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A UNIFIED FRAMEWORK
FOR NOTIONS OF ALGEBRAIC THEORY

SOICHIRO FUJII

Abstract. Universal algebra uniformly captures various algebraic structures, by ex-
pressing them as equational theories or abstract clones. The ubiquity of algebraic struc-
tures in mathematics and related fields has given rise to several variants of universal
algebra, such as theories of symmetric operads, non-symmetric operads, generalised op-
erads, PROPs, PROs, and monads. These variants of universal algebra are called notions
of algebraic theory. In this paper, we develop a unified framework for them. The key
observation is that each notion of algebraic theory can be identified with a monoidal
category, in such a way that algebraic theories correspond to monoid objects therein.
To incorporate semantics, we introduce a categorical structure called metamodel, which
formalises a definition of models of algebraic theories. We also define morphisms be-
tween notions of algebraic theory, which are a monoidal version of profunctors. Every
strong monoidal functor gives rise to an adjoint pair of such morphisms, and provides a
uniform method to establish isomorphisms between categories of models in different no-
tions of algebraic theory. A general structure-semantics adjointness result and a double
categorical universal property of categories of models are also shown.
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1. Introduction

Algebras permeate both pure and applied mathematics. Important types of algebras,
such as vector spaces, groups and rings, arise naturally in many branches of mathematical
sciences and it would hardly be an exaggeration to say that algebraic structures are one
of the most universal and fundamental structures in mathematics.

A type of algebras, such as groups, is normally specified by a family of operations
and a family of equational axioms. We call such a specification of a type of algebras an
algebraic theory, and call a background theory for a type of algebraic theories a notion
of algebraic theory. In order to capture various types of algebras, a variety of notions
of algebraic theory have been introduced. Examples include universal algebra [Bir35],
symmetric and non-symmetric operads [May72], generalised operads (also called clubs)
[Bur71, Kel92, Her00, Lei04], PROPs and PROs [ML65], and monads [EM65, Lin66]; we
shall review these notions of algebraic theory in Section 3.

Notions of algebraic theory all aim to provide a means to define algebras, but they
attain this goal in quite distinct manners. The diversity of the existing notions of algebraic
theory leaves one to wonder what, if any, is a formal core or essence shared by them. Our
main aim in this paper is to provide an answer to this question, by developing a unified
framework for notions of algebraic theory.

The starting point of our approach is quite simple. We identify a notion of algebraic
theory with an (arbitrary) monoidal category, and algebraic theories in a notion of alge-
braic theory with monoid objects in the corresponding monoidal category. As we shall see
in Section 4, it has been observed (or easily follows from known observations) that each
type of algebraic theories we have listed above can be characterised as monoid objects in
a suitable monoidal category. From now on let us adopt the terminology to be introduced
in Section 4: we call a monoidal category a metatheory and a monoid object therein a
theory, to remind ourselves of our intention.

In order to formalise the semantical aspect of notions of algebraic theory—by which
we mean definitions of models (= algebras) of an algebraic theory, their homomorphisms,
and so on—we introduce the concept of metamodel. Metamodels are a certain categorical
structure defined relative to a metatheoryM and a category C, and are meant to capture
a notion of model of an algebraic theory, i.e., what it means to take a model of a theory
in M in the category C. A model of an algebraic theory is always given relative to some
notion of model, even though usually it is not recognised explicitly. We shall say more
about the idea of notions of model at the beginning of Section 5. A metamodel of a
metatheory M in a category C generalises both an M-category (as in enriched category
theory) whose underlying category is C, and a (left) oplax action ofM on C. Indeed, as we
shall see in Sections 5 and 6, it has been observed that enrichments (which we introduce as
a slight variant ofM-categories) and oplax actions can account for the standard semantics
of the known notions of algebraic theory. Our concept of metamodel provides a unified
account of the semantical aspects of notions of algebraic theory.

