Theorem 4.1. For each O-cell a : x — z of
Chu(M), we claim that the 1-cell 1, of Chu(M) given by the pair of 1-cells 1, : x — =,
a: x — x, together with the pair of 2-cells [, : (1;,a) — (a) and 7, : (a,1,) — (a), is a
tensor unit on a in Chu(M).

To prove this, let A: (a: 2z — 2) — (b:y — y) be a 1-cell in Chu(M). The triple of
2-cells of M

lA,l =€y (A, AJ') — (CL),
lag =740 (AL, 1) — (AL),
las =1la: (1, A) — (4),

defines a Chu band of type (1,, A, A*), that is a 2-cell I : (1,, A) — (A) of Chu(M): the
three Chu band conditions are instances of equations (15), (16), and (14), respectively.

It is then a straightforward exercise to show that this 2-cell is universal at ;" and
at 0, . For example, given a 2-cell p : (1,,I') — (A, A) in Chu(M), we can obtain a
unique factorisation through a 2-cell p : (I') — (A, A), whose components of the form
(I'1,T'y) — (B) are the unique factorisations through a witness of unitality in M of the
components (I'1, 1,,Ts) — (B) of p.

Similarly, we define a 2-cell r4 : (A, 1) — (A) of Chu(M), with components

ra1 =1L (1y,Al) — (AL),
TA2 ‘= €41 (AJ_,A) — (b),
raz =141 (4,1,) — (4),

and prove that it is universal at 9;” and at d; . This proves that the 1, are tensor units
in Chu(M).

The fact that 1} is a par unit in Chu(M) can either be checked directly, or de-
rived, by duality, from the fact that the morphism (=) : Chu(M) — Chu(M),
defined as the identity on 0O-cells, as A — A+ on 1-cells, and mapping a Chu band b,
seen as a 2-cell (Ay,...,A,) = (Bi,...,By), to the same Chu band seen as a 2-cell
(BL,...,Bf) — (A, ..., A{), is an involutive isomorphism of regular poly-bicategories.
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It is equally straightforward to check that the 2-cell e4 : (A, A+) — (1) with com-
ponents €41 1= ruL, €42 = la, and €43 1= €4 is universal at J; and J,, which makes
it a witness of AL as a left linear adjoint of A; the 2-cell e41 : (At A) — (1) defined
similarly shows that it is also a right linear adjoint.

The conditions for Chu(M) to be tensor and par 1-representable do not differ from
those stated in [Cockett, Koslowski, and Seely, 2003, Example 2.5(4)].

4.25. REMARK. A higher-dimensional version of the Chu construction was proposed by
Shulman in [2017], based on the example of a “2-multicategory” of multivariable adjunc-
tions in [Cheng, Gurski, and Riehl, 2014]. The same remarks about units should apply,
relative to a suitable notion of universality up to isomorphism.

5. Merge-bicategories and higher morphisms

Let B be a bicategory. Then B can also be seen as a degenerate linear bicategory, whose
two bicategory structures coincide, and whose right and left distributors are associat-
ors and inverses of associators, respectively. Clearly, a functor of bicategories becomes
a strong linear functor of the corresponding linear bicategories, so this determines an
inclusion ¢ : BiCat — LinBiCat exhibiting BiCat as a full subcategory of LinBiCat.

Composing this with [ : LinBiCat — rPolBiCatg7 we can realise every bicat-
egory as a representable regular poly-bicategory. Indeed, there is a certain asymmetry
in Construction 4.8, where we choose to realise a bicategory as a tensor representable
multi-bicategory, rather than its par representable dual: this makes sense at the level
of morphisms, if we are interested in lax rather than colax functors; not so much when
limiting ourselves to proper functors.

However, the characterisation of bicategories as degenerate objects of rPolBiCatg is
quite unsatisfactory, as it amounts to requiring that for some choice of tensors, pars, and
their units, the representing 1-cells for tensors and pars coincide, and the tensor and par
units coincide. This kind of post-selection, requiring certain equalities or isomorphisms
between specific cells, goes against the spirit of coherence-via-universality, where we only
care about the properties of cells, and not their names.

Rather, we would like to make the choice of pars and par units a consequence of the
choice of tensors and tensor units, the way it is (trivially) in the passage from bicategories
to degenerate linear bicategories. This would be possible if a tensor t : (a,b) — (a ® b)
had a unique “inverse” t~1 : (a ® b) — (a,b), but there is no way to make sense of this in
a poly-bicategory, for lack of compositions along multiple 1-cells.

On the other hand, it is possible to compose 2-cells in a bicategory “along composites
of multiple 1-cells”. This is implicit in the string-diagrammatic calculus for bicategories
[Joyal and Street, 1991], when string diagrams are seen as Poincaré duals of pasting
diagrams, since string diagrams can usually be composed along multiple edges.

In this section, we make this a structural possibility, in a variant of poly-bicategories
that we call merge-bicategories: while “cut” is composition along a single edge, and “mix”
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is parallel (or nullary) composition [Cockett and Seely, 1997a], we speak of “merge”
for composition along one or more edges, or, in terms of pasting diagrams, the most
general composition that preserves up to homeomorphism the topology of diagrams as
combinatory polygons.

This will allow us to recover bicategories, instead of linear bicategories, as the repres-
entable objects, and also to develop a satisfactory theory of natural transformations and
modifications.

5.1. DEFINITION. Let X be a reqular 2-polygraph. We write X, for the set of composable
non-empty sequences of 1-cells of X ; that is, the elements of X~ are sequences (ay, . . ., a,)
of 1-cells of X, such that 0T a; = 0~ a;yq, fori=1,...,n—1.

For alln,m >0, and1 <113 <13 <n, 1 <71 <o <m, we also define functions

o> . XZ(n’m) — X/, P — (@_lp,. d..p),

[i1,i2] - O,D

ot :X(n’m)—>X1+, pl—>(8;gp,. o' p).

[71,72] < 05,P

We write simply 0~ for 81 )’ and O for 8[1 m]

5.2. DEFINITION. A merge-bicategory is a reqular 2-polygraph X together with “merge”
functions
[i1,i2]
1rg
X(n m) %o X(p,q) [71.72] (n+p—L,m+q—0)
a[erl g2l Tlinsigl 2 X2 ’

whenever 1 < j; < jo <m and 1 < iy <y < p, such that { := jo—(j1 —1) =iy — (i1 — 1),
satisfy the two conditions on any side of the following square:

(b)

11 = 1 —- jg =m
() (c)

izszﬁ:l-

Each pair of conditions corresponds to a diagram in (1), where the shared boundary can
now comprise multiple 1-cells. The interaction of merge with the boundaries is also evident
from the dz’agmms: explicitly,

(a) O mrg] ]]( ,8) = O t,
ot 1<k<j-—1,
8+mrg&l ;2](15,3) =018 n<k<jh+tq-1,
Oyt NHa<k<m+q—p;

i ¢, 1<k<n,
() Opmeg ) (1) = { % =re
s henitS; N+H1<k<n+p—{

ot 1<k<m-—{,
Opses: m—L+1<k<m+q—1¢

1 12]
1, m]

8+mrg
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8,;8, 1§k‘§21—1,

(c) 8,;mrgFl’i2](t, $) =0ty 1<k<i+n-—1,

17m]

o) mrg 2117’;2]] =0s;
i Oy s, 1<k<p-—{
(d) 3;mrg%f’.”]](t,s) — 9 SASP
. k:—p—l—ét7 p—L+1<k<n+p-—1{
i Ofs,  1<k<q,
a,jmrghl’.p]] (t,s) = SRhR>¢
” O q+et g+1<k<m+q—~

Moreover, the mrg% 1’j22]} satisfy associativity and interchange equations that guarantee

the uniqueness of the merger of three or more 2-cells, whenever they can be merged in
different orders. In addition to the 9 associativity schemes of diagram (4) and the 8
interchange schemes of diagram (5), which now allow the shared boundaries to comprise
more than one 1-cell, there are 16 new associativity schemes:

.
. AN A i AN N
N ’ ~ 7
o ’ N P ’ A , , \ JRAN s
~ \ ’ o L] N -
N ~ / b [} 4 ° , - \
k) ° N A \ ® > ° °” \

/ \ L Y Sl g \ ~

° \ A . 0. __- v \ 7 M2 \\ A °
N LA . ) \ [} N <
So v, So Pal v, A N/ e

~eo__ye® S~ o _ . o ___- -
-—== =TT ~ =TT~ e TTT=N
o “e o Ao - >e - )
AN AN N . . AN
4 NOor N N s~y MY ’ PET PUAR ° A
N Vv, e 1 ] o S 72 UIPPEEERUCE
-