Metamodels of a fixed metatheory M naturally form a 2-category MMod(M), and
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we shall see that theories inM can be identified with certain metamodels ofM in the ter-
minal category 1. This way we obtain a fully faithful 2-functor from the category Th(M)
of theories in M (which is just the category of monoid objects in M) to MMod(M).
A metamodel Φ of M in C provides a definition of model of a theory in M as an ob-
ject of C with additional structure, hence if we fix a metamodel (C,Φ) and a theory T,
we obtain the category of models Mod(T, (C,Φ)) equipped with the forgetful functor
U : Mod(T, (C,Φ)) −→ C. By exploiting the 2-category MMod(M), the construction
Mod(−,−) of categories of models may be expressed as the following composition

Th(M)op ×MMod(M)

MMod(M)op ×MMod(M)

CAT ,

inclusion

MMod(M)(−,−)

(1)

where MMod(M)(−,−) is the hom-2-functor and CAT is a 2-category of categories.
We also introduce morphisms (and 2-cells) between metatheories (Section 8). Such

morphisms are a monoidal version of profunctors. The principal motivation of the intro-
duction of morphisms of metatheories is to compare different notions of algebraic theory,
and indeed our morphisms of metatheories induce 2-functors between the corresponding
2-categories of metamodels. Analogously to the well-known fact for profunctors that any
functor induces an adjoint pair of profunctors, we see that any strong monoidal functor
F induces an adjoint pair F∗ a F ∗ of morphisms of metatheories. Therefore, whenever
we have a strong monoidal functor F : M −→ N between metamodels, we obtain a
2-adjunction

MMod(M) MMod(N ).
MMod(F∗)

MMod(F ∗)

a (2)

Now, the strong monoidal functor F also induces a functor

Th(F ) : Th(M) −→ Th(N ),

which is in fact a restriction of MMod(F∗). This implies that, immediately from the
description (1) of categories of models and the 2-adjointness (2), for any T ∈ Th(M) and
(C,Φ) ∈MMod(N ), we have a canonical isomorphism of categories

Mod(Th(F )(T), (C,Φ)) ∼= Mod(T,MMod(F ∗)(C,Φ)). (3)

In fact, as we shall see, the action of MMod(−) on morphisms of metatheories preserves
the “underlying categories” of metamodels. So MMod(F ∗)(C,Φ) is a metamodel of M
in C, and we have an isomorphism of categories over C (that is, the isomorphism (3)
commutes with the forgetful functors).
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The above argument gives a unified conceptual account for a range of known results on
the compatibility of semantics of notions of algebraic theory. For example, it is known that
any clone (or Lawvere theory) T induces a monad T′ on Set in such a way that the models
of T and T′ in Set (with respect to the standard notions of model) coincide; this result
follows from the existence of a natural strong monoidal functor between the metatheories
corresponding to clones and monads on Set, together with a simple observation that
the induced 2-functor between the 2-categories of metamodels preserves the standard
metamodel. This and other examples will be treated in Section 8.

In Section 9 we study structure-semantics adjunctions within our framework. If we
fix a metatheory M and a metamodel (C,Φ) of M, we obtain a functor

Th(M)op −→ CAT/C (4)

by mapping a theory T in M to the category of models Mod(T, (C,Φ)) equipped with
the forgetful functor into C. The functor (4) is sometimes called the semantics functor,
and it has been observed for many notions of algebraic theory that this functor (or an
appropriate variant of it) admits a left adjoint called the structure functor [Law63, Lin66,
Lin69, Dub70, Str72, Ave17]. The idea behind the structure functor is as follows. One
can regard a functor V : A −→ C into C as specifying an additional structure (in a very
broad sense) on objects in C, by viewing A as the category of C-objects equipped with
that structure, and V as the forgetful functor. The structure functor then maps V to
the best approximation of that structure by theories in M. Indeed, if (4) is fully faithful
(though this is not always the case), then the structure functor reconstructs the theory
from its category of models.

We cannot get a left adjoint to the functor (4) for an arbitrary metatheoryM and its
metamodel (C,Φ). In order to get general structure-semantics adjunctions, we extend the

category Th(M) of theories in M to the category Th(M̂) of theories in the metatheory

M̂ = [Mop,SET] equipped with the convolution monoidal structure [Day70]. We show
in Theorem 9.2 that the structure-semantics adjunction

Th(M̂)
op

CAT/C
Str

Sem

`

exists for any metatheory M and its metamodel (C,Φ).