R ./ Py B Se__.A Y \ f ;f\ v o’ ° v
. === ’ . - ° N e___- . \ 7 °
~ . AN A ¥y A \ ’ A
~ - ~ . G P N _
S =" - Ssa__-" o _ _-" ~y>e---

- @=mTTTTS~L emm=—~a e~
,->e - 7‘0\ \\ L ~< e ~\\

/' \ M F RN i . Y| ° N
o N ° ) e ~ ° ° P ° \ --=e \,
ATS-o-2e 7‘ ' N v 17‘ Ve S N v, AN e

1 ’

° N LN e A YA SN, . ’ v A
~ N ~ ' / N 4 v/
~ N S o . < Ags v

_______ 4 ~eae =Y ~Sem -7 ~——
—————————— ~ PRy ————3
A% ~ o \_; .- g - e,
’ \ N K ° e ° e VAN
1
P kY e ;N P / e-""~. A ° / N
[ ) o 7 1] .\‘ >|. ° AN N y ,7.\ 71.
-
" ; ~a ./ .\ N A \ ,/ \\ W. o~ LS
M/ A S N . N1 Ny e v,
o.__-- S==->e-" o.___50 S~y e

Given two merge-bicategories X,Y, a morphism f : X —[> Y is a morphism of
11,

the underlying regular 2-polygraphs that commutes with the mrg; ;.22]] functions. Merge-
bicategories and their morphisms form a large category MrgBiCat.

The merge-composable pasting diagrams of 2-cells in a merge-bicategory are precisely
those whose shape is a constructible 2-molecule, as defined in [Hadzihasanovic, 2018]. The
obvious forgetful functor U : MrgBiCat — r2Pol is monadic: its left adjoint freely adds
all the merge-composable pasting diagrams of 2-cells to a regular 2-polygraph.



932 AMAR HADZIHASANOVIC

The forgetful functor factors through a functor U; : MrgBiCat — rPolBiCat, which
endows the underlying regular 2-polygraph with the operations

cutj; 1= mrgm]

So a merge-bicategory can be seen as a regular poly-bicategory with additional structure.

5.3. REMARK. The functor U is faithful, but it is neither full nor essentially surjective:
not every regular poly-bicategory admits a structure of merge-bicategory, and if it does
admit one, it may not be unique (that is, being a merge-bicategory is not a property of a
regular poly-bicategory).

For example, let B be the regular poly-bicategory corresponding to a Boolean algebra,
as in Remark 3.9. Then B has a 2-cell s : (T) — (T,L1), since T = TV L, and a
2-cell t : (T,L) — (L), since T AL = 1. However, unless T = L, there is no 2-cell

(T) = (L) in B, hence no way to define mrgﬁ’g%(s,t). Therefore B is not U; B for any

merge-bicategory B. This proves that U; is not essentially surjective.

Next, let X be a regular polycategory with four 1-cells a,b,c,d, and four 2-cells
s (¢) = (a,b), t : (a,b) = (d), r1 : (¢) — (d), and 75 : (¢) — (d); notice that
there are no cut-composable pairs of 2-cells. However, there are two possible structures of

merge-bicategory on the underlying regular 2-polygraph, X; with mrg% %(s t) :=r and
X, with mrg{l 2}(3 t) := ry, such that U X, =U X, = X.
Moreover, X has an involutive automorphism which exchanges r; and ry, but it does

not lift to an automorphism of either X; or X,. This proves that U; is not full.

The expanded possibilities for composition open up possibilities for division. In the
following, we assume that it is clear from context what a well-formed equation is.

5.4. DEFINITION. Lett € Xé"’m) be a 2-cell in a merge-bicategory X. We say that t is

universal at 9% .. if, for all 2-cells s and well-formed equations mrg[ 1 }(t x) = s, there

[71,J2] [1,72]

exists a unique 2-cell v such that mrgBl’?]] (t,7) = s.

We say that t is universal at 8[1 s if, for all 2-cells s and well-formed equations

mr [i1,42]
81,2
We say that t is left universal if it is universal at 0%, and right universal if it is

universal at 0~. We say that t is universal if it is both left and right universal.

(x,t) = s, there exists a unique 2—cell r such that mrgg.ll’z]}(r, t) =s.

It is clear that any cell of a merge-bicategory X that is universal at 8;-“ orJ; in U1 X is
universal at Gj or 8 ) in X. Therefore, any notion of universality that we have defined
in the context of regular poly-bicategories still makes sense for merge-bicategories, and we
will casually employ the same terminology for special universal cells, speaking of tensors,
pars, tensor and par units. We will also use “universal at 9, ” (or 6J+) as an abbreviation
of “universal at g, ;" (or 8§7j]).

As we have universal 2-cells with multiple inputs and outputs, so we have unit 2-cells
with multiple inputs and outputs.
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5.5. DEFINITION. Let I' = aq,...,a, be a composable sequence of 1-cells in a merge-
bicategory. A 2-cell idp : (T') — () s a unit on I if, for all t € X™™, if O it = (1)

J1,J2
then mrg{1 nj.ﬂ (t,idr) =t, and if 9 , it = (I') then mrgﬁlgf}(idp, t)=t.

b
J1

It is easy to adapt the proofs of Lemma 2.14, Proposition 2.15, and Proposition 2.17
to obtain the following.

5.6. LEMMA. Letp: (a1,...,a,) = (b1,...,by) be a universal 2-cell in a merge-bicategory
X, and let id : (ay,...,a,) = (a1,...,a,), id : (b1,...,bym) = (b1,...,byn) be the unique
2-cells such that
1n]/. 1,m .
mrghn} (id, p) = p, mrg{l?m} (p,id") = p.
Then id is a unit on (ay,...,a,), and id" is a unit on (by,..., by).

5.7. PROPOSITION. Let X be a merge-bicategory. The following are equivalent:

1. fgr all composable sequences of I-cells (') in X, there exist a composable sequence
(I') and a universal 2-cell p : (I') — (I');

2. ]ﬁ)r all composable sequences gf 1-cells (I') in X, there exist a composable sequence
I' and a universal 2-cell p' : (I') — (T');

3. for all composable sequences of 1-cells (I') in X, there exists a (necessarily unique)
unit idr on T

5.8. DEFINITION. A merge-bicategory X is unital if it satisfies any of the equivalent
conditions of Proposition 5.7.

This stronger notion of unitality is, in fact, all that we need to make the two bicategory
structures induced by a representable regular poly-bicategory collapse.

5.9. PROPOSITION. Let X be a unital merge-bicategory, and p : (I') — (A) a 2-cell of X.
The following are equivalent:

1. p is universal at 0" ;
2. p is uniwersal at 0~ ;

3. p is an isomorphism, that is, it has a unique inverse p~* : (A) — (T') such that
mrg, " (p,p~") = idr, and mrg), " (p~", p) = ida.
[1,m] 5 ’ [1,7] ’
5.10. COROLLARY. Let X be a unital merge-bicategory, and let a,b be a composable pair
of 1-cells. Then each tensor (a,b) — (a ® b) determines a par (a ® b) — (a,b), and vice
versa.
In particular, U1 X is tensor 1-representable if and only if it is par 1-representable.

PROOF. A tensor ¢ : (a,b) — (a ® b) is universal at 0%; by Proposition 5.9, it is an
isomorphism, with an inverse ¢t : (a ® b) — (a,b) which is also an isomorphism. In
particular, t~! is universal at 9, that is, it is a par. [
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We do not quite have an equivalence between tensor O-representability and par O-
representability, because the inverse of a universal 2-cell exhibiting a right hom may
not exhibit a right cohom. On the other hand, when U; X is both tensor and par 0-
representable, one structure determines the other.

5.11. DEFINITION. A unital merge-bicategory X is O-representable (1-representable, rep-
resentable) if the reqular poly-bicategory Uy X is O-representable (1-representable, repres-
entable).

5.12. PROPOSITION. Let X be a O-representable merge-bicategory. Then:
(a) a 1-cell 1, : x — x is a tensor unit if and only if it is a par unit;
(b) a 1-cell e : x — y is tensor universal if and only if it is par universal.

Moreover, the 2-cells that exhibit 1, as a par unit, or e as par universal, can be chosen as
wnverses of the 2-cells that exhibit 1, as a tensor unit, or e as tensor universal.

PROOF. Suppose 1, : © — x is a tensor unit, and fix witnesses of its tensor unitality
{12, r®}. Let L, be a par unit on z, which exists by par O-representability of X, and also

a’'a
fix witnesses {{7,77}. Then I§ : (1,, L) = (Lg) and (r7)7" : (14, La) — (1,) are both
universal at 9;, so by factoring the second through the first we obtain an isomorphism
p: L, — 1,. We can postcompose all the [ and the r,’ with p, to obtain witnesses of
the par unitality of 1,. But the {(I®)~!, (r®)~!} are also universal at d; , so we can apply
Lemma 2.24 to conclude that they are universal at 95 or 9], as needed. The converse
implication follows immediately by duality.

Now, let e : z — y be tensor universal. Since tensors and pars coincide in X, and,
by the first part, so do tensor and par units, we know that e is “par invertible”, that is,
there exist a tensor universal 1-cell ¢* : y — x and 2-cells exhibiting e % ¢* ~ 1, and
e* % e~ 1, Moreover, because e, e* have tensors with arbitrary 1-cells a : y — 2z and
b:x — 2/, they also have pars with arbitrary 1-cells, so the derivation of par universality
from par invertibility as in Proposition 3.17 (dualised to X ) goes through even if X is
not 1-representable. The fact that the 2-cells exhibiting par universality can be picked as
the inverses of the 2-cells exhibiting tensor universality is another immediate consequence
of Lemma 2.24. [

5.13. REMARK. In fact, we can pick coherent witnesses of tensor and par unitality which
are mutual inverses: starting from arbitrary families that are mutual inverses, the con-
struction in the proof of Theorem 4.1 and its dual produce coherent families that are still
mutual inverses.

Furthermore, even when X is not O-representable, if 1, is both a tensor unit and a par
unit, or if e is both tensor and par universal, witnesses of par unitality or universality can
be chosen as inverses of witnesses of tensor unitality or universality.
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5.14. DEFINITION. Let X be a merge-bicategory. A 1-cell 1, : x — x in X is a 1-unit if
it 18 both a tensor unit and a par unit. A 1-cell e : x — y is universal if it is both tensor
and par universal.

Corollary 5.10 allows us to simplify the definition of 1-representability for merge-
bicategories, by putting unitality and 1-representability on the same footing; then, Pro-
position 5.12 allows us to further simplify the definition of representability, emphasising
its symmetry.

5.15. PROPOSITION. A merge-bicategory X is representable if and only if

1. for all 0-cells x in X, there exist a 0-cell T and a universal 1-cell e : x — T, or a
universal 1-cell € : T — x;

2. for all 1-cells a in X, there exist a 1-cell @ and a universal 2-cell p : (a) — (@), or
a universal 2-cell p' : (@) — (a);

3. for all composable pairs a,b in X, there exist a 1-cell a ® b and a universal 2-cell
t:(a,b) = (a®Db), or a universal 2-cell t': (a @ b) — (a,b).

Universal 2-cells with arbitrarily long sequences as inputs or outputs, as required by
Definition 5.8, are obtained by composing the binary “tensors” or “pars”.
Similarly, we can simplify the definition of a strong morphism.

5.16. PROPOSITION. A morphism f : X — Y of representable merge-bicategories is
strong if and only if it preserves universal 1-cells and 2-cells.

5.17. DEFINITION. We write MrgBiCatg, for the large category of representable merge-
bicategories and strong morphisms.

Now, we have several ways of giving GX a bicategory structure, starting from a
representable merge-bicategory X, all of them leading to the same result (simply unravel
the definitions):

1. use the tensor representability of U; X, applying Construction 4.3;
2. use the par representability of U; X, applying the dual of Construction 4.3;

3. apply Construction 4.16 to U; X, choosing tensors and pars, and witnesses of tensor
and par unitality, that are mutual inverses, as granted by Corollary 5.10 and Pro-
position 5.12: the result is a degenerate linear bicategory, which can be pulled back
through the inclusion ¢ : BiCat — LinBiCat.

In fact, in constructing the bicategory directly from a merge-bicategory, some of the defin-
itions can be simplified, using the algebraic characterisation of universal 2-cells (invertibil-
ity), instead of their universal property. For example, given a pair of 2-cells p : (a) — (¢),



936 AMAR HADZIHASANOVIC
q: (b) = (d), such that 0T0Tp = 9-9~ ¢, we can define p ® g as the composite

c®d

1o

"

a®b

Conversely, we can lift [+ : BiCat — LinBiCat — rPolBiCatg to MrgBiCat,,
using Theorem 4.6, which is applicable to degenerate linear bicategories whose distributors
are associators, to define the composition of 2-cells along multiple 1-cells.

We keep the notation G : MrgBiCat, — BiCat and [ : BiCat — MrgBiCat,, for
the functors that correspond to the two constructions. We have all that is needed to state
the following.

5.18. THEOREM. G : MrgBiCat, — BiCat and | : BiCat — MrgBiCat,, are two
sides of an equivalence of large categories.

What advantage does this have over the equivalence with rMulBiCatg? First of
all, unlike (regular) poly-bicategories, merge-bicategories have a natural monoidal closed
structure, giving access to higher morphisms. However, we will not try to extend the
equivalence of Proposition 5.18 to some bi-equivalence of bicategories, or tri-equivalence
of tricategories: instead, working with closed structures allows us to consider lax trans-
formations that do not fit properly into a higher-categorical structure on the same footing
as the pseudo-natural transformations that do.

5.19. CONSTRUCTION. Let X, Y be merge-bicategories; we define a merge-bicategory
X®rY as follows.

e The 0-cells of X ®Y are of the form xxy, for x in X and y in Y.

e The 1-cells of X ®Y are either of the form z®b : zxy — Xy, for z in X, and
b:y— %y in Yy, or of the form axy : a8y — 'Ry, for a : x — 2/ in X; and y in
Y.

e The 2-cells of X ®Y are generated under the merge operations by

xgb/, """" \xlgb blﬁy/,o """" > o\blmﬁy /
/w\ ° ][ng ° ][alzb
/x\xa ’ alWJ\J e /a\nﬁy ) x a!xy )

for all O-cells z, 2" in X and ¢,/ in Y, all 1-cellsa:x — 2'in X andb:y — 3 inY,
and all 2-cells p : (ay,...,a,) = (b1,...,bp) in X, p': (d},...,a,) — (b},...,0),) in
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Y, subject to the equations

[i1,82] [i1,82]

rrmrg; " (p', ¢) = mrg " (rrp 2R,

gb?yg}] (p, )=y = mrgbll’;]] (pRy, qRy),

whenever the left-hand side is defined for O-cells z in X and y in Y, and 2-cells p, ¢
in X and p/,¢ in Y, and

x’xb/l/w————n\x’imbﬁn x&b//w————n x'=b),

e \
[
c&b’Tr/

-G -

/w\ c&a1
\ mp/‘ \
TRa) o---e al, TRa) o--->e :L‘!Xa;l )
blxy/“---‘”\@y b=y .\:_“).\ b ﬁy

alxy a,,&y b |Zc

.____>. = /)O————>o (24)
:’Ezlgc \ \j’rangc 4 bl‘Z ﬁy

(Lllxy'\)o———»o/an\&y' allxy\)o———»o Xy’ ’

whenever the two sides are well-defined. In the diagrams (23), (24), a number of
“squares” c®b}, cRa;, or a; R, byrc is implied.

We extend this construction to pairs of morphisms f: X — X’ g : Y — Y’ by defining
(frg)(zxy) = f(r)=Rg(y) on generators, and extending freely to generic cells.

5.20. DEFINITION. We call the merge-bicategory X Y, as defined in Construction 5.19,
the lax Gray product of X and Y.

5.21. PROPOSITION. The lax Gray product defines a monoidal structure on MrgBiCat,
whose unit is the merge-bicategory 1 with a single 0-cell and no 1-cells or 2-cells.

PROOF. (Sketch.) Diagrams composable with the merge operations are classified by the
constructible 2-molecules of [Hadzihasanovic, 2018]; this allows us to realise MrgBiCat
as a reflective subcategory of the category CPol of constructible polygraphs, as defined
there.

Briefly, given a merge-bicategory X, we obtain a constructible polygraph X whose
generators of dimension n = 0,1,2 are the same as the n-cells of X, there is a unique
3-dimensional generator e,, : p — ¢ between any two diagrams whose composites in X
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are equal, and a unique n-dimensional generator, for n > 3, between any two (n — 1)-
dimensional constructible diagrams with compatible boundaries. Conversely, given a con-
structible polygraph P, we obtain a merge-bicategory 7P whose 0-cells and 1-cells are the
same as the 0 and 1-dimensional generators of P, and whose 2-cells are all 2-dimensional
constructible diagrams p in P, quotiented by the equation p = ¢ if there exists a 3-
dimensional generator p — g or ¢ — p in P; the merge operations are induced by free
composition of the generators.