We conclude the paper in Section 10, by giving a universal characterisation of cate-
gories of models in our framework. It is well-known that the Eilenberg–Moore categories
(= categories of models) of monads can be characterised by a 2-categorical universal prop-
erty in the 2-category CAT of categories [Str72]. We show in Theorem 10.7 that our
category of models admit a similar universal characterisation, but instead of inside the
2-category CAT , inside the pseudo double category PROF of categories, functors, pro-
functors and natural transformations. The notion of pseudo double category, as well as
PROF itself, was introduced by Grandis and Paré [GP99]. In the same paper they also
introduced the notion of double limit, a suitable limit notion in (pseudo) double categories.
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The double categorical universal property that our categories of models enjoy can also be
formulated in terms of double limits; see Corollary 10.9.

During the investigation of our framework, we have encountered a number of problems,
several of which are still open. A major open problem is that of characterising via intrinsic
properties the forgetful functors from the categories of models arising in our framework.
In the case of monads, the corresponding result is the various monadicity theorems, such
as Beck’s theorem [ML98, Section VI.7]. We shall discuss this problem further at the end
of Section 8.

1.1. Acknowledgements. We are grateful to Martin Hyland, Pierre-Alain Jacqmin,
Shin-ya Katsumata, Kenji Maillard, Paul-André Melliès, John Power and Exequiel Rivas
for stimulating discussions and helpful comments.

2. Set theoretic conventions

Due to the metatheoretical nature of the subject matter, in this paper we will use multiple
(Grothendieck) universes ; see e.g., [ML98, Section I.6] or [KS05, Definition 1.1.1] for
definitions of universes.

For the purpose of this paper, we assume the existence of three universes U1, U2 and
U3 with U1 ∈ U2 ∈ U3. We now fix these universes once and for all.

Let U be a universe. We define size-regulating conditions on sets and other mathe-
matical structures in reference to U .

• A set is said to be in U if it is an element of U .

In this paper, a category is always assumed to have sets of objects and of morphisms
(rather than proper classes of them). We say that a category C is

• in U if the tuple (ob(C), (C(A,B))A,B∈ob(C), (idC ∈ C(C,C))C∈ob(C), (◦A,B,C : C(B,C)×
C(A,B) −→ C(A,C))A,B,C∈ob(C)), consisting of the data for C, is an element of U ;

• locally in U if for each A,B ∈ ob(C), the hom-set C(A,B) is in U .

We also write C ∈ C for C ∈ ob(C).
We extend these definitions to other mathematical structures. For example, a group is

said to be in U if it (i.e., the tuple consisting of its data) is an element of U , a 2-category
is locally in U if all its hom-categories are in U , and so on.

Recall the universes U1, U2 and U3 we have fixed above.

2.1. Definition. A set or other mathematical structure (group, category, etc.) is said
to be:

• small if it is in U1;

• large if it is in U2;
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• huge if it is in U3.

Sets and other mathematical structures are often assumed to be small by default, even
when we do not say so explicitly.

A category (or a 2-category) is said to be:

• locally small if it is large and locally in U1;

• locally large if it is huge and locally in U2.

In the following, we mainly talk about the size-regulating conditions using the terms
small, large and huge, avoiding direct references to the universes U1, U2 and U3.

We shall use the following basic (2-)categories throughout this paper.

• Set, the (large) category of all small sets and functions.

• SET, the (huge) category of all large sets and functions.

• Cat, the (large) category of all small categories and functors.

• CAT, the (huge) category of all large categories and functors.

• Cat, the (large) 2-category of all small categories, functors and natural transforma-
tions.

• CAT , the (huge) 2-category of all large categories, functors and natural transfor-
mations.

• MonCAT lax, the (huge) 2-category of all large monoidal categories, lax monoidal
functors1 and monoidal natural transformations. We also use several variants of it.

• 2-CAT , the 2-category of all huge 2-categories, 2-functors and 2-natural transfor-
mations.

3. Notions of algebraic theory

In this section, we review several known notions of algebraic theory. As we shall see later,
they all turn out to be instances of our unified framework for notions of algebraic theory
developed from the next section on. A more introductory account of these notions of
algebraic theory (except for PROPs and PROs) may be found in [Fuj18, Chapter 2].

3.1. Clones. Abstract clones (clones for short) [Tay93] are a presentation independent
version of equational theories in universal algebra and, as such, they are more or less
equivalent to Lawvere theories [Law63]. Let us begin with the definition.

1Also called monoidal functors in e.g., [ML98].



1252 SOICHIRO FUJII

3.2. Definition. A clone T consists of:

(CD1) a family of sets T = (Tn)n∈N indexed by natural numbers;

(CD2) for each n ∈ N and i ∈ {1, . . . , n}, an element

p
(n)
i ∈ Tn;

(CD3) for each k, n ∈ N, a function

◦(n)
k : Tk × (Tn)k −→ Tn

whose action on an element (φ, θ1, . . . , θk) ∈ Tk×(Tn)k we write as φ◦(n)
k (θ1, . . . , θk)

or simply φ ◦ (θ1, . . . , θk);

satisfying the following equations:

(CA1) for each k, n ∈ N, j ∈ {1, . . . , k}, θ1, . . . , θk ∈ Tn,

p
(k)
j ◦

(n)
k (θ1, . . . , θk) = θj;

(CA2) for each n ∈ N, θ ∈ Tn,

θ ◦(n)
n (p

(n)
1 , . . . , p(n)

n ) = θ;

(CA3) for each l, k, n ∈ N, ψ ∈ Tl, φ1, . . . , φl ∈ Tk, θ1, . . . , θk ∈ Tn,

ψ ◦(k)
l

(
φ1 ◦(n)

k (θ1, . . . , θk), . . . , φl ◦(n)
k (θ1, . . . , θk)

)
=
(
ψ ◦(k)

l (φ1, . . . , φl)
)
◦(n)
k (θ1, . . . , θk).

Such a clone is written as T = (T, (p
(i)
n )n∈N,i∈{1,...,n}, (◦(n)

k )k,n∈N) or simply (T, p, ◦).

The following example shows a typical way in which clones arise.

3.3. Example. Let C be a locally small category with all finite products, and C be an
object of C. Then we obtain the clone EndC(C) = (〈C,C〉, p, ◦) defined as follows:

(CD1) for each n ∈ N, let 〈C,C〉n be the hom-set C(Cn, C), where Cn is the product of
n copies of C (the n-th power of C);

(CD2) for each n ∈ N and i ∈ {1, . . . , n}, let p
(n)
i : Cn −→ C be the i-th projection;

(CD3) for each k, n ∈ N, g : Ck −→ C and f1, . . . , fk : Cn −→ C, let g ◦(n)
k (f1, . . . , fk) :

Cn −→ C be the following composite in C:

Cn Ck C.
〈f1, . . . , fk〉 g
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It is straightforward to check the axioms (CA1)–(CA3).

In fact, every clone arises in the above manner. To see this, let T = (T, p, ◦) be an
arbitrary clone. We can then define the category CT, whose set of objects is the set N of
natural numbers and whose hom-sets are given by CT(n,m) = (Tn)m. We may routinely
define identity morphisms and composition in CT from the structure of T, and it turns out
that the object n ∈ CT is the n-th power of 1 ∈ CT in CT; thus we recover T as EndCT(1).
This construction also shows how clones and Lawvere theories are related. See [Tay93]
for details.

Another source of clones is provided by presentations of equational theories in universal
algebra. A presentation of an equational theory 〈Σ |E 〉 is given by a family Σ of basic
operations (with designated arities) and a family E of equational axioms between Σ-terms.
Given such a data, we can define a clone T〈Σ |E 〉 = (T 〈Σ |E 〉, p, ◦) by setting (T 〈Σ |E 〉)n to
be the set of all Σ-terms in which at most n different variables occur, modulo equational
theorems derivable from E, p to be the equivalence classes of variables, and ◦ to be the
simultaneous substitution; see [Fuj18, Sections 2.1 and 2.2] for details. It is well-known
that various types of algebras, such as groups, monoids and rings, admit presentations of
equational theories, and hence by the above construction we obtain the clone of groups,
etc. Such are the motivating examples of clones qua algebraic theories.

Homomorphisms of clones may be defined routinely.