These define adjoint functors 2+ : MrgBiCat — CPol and 7 : CPol — MrgBiCat,
where ¢ is full and faithful. The unit np : P — 7P is the identity on generators of
dimension n < 3; given a 3-dimensional generator f : p — ¢, since p = ¢ as 2-cells of 7P,
it follows that p and ¢, as composable diagrams of generators in P, both merge to the
same 2-cell in 7P. By construction, there is a unique generator e,, : p — ¢ in 7P, and
we set np(f) := e, 4. On n-cells with n > 3, np is just the quotient of all generating cells
whose boundaries are equal in 7 P. The counit ep : T1.X — X is the identity on 0-cells
and 1-cells, and maps any 2-cell of 72X, which corresponds to a composable diagram in
X, to its unique composite in X.

The monoidal structure on CPol then induces a monoidal structure on MrgBiCat
with X ®Y := 7(2.X ®1Y), of which Construction 5.19 is an explicit description. ]

5.22. REMARK. The proof sketch of Proposition 5.21 mirrors the construction of the
lax Gray product of strict 2-categories, as induced by the lax Gray product of strict w-
categories [Crans, 1995; Steiner, 2004]. One could also try to use this directly, realising
MrgBiCat as a (non-full) subcategory of the category of strict w-categories, whose ob-
jects satisfy certain properties. However, it seems more complicated to check that the
monoidal structure on strict w-categories induces the one on merge-bicategories.

The category of merge-bicategories with the lax Gray product is closed on both sides;
right homs and left homs can be calculated using the fact that cells of a merge-bicategory

are in bijective correspondence with morphisms from certain representing objects in
MrgBiCat.

5.23. CONSTRUCTION. Given merge-bicategories X and Y, we describe explicitly the left
hom [X,Y] from X to Y.

e The 0-cells of [X, Y] are morphisms X — Y.

e The l-cells o : f — g of [X,Y] are oplaz transformations, assigning to each 0-cell
of X a l-cell o, : f(z) — g(x) of Y, and to each 1-cell a : © — y of X a 2-cell
o, : (f(a),0,) = (04,9(a)) of Y, such that, for all p : (aq,...,a,) = (b1,...,by) in



WEAK UNITS, UNIVERSAL CELLS, AND COHERENCE FOR BICATEGORIES 939

X, the equation
g bl/)/"‘“?'\gl /0————)0

I % Y
/ .““nf(bm) / ) / >4 )
\wp)/f f(\"[-"”/ f< n)

holdsin Y.

e The 2-cells i : (¢%,...,0") — ( ..., T™) are modifications, assigning to each 0-
cell z of X a 2-cell y, : (ol,...,0") — (7},...,7") of Y, such that, for all 1-cells
a:x — y of X, the equation

m

TS AR

\ Ll \ % .

NEVERS

o--—-e O'
O'y >

holds in Y. Mergers of 2-cells are calculated pointwise in Y, that is, mrggll’z]] (1, v)
[i1,2]

assigns to the O-cell # the 2-cell mrg; jQ](,um, Vy).

We follow the convention of [Borceux, 1994, Section 7.5] regarding lax and oplax
transformations; the right hom from X to Y in MrgBiCat has the analogues of lax
transformations as 1-cells.

5.24. DEFINITION. A I-cell o of [X,Y] is a pseudo-natural transformation if its 2-cell
components are all universal. We say that o is a pseudo-natural equivalence if its 1-cell
and 2-cell components are all universal.

We prove some simple results relating properties of Y to properties of [ X, Y].

5.25. PROPOSITION. Let X,Y be merge-bicategories. Then:
(a) if Y is unital, then so is [X,Y];
(b) if Y is also 1-representable, then so is [X,Y];
(c) if Y is representable, then so is [X,Y].
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PROOF. All the implications are proved by defining units and universal cells in [ X, Y] to
be units and universal cells pointwise in Y. For example, suppose Y is unital. Then,
given any sequence of natural transformations (o!,...,0"), we define a modification
i1, gny : (0F,...,0") = (0',...,0™) whose component at the 0-cell z of X isid (1, _n).
It is straightforward to prove that this is a unit in [ X, Y].

Suppose Y is 1-representable. Then, if 0 : f — g and 7 : g — h are oplax transform-
ations, pick universal 2-cells p, : (04, 7.) = (0, ® 7,) in Y for each 0O-cell x of X. Then,
define an oplax transformation o ® 7 : f — h assigning to each O-cell z the 1-cell o, ® 7,
and to each 1-cell a : x — y the 2-cell

of Y. Tt can be checked that p : (0,7) — (0 ® 7) with components p, is a universal 2-cell
in [X, Y], which makes [X, Y] 1-representable.

Finally, let Y be representable, and pick 1-units 1, on each O-cell y of Y, together
with a coherent family of witnesses of unitality {l,,7,}. For each 0-cell f of [X,Y],
let 15 : f — f be the oplax transformation assigning to each 0-cell z of X the 1-unit
Ly f(z) = f(z), and to each 1-cell a : & — y of X the 2-cell

L@ f(a)
N
o —>0
f(a)
1[%0
f(a) Lyy)

of Y; Theorem 4.1 and its dual ensure that this is well-defined. Then 1; is a 1-unit
in [X,Y], as witnessed, for any oplax transformations o : f — g and 7 : h — f, by
the modifications I, : (1y,0) — (o) with components [, , and r. : (7,15) — (7) with
components r,_, for each 0-cell z. [

In a bicategory, seen as a degenerate linear bicategory, the notion of linear adjunc-
tion collapses to an ordinary adjunction. Through the equivalence between BiCat and
MrgBiCat,, we can import the well-known result that any equivalence in a bicategory
can be improved to an adjoint equivalence; see for example [Leinster, 2004, Proposition
1.5.7]. The following could be stated under less restrictive assumptions, but we will not
need the extra generality.
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5.26. LEMMA. Let e : x — y be a universal 1-cell in a representable merge-bicategory.
Then there exist a universal 1-cell e* : y — x and an adjunction (e,m) : e* 4 e whose
counit € and unit n are universal 2-cells.

The second statement of the following result is also well-known for bicategories and
oplax transformations of functors (see the definition below), but the proof goes through
in a less restrictive context.

5.27. PROPOSITION. Let X,Y be merge-bicategories, and suppose Y is unital. Then:

(a) a modification p is a universal 2-cell in [X,Y] if and only if all its components fi,
are universal 2-cells in 'Y ;

(b) if Y is representable, an oplax transformation o is a universal 1-cell in [X,Y] if and
only if all its 1-cell components o, and its 2-cell components o, are universal in'Y .

PROOF. By Proposition 5.25, [X, Y] inherits from Y the property of being unital or rep-
resentable. For the first statement, we can use the algebraic characterisation of universal
2-cells of Proposition 5.9, combined with the description of units in [X, Y] as pointwise
units in Y.

Let Y be representable, and o : f — g be universal in [X,Y]. Because [X, Y] is repres-
entable, we can apply Lemma 5.26, and obtain another oplax transformation o* : g — f,
together with universal modifications ¢ : (o,0%) — (1y) and 7 : (1,) — (¢*,0), where
units are chosen as in the proof of Proposition 5.25. Then, for all O-cells x of X, the
e, and 7, are universal 2-cells, that also witness an adjunction between e} and e,. This
proves that the o, are universal 1-cells.

Let a : x — y be a 1-cell of X. Using the fact that ¢* is an oplax transformation, and
¢, and 7, are the counit and unit of an adjunction, it is straightforward to check that the
2-cells 0,1 : (04, 9(a)) — (f(a),o0,) obtained by the unique factorisation

lV_,o\f()a)

@/4 / A N

Oy ; y @ Oy ./0
gm“/lg;)

are inverses of the o, : (f(a),o,) = (04, g(a)).

Conversely, if all components of ¢ : f — g are universal, for each O-cell x in X we can
fix an adjunction (., 7,) : 0% 4 0., and for each 1-cell a : * — y we can read equation (27)
backwards as a definition of o}, starting from the inverse of o,. The ¢} and o] assemble
into an oplax transformation ¢* : ¢ — f, and the ¢, and 7, into universal modifications
e:(0,0%) = (1y) and n : (1,) = (¢*,0). Proposition 3.17 and the representability of
[X,Y] allow us to conclude. "
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We recall the definition of oplax transformations and modifications in the context of
bicategories.

5.28. DEFINITION. Let f,g : B — C be functors of bicategories. An oplax transformation
o: f— g is the data of

1. a family of 1-cells {o, : f(z) = g(x)} in C, indexed by O-cells x of B, and

2. a family of 2-cells {0, : f(a) ® 0y = 0, @ g(a)} in C, indexed by 1-cells a:x —y
of B,

such that, for all 1-cells a : x — y, b:y — z in B, the following diagrams commute in C':

-1

Yf(a),f(b).0- fap®id,,
HOEOETS s (fla)@ f(b)®0. b fla@b) o,
idf(a>®0bl
fla)®(o,@g(b)) dazy  (28)
o)t l
(fla)®oy)@g(b) — (0.®g(a))®g(b) — 0.@(g9(a)®g(b)) — 0.@g(a®D),
0, ®idg) QXoy,g(a),g(b) idy, ®gap
a¢®idaz
L@ ® 0z ! f(1,) ® o,
lgzl lalx (29)
g — Oy 1 T
a = 0z @ lg() o 0z ® g(1s).