3.4. Definition. Let T = (T, p, ◦) and T′ = (T ′, p′, ◦′) be clones. A clone homomor-
phism from T to T′ is a family of functions h = (hn : Tn −→ T ′n)n∈N which preserves the
structure of clones; precisely,

• for each n ∈ N and i ∈ {1, . . . , n}, hn(p
(n)
i ) = p

′(n)
i ;

• for each k, n ∈ N, φ ∈ Tk and θ1, . . . , θk ∈ Tn,

hn
(
φ ◦(n)

k (θ1, . . . , θk)
)

= hk(φ) ◦′(n)
k

(
hn(θ1), . . . , hn(θk)

)
.

Let us turn to the definition of models of a clone. One can consider models of a clone
in any locally small category with finite products.

3.5. Definition. Let T be a clone and C be a locally small category with all finite prod-
ucts. A model of T in C consists of an object C ∈ C together with a clone homomorphism
χ : T −→ EndC(C).

For example, models of the clone of groups in C are precisely group objects (or internal
groups) in C.

We then define the notion of homomorphism between models (of a clone). First we note
the functoriality of the 〈−,−〉 construction, already appeared (partly) in Example 3.3.
For the current purpose, it suffices to remark that for each locally small category C with
finite products and each n ∈ N, the assignment 〈A,B〉n = C(An, B) canonically extends
to a functor

〈−,−〉n : Cop × C −→ Set.
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3.6. Definition. Let T be a clone, C be a locally small category with all finite products,
and (A,α) and (B, β) be models of T in C. A homomorphism from (A,α) to (B, β) is
a morphism f : A −→ B in C such that for each n ∈ N, the following diagram commutes:

Tn 〈A,A〉n

〈B,B〉n 〈A,B〉n.

αn

〈A, f〉nβn

〈f,B〉n

For each clone T and a locally small category C with all finite products, we denote the
category of all models of T in C and their homomorphisms by Mod(T, C). Note that we
have the canonical forgetful functor U : Mod(T, C) −→ C.

3.7. Non-symmetric operads. Non-symmetric operads [May72] may be seen as a vari-
ant of clones. Compared to clones, non-symmetric operads are less expressive (for exam-
ple, groups cannot be captured by non-symmetric operads), but their models can be
taken in wider contexts than for clones (whereas models of clones are taken in a locally
small category with finite products, models of non-symmetric operads can be taken in
any locally small monoidal category).

3.8. Definition. A non-symmetric operad T consists of:

(ND1) a family of sets T = (Tn)n∈N indexed by natural numbers;

(ND2) an element id ∈ T1;

(ND3) for each k, n1, . . . , nk ∈ N, a function (we omit the sub- and superscripts)

◦ : Tk × Tn1 × · · · × Tnk
−→ Tn1+···+nk

whose action we write as (φ, θ1, . . . , θk) 7−→ φ ◦ (θ1, . . . , θk)

satisfying the following equations:

(NA1) for each n ∈ N and θ ∈ Tn,
id ◦ (θ) = θ;

(NA2) for each n ∈ N and θ ∈ Tn,

θ ◦ (id, . . . , id) = θ;

(NA3) for each l, k1, . . . , kl, n1,1, . . . , n1,k1 , . . . , nl,1, . . . , nl,kl ∈ N, ψ ∈ Tl, φ1 ∈
Tk1 , . . . , φl ∈ Tkl, θ1,1 ∈ Tn1,1 , . . . , θ1,k1 ∈ Tn1,k1

, . . . , θl,1 ∈ Tnl,1
, . . . , θl,kl ∈ Tnl,kl

,

ψ ◦
(
φ1 ◦ (θ1,1, . . . , θ1,k1), . . . , φl ◦ (θl,1, . . . , θl,kl)

)
=
(
ψ ◦ (φ1, . . . , φl)

)
◦ (θ1,1, . . . , θ1,k1 , . . . , θl,1, . . . , θl,kl).

Such a non-symmetric operad is written as T = (T, id, ◦).
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3.9. Example. Let C = (C, I,⊗) be a locally small monoidal category, and C be an
object of C. Define the non-symmetric operad EndC(C) = (〈C,C〉, id, ◦) as follows:

(ND1) for each n ∈ N, let 〈C,C〉n be the hom-set C(C⊗n, C), where C⊗n is the monoidal
product of n copies of C;

(ND2) let id : C −→ C be the identity morphism on C;

(ND3) for each k, n1, . . . , nk ∈ N, g : C⊗k −→ C and f1 : C⊗n1 −→ C, . . . , fk : C⊗nk −→
C, let g ◦ (f1, . . . , fk) : C⊗(n1+···+nk) −→ C be the following composite in C:

C⊗(n1+···+nk) ∼= C⊗n1 ⊗ · · · ⊗ C⊗nk C⊗k C.
f1 ⊗ · · · ⊗ fk g

It is straightforward to check the axioms (NA1)–(NA3).