Oz

An oplax transformation o : f — ¢ is a pseudo-natural transformation if the 2-cells o,
are all isomorphisms, and a pseudo-natural equivalence if, in addition, the 1-cells o, are
all equivalences.

Given oplax transformations o,7 : f — g, a modification p : ¢ — 7 is a family of
2-cells { iy : 0o — 12} of C, indexed by 0-cells x of B, such that for all 1-cells a : v — vy
i B the diagram

f(a) ® oy LN o, ® g(a)
o) ® /l/yl lum ® idg(q)
fla)® T, — T ® g(a)
commutes in C.

The correspondence between oplax transformations of functors of bicategories and
strong morphisms of representable merge-bicategories is not as simple as one would hope.
The commutativity of diagram (29) implies that the components o, at units are isomorph-
isms for all oplax transformations o of functors; but that does not seem to be automatic
for oplax transformations of strong morphisms. Instead, we need a slight specialisation.
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5.29. DEFINITION. Let f,g : X — Y be morphisms of merge-bicategories and o : f — ¢
an oplax transformation. We say that o is fair if, for all universal 1-cells e : x — y in
X, the component o, : (f(e),0,) = (04,9(e)) is a universal 2-cell in'Y .

5.30. REMARK. If we see (lax, oplax) transformations as the next step after morphisms
in a ladder of “transfors” [Crans, 2003], then fair transformations are a natural next step
after strong morphisms: if the latter are characterised by their assigning universal n-cells
to universal n-cells, the former are characterised by their assigning universal (n 4 1)-cells
to universal n-cells, whenever it makes sense. However, we avoid calling them “strong”
because this term is generally used in opposition to “lax”, and it would be confusing to
speak of “strong oplax transformations”.

Restricted to transformations of strong morphisms, we can also see fairness as a re-
quirement for “bi-morphisms” Z® X — Y to be strong parametrically in each variable:
an oplax transformation of morphisms X — Y is the same as a morphism o : ImX — Y,
where I is the merge-bicategory with two O-cells and a single 1-cell between them, and it
is a fair oplax transformation of strong morphisms precisely when o(x & —) takes universal
cells of X to universal cells of Y, for all cells x of I.

Note that all pseudo-natural transformations are trivially fair.

5.31. LEMMA. Let X,Y be representable merge-bicategories, f,g: X — Y strong morph-
isms, and o : f — g an oplax transformation. The following are equivalent:

1. o is fair;

2. for all 1-units 1, : x — x in X, the 2-cell oy, : (f(1:),0.) = (04, f(12)) is universal
mnY.

PROOF. The implication from (a) to (b) is obvious. Conversely, let e : x — y be a
universal 1-cell in X, and take a 1-cell €* : y — x and an adjunction (¢,7) : e* 4ein X
as by Lemma 5.26. Then, postcompose o : (f(e),o,) = (04, g(e)) with
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where we omitted the labels of the inner 1-cells to avoid clutter. Using

g(ly) g(ly)
o A e o— . e
5 ][ ’ W%@
f(1y) oy ’w\ . g(e) oy
o/—\)o o ° e Oc _®
f(e”) . f(e) f(e”) ! fle) >

together with the definition of f,, and the fact that € and 7 are the counit and unit of an
adjunction, we obtain that the result is equal to

which is a composite of universal 2-cells if 0, is universal (in fact, it will turn out to be
a unit). From this, we deduce that o, has a left inverse, and we can show similarly that
it has a right inverse, which proves the claim. [

5.32. DEFINITION. Let XY be representable merge-bicategories. We write [X,Y], for
the restriction of the left hom [X,Y] that has strong morphisms as 0-cells, fair oplax
transformations as 1-cells, and all their modifications as 2-cells. We write [X,Y],s for
the restriction of [X,Y]s that has only pseudo-natural transformations as 1-cells.

Fair oplax transformations and pseudo-natural transformations are closed under ten-
sors, and l-units in [X, Y] are pseudo-natural by construction, so [X,Y]s and [X, Y], are
still representable when [ X, Y] is.

5.33. THEOREM. The following correspond through the equivalence between BiCat and
MrgBiCat

1. oplax transformations and modifications in BiCat, and fair oplax transformations
and modifications in MrgBiCat;

2. pseudo-natural transformations in BiCat and in MrgBiCatg;

3. pseudo-natural equivalences in BiCat and in MrgBiCat,.
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PRroOF. Let f,g : B — C be functors of bicategories, and ¢ : f — ¢ an oplax trans-
formation. By construction, there are 1-cells o, : ([ f)(x) = ([g)(z) of [C, and 2-cells

([ NH(a),0y) = (04, ([g)(a)) of [C corresponding to the components of o, as re-
quired by the definition of an oplax transformation between the strong morphisms [ f
and [g.

Unravelling the interpretation of the equations (25) from [C into C, and using the
commutativity of the diagrams (28) in C, we can check that this is indeed an oplax
transformation, so it suffices to prove that it is fair. This follows from Lemma 5.31, since
the commutativity of the diagrams (29) in C' implies that oy, is a universal 2-cell for each
unit 1,.

Conversely, if f,g: X — Y are strong morphisms of representable merge-bicategories,
and o : f — ¢ is a fair oplax transformation, the components o, : f(z) — g(x) are
automatically 1-cells Gf(x) — Gg(z) in GY, and the components o, induce 2-cells
Gf(a) ® 0y = 0, @ Gg(a) in GY by representability, so it suffices to prove that they
define an oplax transformation between the functors G f and Gg.

Given l-cells a :  — y, b: y — 2, with a chosen tensor ¢,; in X, the commutativity
of diagram (28) in GY follows straightforwardly from

g(a®b) 9(a®D)
o/\)o o/\)o

Jod ]

peeh T 3
NG f\/&

factorising the two sides through the same universal 2-cells in Y. Moreover, from

9(12)

o/\)o
Oy ][O-lm g

f(lx) Oz . L Oy
o— A e o 01, ®
£\, 1)

by the defining equations (19) of f, and g,, and Coherence of witnesses of unitality in Y,
it follows that

z Lo(@)
P .ﬂ.ﬁﬂr\o
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Using the universality of f(1,), and that of o, as granted by the fairness of o, we can can-
cel the leftmost 2-cell on both sides. The remaining equation implies the commutativity
of (29) in GY.

The correspondence between modifications is immediate from the definitions, and the
correspondence for pseudo-natural transformations and equivalences is a simple specialisa-
tion of the first part, using the fact that pseudo-natural transformations are automatically
fair. [

It follows from Theorem 5.33 that, for all bicategories B and C', we can define the
bicategory of functors, oplax transformations, and modifications between B and C as
G[[ B, [Cls, and the bicategory of functors, pseudo-natural transformations, and modi-
fications as G[[ B, [Cl,s. The latter is part of a monoidal closed structure on BiCat
with the better-known “pseudo” version of the Gray product, see for example [Bourke
and Gurski, 2016], but we cannot see any added insight from the perspective of merge-
bicategories.

As usual, we obtain a dual correspondence between lax transformations of functors and
fair lax transformations of strong morphisms. Theorem 5.33 also allows us to transport
the notion of equivalence from bicategories to representable merge-bicategories.

5.34. DEFINITION. A strong morphism f : X — Y of representable merge-bicategories is
an equivalence if there exist a strong morphism g : Y — X and pseudo-natural equival-
ences n:idx — gf and € : idy — fg.

A functor f : B — C of bicategories is an equivalence if there exist a functor
g : C — B and pseudo-natural equivalences n:idg — gf and € : ide — fg.

5.35. COROLLARY. Let f : X — Y be an equivalence of representable merge-bicategories.
Then Gf : GX — GY 1is an equivalence of bicategories. Conversely, if f : B — C is
an equivalence of bicategories, [f: [B — [C is an equivalence of representable merge-
bicategories.

6. Semi-strictification

The definitions and constructions of Section 5 were all given with an eye towards higher
dimensions. In particular, Proposition 5.15 and Proposition 5.16 generalise to the defin-
ition of representable constructible polygraphs and strong morphisms, stated in terms of
the existence and preservation of universal cells [Hadzihasanovic, 2018, Appendix B], of
which representable merge-bicategories are a truncated version.

We essentially defined the lax Gray product of merge-bicategories as the truncation of
the lax Gray product of constructible polygraphs, and our characterisation of “fairness”
of transformations, as explained in Remark 5.30, can also scale up to higher morphisms.

Our aim, in this section, is to develop a strictification strategy, based on this theory,
that also has the potential to scale up. This means that, at the 2-dimensional level, we
need to do a little worse than the strongest strictification result for bicategories, which
says that they are equivalent to strict ones, as this is known to be false for tricategories.
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We warn that a general theory in higher dimensions has not yet been fully developed,
and that, in any case, it remains to be shown that representable constructible polygraphs
will capture the desired properties of weak higher categories (for example, that the group-
oidal ones satisfy a form of the homotopy hypothesis).

In the context of merge-bicategories, strictness is the property of a choice of represent-
ing cells, and related witnesses: it does not make sense to speak of “strict representable
merge-bicategories” tout court. In [Hermida, 2000], Hermida encoded such a choice for a
representable multicategory into the structure of a pseudoalgebra for a 2-monad; following
a general scheme for coherence theorems [Power, 1989; Lack, 2002], he then formulated
strictification as an equivalence between pseudoalgebras and strict algebras.

Our approach, employing an “ordinary” monad 7, will differ in two ways:

1. in order to streamline the discussion, and focus on local combinatorics rather than
a global theorem on a category of pseudoalgebras, we show directly that a repres-
entable merge-bicategory is equivalent to one that supports the structure of a strict
T-algebra;

2. because we are interested in semi-strictification, we separate T into the composite
of two monads Z (for inflate) and M (for merge), related by a distributive law:
roughly, the first encodes the structure relative to units, and the second the structure
relative to composition in the “merger” sense. Supporting the structure of a strict Z-
algebra is a weak enough condition that any representable merge-bicategory satisfies
it, whereas strictification is needed to support an M-algebra structure.

The main point is that the construction of tensors, that is, witnesses of composition can
be separated in two steps:

1. first we “only add units”, which suffices to create unit 2-cells idr : (I') — (I") with
multiple inputs and outputs;

2. then we “only add composites”, whereby a composable sequence I' produces a single
1-cell (T'), and the formal composition of the output boundary of idr produces a
universal 2-cell ¢r : (T') — ((I')), that is, a tensor.

Semi-strictification corresponds to the second step only.

6.1. CONSTRUCTION. Let X be a merge-bicategory. The merge-bicategory ZX is gener-
ated by the cells of X, together with

e for each O-cell z in X, a 1-cell ¢, : © — z and a triple of 2-cells €., : () — (€x),

Tey = le,  (€y€2) = (€) and 7} =17 ¢ (€2) — (€, €2);

T

e for each l-cell a : z — y in X, 2-cells ¢, : (a) = (a), l, : (x,a) — (a),
I¥:(a) = (€,a), 74 : (a,€y) = (a), and 7% : (a) — (a,€,),

subject to the following equations:
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e for all 2-cells p,q in X, if mrg[z1 2]} (p, q) is defined, it is equal in ZX to its value in
X
e for all 2-cells p in ZX, if 97p = a and 9;p = b, then mrggﬁ](p, €.) = p and

mrgﬁ’ﬂ]} (€0,p) = p;

e for all 1-cells a in X, mrgﬁ ;%(l* la) = €, and rnrg{1 2%( \Ta) = €q;
o for all 2-cells p: (a,I") — (b, A),
2,2 1,1 11] /74 ST
mrg Y (p, 1) = mrgi (L, p),  mrglyyl(lp) = mrgy(p. ) (30)

and dually for all 2-cells p : (I, @) — (A, b) in X3™™,

[1,1] [n.n [n.n (1,

mrg (0 m) = mrg 1 (ra,p), mrg 1k, p) = meg) (0, ): (31)

o for all 2-cells p: (I') = (A), if O, p=a,0;,,p="0,0p=0d,0f ,;p=1V

1,541 1,1 * 1,1 *
mrg [ (ro, p) = meg] 70 p), megy (v, r) = megl g0 0). (32)

There is an obvious inclusion morphism 7y : X — ZX.

Given a morphism f : X — Y, we define a morphism Zf : ZX — ZY, which is
equal to ny f on nx, maps the l-cells €, to f(e;) 1= €f@), and the 2-cells €,,lq, 1}, 74,7
to €f(a), ! f(a),l;i(a),rf(a)? r;‘c(a), respectively. This assignment makes Z an endofunctor on
MrgBiCat.

Moreover, consider the iterated construction ZZ X, and denote the cells added at the
second iteration with a tilde. There is a morphism pux : ZZX — ZX, which is the identity
on nzx, maps €, to €, (which completely specifies px on 1-cells), and 6;,l~a,l~2,7:a,1*2 to
€uxas buxas Uy as Tuxas Ty qr TESDECEIVELY.

The nx and px are components of natural transformations Id — Z and ZZ — Z, such
that (Z, u,n) determines a monad on MrgBiCat.

6.2. DEFINITION. We call (Z,p,n), as defined in Construction 6.1, the inflate monad on
MrgBiCat.

6.3. LEMMA. Let X be a merge-bicategory. Then ZX is O-representable, the {e, : x — x}
are 1-units, and the {l,, 7.} are coherent witnesses of unitality in the sense of Theorem

4.1,
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PROOF. First, let us show that ZX is unital. By construction, €, : (a) — (a) is a unit on
a. It suffices to show that a unit exists on any composable pair (a,b) of 1-cells: units on
longer sequences can be composed together from these. We define

1, *
€(as) = Mg\ (5. 1b).
Then, for all 2-cells p with 9, p = a and 9, ;p = b, we have
it 1], . 141 .
mrg " (eany, p) = mrgy 5 (s, megl] (1, p)) = mrg 5 (), mrgl (r, p) =
= mrg}| (mrgy, 5 (15, 7a), p) = mrg?) (éa,p) = p,
and dually on the other side.

Now, let « be a 0-cell of ZX; we want to show that ¢, :  — x is a 1-unit on z,

and that the [, and r, are witnesses of unitality. First of all, ¥ is the inverse of [,:
1,2

mrg[17£(l(’;, la) = €, is true by definition, and

g ) (la, £3) = mrg (02, L) = mrg (17, L) = €
where we used the rightmost equation in (30) and the fact that r =1’ . Dually, we find
that r¥ is the inverse of r,,.
It only remains to show that [, is universal at 9, and r, at d;. This follows from
their invertibility together with the equations (30) and (31): given p: (€;,¢,I') — (a, A),
there is a factorisation

1,1 2,2
p = mrg ) (e, p') = mrg; 5 (9, o),

for a unique p/, and dually with ry,. [

6.4. REMARK. The equations that we imposed on ZX hold in all O-representable merge-
bicategories, when the €, are 1-units, the €, are unit 2-cells, and the {l,,r,} are a coherent
family of witnesses of unitality.

Thus we can see ZX as a free (relatively to X) O-representable merge-bicategory
with chosen 1-units and coherent witnesses of unitality. More precisely, Z arises from an
adjunction between MrgBiCat and a category whose

e objects are O-representable merge-bicategories with a choice of 1-units and coherent
witnesses of unitality, and

e morphisms strictly preserve both the 1-units and the witnesses of unitality.

6.5. REMARK. Note that ZX is never 1-representable, unless there are no composable
pairs of 1-cells in X at all (in which case, there are no composable pairs of 1-cells in ZX
unless one of them is a 1-unit, so 0-representability implies 1-representability). Otherwise,
given a composable pair a,b in X, there is no 2-cell (a,b) — (c) through which €(, ;) may
factor in ZX.

In general, no universal 2-cell or 1-cell of X is universal in ZX, and the inclusion
nx : X — ZX is not a strong morphism.
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6.6. PROPOSITION. Let X be a merge-bicategory. The following are equivalent:
1. X admits an Z-algebra structure o : TX — X where « is a strong morphism;
2. X is O-representable.

PROOF. Suppose o : ZX — X is an Z-algebra structure on X. By Lemma 6.3, there are
units in ZX on all composable sequences I' of 1-cells coming from X, and 1-units on all
0O-cells « coming from X. Since anyx is the identity on X, o maps all cells originally in X
to themselves, so if « is strong, it maps a unit on I' in ZX to one in X, and a 1-unit on
x in ZX to one in X. This proves one implication.

Conversely, suppose X is O-representable, and fix 1-units 1, :  — x on each 0- cell of
X, together with coherent witnesses of tensor and par unitality {la,ra} and {la L)
inverse to each other (see Remark 5.13). Then, define a morphism « : ZX — X which is
the identity on nx, maps €, to 1,, and €,,l,, 3, 74,7 to id, la, la V7, 71, respectively.

By Remark 6.5, there are no universal cells in ZX except the ones freely added, that
is, the 1-cells €,, the 2-cells €., l,, 7, and their inverses. These are all mapped to universal
cells, so v is a strong morphism. It is straightforward to verify that it defines an Z-algebra
structure. |

We move on to the second component of 7.

6.7. CONSTRUCTION. Let X be a merge-bicategory. We define a new merge-bicategory
MX as follows.

e The 0-cells of MX are the same as the 0-cells of X.

e For each composable sequence I' of 1-cells in X, starting at the O-cell x and ending
at the O-cell y, there is a 1-cell (I') : x — y in MX (the “merger” of T).

e For each 2-cell p : (I') — (A), and each pair of partitions I' = I'y,...,I', and
A = Aq,..., A, of the inputs and outputs of p into finitely many subsequences,

there is a 2-cell p<A1 <<A’>”> ((T1),...,(Tw) = ((A1),...,(An)) in MX.

Composition of 2-cells in MX is informally obtained by completely “unmerging” the
boundaries of the components, composing in X, then merging appropriately the bound-
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aries of the result, as in the following example:

a:?;:\\\\“~—é {as) (a:\;:;\\\“~—>o (as)

/ N

Given a morphism f : X — Y, we define a morphlsm f MX — MY, equal to
f on 0-cells, mapping 1-cells (I') to (f(I')), and 2-cells p <<FA’>"> to f(p)2;2?11))>>;'<g(ﬁ7;‘))>.
This assignment makes M and endofunctor on MrgB1Cat

For each merge-bicategory X, there is an inclusion (x : X — MX, mapping a 1-cell

a:x — yto{a):x — y, and a 2-cell p : (ay,...,a,) — (b1,...,by) to the 2-cell
Planen = () {au)) = (br)s - (b))
Moreover, there is a morphism vy : MMX — MX, mapping 1-cells ((I'1), ..., (I',))
o (I'y,...,T,), extending to 2-cells in the obvious way. These assemble into natural
transformations ¢:1d > Mand v: MM — M, such that (M,r,() determines a
monad on MrgBiCat.

/\
j=a

\“/

=

[ ]

(//{\

(=l

no

° &

<

6.8. DEFINITION. We call (M, v, (), as defined in Construction 6.7, the merge monad
on MrgBiCat.

When X is unital, MX can be seen as a free (relatively to X') 1-representable merge-
bicategory with a chosen strictly associative family of tensors, in the following sense.

6.9. DEFINITION. Let X be a 1-representable merge-bicategory and {t.; : (a,b) — (a®b)}
a family of tensors indexed by 1-cellsa:x —y and b:y — z of X.

We say that {t.p} is strictly associative if, for all composable triples a,b,c of 1-cells,
a®@b®c)=(aRb)@c=a®b®c and

a®b®c

(L®b
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6.10. EXAMPLE. Not every 1-representable merge-bicategory admits a strictly associative
family of tensors.

For example, there is a merge-bicategory with a single O-cell and a single 1-cell N, whose
2-cells with n inputs and m outputs correspond to functions N” — N™, and composition
is as in a strict cartesian monoidal category of sets and functions. Any bijective function
N x N — N (a pairing function) defines a tensor ty, but a simple argument shows that
no such pairing can be strictly associative.

Unlike the inclusion into ZX, the inclusion into MX preserves the universal properties
of cells of X: this will be crucial for the semi-strictification argument.

6.11. LEMMA. Let X be a unital merge-bicategory. Then:
(a) MX s 1-representable and admits a strictly associative family of tensors;
(b) the inclusion (x : X — MX is a strong morphism;
(c) if X is representable, (x is an equivalence.

Proor. It follows from the definition of composition in MX that, for each sequence
(Ty),...,(T'n) of 1-cells in M X, letting I" :=T'y, ..., T, the 2-cell (1dp)g3§£:; is a unit.
This implies both that M X is unital, and that (x preserves units and universal 2-cells.

Let (I'1),(I';) be a composable pair of 1-cells in MX, and let I' := I'y, 'y be the
corresponding composable sequence of 1-cells in X. Then

By (ra) ©= (idr)
—1 o .
Bieyy.ryy = (idr)
are mutually inverse 2-cells in M X, so they exhibit (I') as a tensor (and par) of (I';) and
(T'y). This proves that M X is 1-representable. Because units compose to units in X, the
{tir)y ey} form a strictly associative family of tensors in MX.

Suppose that 1, : x — x is a tensor unit in X, and fix witnesses of unitality {l,,r,} for
1,. Let (I') be a 1-cell in M X, corresponding to a composable sequence I' = ay, ..., a,
of 1-cells of X with 07a; = x, and define

Ir == mrg};'y] (o, idr) ¢ (1,,T) = (T) in X,

Uiy = () ey (L) (1) = () i MY

Then {;ry is universal at ;" and at 95, hence is a witness of left tensor unitality of (1,);
one similarly obtains witnesses r of right tensor unitality. Together with the dual proof
for par units, since MX is 1-representable, this suffices to prove that (x is a strong
morphism, by Corollary 3.20.

Next, suppose that X is representable. For each 0O-cell x of X, fix a 1-unit 1, :  — x,
together with coherent witnesses of unitality {l,, 7.}, {i;!,7, '}, and for each composable

a ' a
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sequence I' of 1-cells of X, fix a 1-cell cpr and a universal 2-cell tr : (I') — (cp); if T
is a single 1-cell a, we assume that ¢, = a and t, = id,. Then, we define a morphism

f: MX — X which is the identity on O-cells, maps a 1-cell (I') to ¢r, and maps a

2-cell pg >> << >> to the unique 2-cell (cr,,...,cr,) = (cay,-...,ca,,) Obtained by factor-

ising p : (I't,...,T) — (Aq,...,A,,) through the tr, and the tg;, fori=1,...,n and
j=1...,m

By construction, f(x is the identity on X, so a l-unit on idx in [X, X|, which exists
by Proposition 5.25, is a pseudo-natural equivalence idx — f(x. Moreover, we can
define families of cells of M X as required by the definition of an oplax transformation
e idpx — Cx f, as follows:

e for each O-cell z of MX, let g, := (1,);

e for each 1-cell (F) cx — y of MX, let ey @ ((I'), (1)) = ((1u), (cr)) be the

composite 7y, followed by (tp) F>> : ((T)) — ({cr)), followed by Z(C;.

It is stral%htforward to check that this is, in fact, an oplax transformation, and because
the ( tp ™/ are universal, all components of ¢ are universal, that is, ¢ is a pseudo-natural
equ1valence Thus, (x is an equivalence of representable merge-bicategories. [

6.12. REMARK. Given morphisms of merge-bicategories f,g : X — Y that agree on 0-
cells, let an icon o : f — g be the assignment, to each 1-cell a : © — y of X, of a 2-cell
0, : (f(a)) — (g(a)) of Y, such that, for all 2-cells p : (ay,...,a,) = (b1,...,by) of X,
the equation

1f0\fb - s
ﬂ$<@ p@)ém ﬂszﬁ”“fgam

holds in Y. Through the equivalence between BiCat and MrgBiCat, icons between
strong morphisms of representable merge-bicategories correspond to icons between func-
tors of bicategories [Lack, 2010].

Since (x and f are the identity on 0O-cells, we can say that (x is an “equivalence in the
sense of icons” even when X is l-representable but not 0-representable. More precisely,
there are icons idx — f(x and idyx — (xf whose components are all invertible 2-cells:
namely, the icon whose component at a 1-cell a of X is the unit on a, and the icon whose
component at a 1-cell (I') of MX is (tr){7} : ((T)) = ((er)).

6.13. PROPOSITION. Let X be a unital merge-bicategory. The following are equivalent:
1. X admits an M-algebra structure o : MX — X where « is a strong morphism;

2. X 1is 1-representable and admits a strictly associative family of tensors.
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ProOOF. By Lemma 6.11, MX is 1-representable and admits a strictly associative family
of tensors {tr,y r,) }. If a: MX — X is an M-algebra structure on X, then a((a)) = a
for each 1-cell a of X, and if « is strong, then {a(t(,))} is a strictly associative family
of tensors in X, indexed by composable pairs of 1-cells a,b in X.

Conversely, suppose X is 1-representable and has a strictly associative family of tensors
{tap}. For each composable sequence I' of 1-cells in X, there is a unique 1-cell ®I" and
a unique invertible 2-cell tp : (I') — (®I') obtained as a composite of the ¢,,. We define
a : MX — X to be the morphism that sends each 1-cell (I') to ®I', and each 2-cell
péléll;“;'fé’;“) to the unique p’' : (®I',...,®,) — (®A1,...,®A,,) such that p factors as
a composite of the tr,, followed by p’, followed by the tgi, fori=1,....,n,5=1,...,m.
This defines an M-algebra structure on X.

Clearly o preserves unit 2-cells, so to prove it is strong, by Corollary 3.20, it suffices
to show that it preserves l-umits. If (I') is a l-unit in MX, then (®I') is also a 1-unit,
so it suffices to look at 1-cells in the image of (x. But any such 1-cell comes, a fortior,
from a 1-unit in X. m

6.14. REMARK. In fact, to obtain a necessary condition for representability, we could
require that o be only compatible with the unit, but not the multiplication of M.

6.15. LEMMA. Let f : X — Y be a strong morphism of unital merge-bicategories, and
suppose X 1s O-representable. Then Mf : MX — MY 1is a strong morphism.

Proor. By Lemma 6.11, both MX and MY are 1-representable, and it is immediate
that M f maps units in M X to units in MY . By Corollary 3.20, it then suffices that M f
map a l-unit on each O-cell x of MX to a 1-unit in MY. Because X is O-representable,
there is such a 1-unit coming from X through (x, and M f o (x = (y o f is strong. This
proves the claim. [

Let 7 := MZ. To show that 7 admits the structure of a monad, we introduce a
distributive law from Z to M [Beck, 1969]. Intuitively, the distributive law encodes the
fact that, whenever we merge some 1-cells in a sequence, and then “inflate” it to a unit,
we can first inflate the original sequence, then merge on both sides of the unit’s boundary,
instead:

r M (I
o-->@--——- >e-->e - o-->0e—e--e
i \z
r (I
2® 77T Je . ’,'o’ e .

./ Wf [ ] —_ ./ 1[6 [ ]
Cleo__ yo ‘ i 5@ ‘

r (I

6.16. CONSTRUCTION. Let X be a merge-bicategory. We define ox : ZMX — MZX
as follows.
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e For each cell p of X, nyx(x(p) is mapped to (zxnx(p) (that is, ox “is the identity”
on the inclusion of X into both sides).

e For each O-cell z of MX (equivalently, of X), €, is mapped to (e,) and €., to €, EZ;

e For each 1-cell (I') : z — y of MX, corresponding to a sequence I' = a4, ..., a, of

1-cells of X, ey is mapped to (E(F))E;i, liry and rry to

(lr)g‘jxr), where [p := mrgﬁ:ﬂ(lal, ery) in IX,
(rr)§§§<ey>, where 71 1= mrg{’f;ﬁ] (Tan,€r)) in ZX,
respectively, and l’<"F> and T?U to their respective inverses.

The ox assemble into a natural transformation o : ZM — MZT.

Let fi,n : TT — T be the natural transformations with components

fix = vrx o MMpux o Mirx, Nx = (zx °Nx;
for each merge-bicategory X.

6.17. PROPOSITION. The natural transformation o : M — MZI is a distributive law
from (Z, u,n) to (M,v,(). Consequently, (T, [1,n) determines a monad on MrgBiCat.

PROOF. An exercise in unpacking definitions. [

6.18. LEMMA. Let X be a merge-bicategory. Then T X 1is representable and admits a
strictly associative family of tensors.

Proor. By Lemma 6.3, ZX is O-representable, and by Lemma 6.11 the inclusion of ZX
into 7 X preserves 1-units; because the 0-cells of 7 X are the same as the 0-cells of Z.X,
we conclude that 7 X is also O-representable. By Lemma 6.11, 7 X is also 1-representable
and admits a strictly associative family of tensors, which completes the proof. [

6.19. PROPOSITION. Let X be a merge-bicategory. The following are equivalent:

1. X admits a T -algebra structure o : TX — X where « is a strong morphism;

2. X 1s representable and admits a strictly associative family of tensors.

PROOF. By Lemma 6.11, (zx : ZX — T X is a strong morphism, so 5 := alzx : ZX — X
is both a strong morphism and an Z-algebra structure on X; by Proposition 6.6, X is
O-representable.

Moreover, by Lemma 6.18, 7 X is 1-representable and admits a strictly associative
family of tensors {t(r,) r,)}; then a((a)) = a for each 1-cell a of X, and {a(ty,ey)} is a
strictly associative family of tensors in X.

Conversely, by Proposition 6.6 and Proposition 6.13, X admits an Z-algebra structure
a:TZX — X and an M-algebra structure § : MX — X, such that both o and g are
strong morphisms. Then o Ma : MZX — X is a T-algebra structure, and by Lemma
6.15 B o Ma is a composite of strong morphisms, therefore it is strong. [
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The structure of T-algebra leads to a stricter form of bicategory, as follows.

6.20. CONSTRUCTION. Let v : T X — X be a T-algebra such that « is a strong morph-
ism; then GX admits “canonically” the structure of a bicategory. For vertical composi-
tion and units, there are already unique choices. As a horizontal composite of a : x — ,
b:y — z, pick a({a,b)). The horizontal composites are witnessed by the strictly associ-
ative family of tensors {a((e(a,b))g%))}

As a horizontal unit on the 0-cell z, pick a((€;)). The {a(x(l,), aCx(ry)} are coherent
witnesses of unitality of «((e,)).

The rest of the bicategory structure on GX is determined by these choices; the fact that
the chosen family of tensors is strictly associative implies that the bicategory structure is
strictly associative.

6.21. LEMMA. Let a : ZX — X be an Z-algebra. Then MX admits a canonical T -
algebra structure B : T(MX) — MX, and if « is a strong morphism, then so is 3.

PROOF. Let 8 : T(MX) — MX be the composite
Maorvzx o Moy;

a straightforward calculation shows that it is compatible with the multiplication and unit
of T, hence it defines a T-algebra structure on MX.

Suppose that « is a strong morphism; by Proposition 6.6, we know that X is 0-
representable and, a fortiori, unital, and by Lemma 6.3 we know that ZX and Z(MX)
are both O-representable. Moreover, by Remark 6.5, we can characterise the universal
cells of ZM X, and the morphism ox : ZMX — MZX maps them to universal cells of
T X, as described in the proof of Lemma 6.18.

Thus, ox is a strong morphism, and both ox and « satisfy the conditions of Lemma
6.15; it follows that Mo x and Ma are strong morphisms. Since we know how to construct
1-units and units in 7X and M7 X, which are both representable merge-bicategories, it
is not hard to check that vzx is also a strong morphism. We conclude that 3 is a strong
morphism. [

We have reached the conclusion of our argument.

6.22. THEOREM. Let X be a representable merge-bicategory. Then there exist an equi-
valence f : X — Y of representable merge-bicategories, and a T -algebra § : TY — Y
such that B is a strong morphism.

PROOF. Since X is, a fortiori, O-representable, by Proposition 6.6 it admits an Z-algebra
structure o : ZX — X such that « is a strong morphism. It follows from Lemma 6.21
that MX admits a T-algebra structure g : T(MX) — MX such that g is a strong
morphism. Finally, by Lemma 6.11, {(x : X — MX is an equivalence of representable
merge-bicategories, so the statement follows with Y := MX. n
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To claim that semi-strictification for bicategories follows from Theorem 6.22 through
the equivalence between MrgBiCat, and BiCat would be at least partially circular,
given that we relied on Mac Lane’s coherence theorem to define one side of the equivalence.
Nevertheless, if we read this equivalence as a definition of sorts — that is, we define a
bicategory as a representable merge-bicategory X with the necessary structure on GX —
it makes sense to state the following. In higher dimensions, where coherence results for
weak n-categories are not at hand, the definitional reading may be the only one available.

6.23. COROLLARY. Let B be a bicategory. Then there exist a strictly associative bicat-
egory C' and an equivalence f : B — C'.

Proor. We know that B is equivalent to GX for some representable merge-bicategory
X. Let f: X — Y be an equivalence, and 5 : TY — Y a T-algebra as in the statement
of Theorem 6.22. By Construction 6.20, C' := GY has the structure of a strictly associ-
ative bicategory, and by Corollary 5.35 Gf : GX — (' is an equivalence of bicategories.
Precomposing G'f with an equivalence B — G X leads to the conclusion. m

6.24. REMARK. Even in the higher-dimensional case, we do not think that this is the
strictest structure for which one can aim; it seems reasonable, for instance, to ask for weak
units to be strictly idempotent. However, this constraint requires for M to “recognise”
the units created by Z, so we would lose the decomposition of 7 into a pair of monads.
Since the first version of this article, we have found that this particular scheme, with
two monads related by a distributive law, does not generalise well to higher dimensions;
what generalises, however, is the core idea, which is to construct witnesses of compos-
ition first by “only adding units”, then by “only composing cells”, with strictification
corresponding to the second step. This will be discussed in a forthcoming article.
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