Just like the case of clones, it can be shown that every non-symmetric operad arises
as above. Given an arbitrary non-symmetric operad T = (T, id, ◦), we define a strict
monoidal category CT whose set of objects is N and whose hom-sets are defined as

CT(n,m) =
∐

n1,...,nm∈N
n1+···+nm=n

Tn1 × · · · × Tnm ,

with sum of natural numbers as the monoidal product; cf. [Lei04, Section 2.3]. We then
obtain T as EndCT(1).

As for examples of non-symmetric operads naturally seen as algebraic theories, we
may obtain a non-symmetric operad from a strongly regular presentation of an equational
theory. Here, a presentation of an equational theory is called strongly regular if each
of its equational axioms satisfies the condition that, on each side of the equation, exactly
same variables appear without repetition and in the same order. For example, assuming
that e is a nullary operation and · is a binary operation, the equations

(x · y) · z = x · (y · z), x · e = x

are strongly regular, whereas the equations

x · x = x, x · y = x, x · y = y · x

are not. The structure of monoids can be expressed by a non-symmetric operad.

We may define the notion of non-symmetric operad homomorphism between non-
symmetric operads just in the same way as that of clone homomorphism (Definition 3.4).

The definition of models of a non-symmetric operad is also similar to that of a clone
(Definition 3.5).
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3.10. Definition. Let T be a non-symmetric operad and C be a locally small monoidal
category. A model of T in C consists of an object C ∈ C together with a non-symmetric
operad homomorphism χ : T −→ EndC(C).

With the definition of homomorphisms between models completely parallel to the
case of clones (Definition 3.6), we obtain the category of models Mod(T, C) (as well as
the associated forgetful functor) for each non-symmetric operad T and a locally small
monoidal category C.

3.11. Symmetric operads. Symmetric operads [May72] are an intermediate notion of
algebraic theory which lie between clones and non-symmetric operads, both in terms of
expressive power and in terms of range of notions of models.

In terms of expressive power, symmetric operads correspond to regular presentations
of equational theories, where a presentation of an equational theory is called regular if
each of its equational axioms satisfies the following condition: on each side of the equation,
exactly same variables appear without repetition (but possibly in different order). So we
may express commutative monoids in addition to monoids via symmetric operads.

In terms of range of notions of models, one can take models of a symmetric operad in
any locally small symmetric monoidal category.

We omit the definitions of symmetric operads, their models and so on, which are
analogous to the cases of clones and non-symmetric operads. See e.g. [Fuj18, Section 2.4]
for details.

3.12. PROs. PROs [ML65] are a certain generalisation of non-symmetric operads.

3.13. Definition. A PRO is a small strict monoidal category whose set of objects is N
and whose monoidal product on objects is the sum of natural numbers.

Homomorphisms of PROs are identity-on-objects strict monoidal functors.
The relationship of PROs to non-symmetric operads is as follows. Given a non-

symmetric operad, one can define a PRO by the construction sketched just after Ex-
ample 3.9. PROs are more general than non-symmetric operads in that algebraic struc-
tures described by them allow many-in, many-out operations (operations of type C⊗n −→
C⊗m), whereas those described by non-symmetric operads allow only many-in, single-out
operations (those of type C⊗n −→ C). Therefore via PROs, one can capture the structure
of comonoids in addition to monoids.

3.14. Example. Let C = (C, I,⊗) be a locally small monoidal category, and C be an
object of C. Then we obtain the PRO EndC(C) defined as follows: for each n,m ∈ N, let
the hom-set EndC(C)(n,m) of the PRO be the hom-set C(C⊗n, C⊗m) of C, with the rest
of the structure induced from C in the evident manner.

Models of a PRO T can be taken in any locally small monoidal category C, and are
sometimes defined as strong monoidal functors of type T −→ C, following the doctrine
of functorial semantics [Law63]. We shall adopt the following alternative, more or less
equivalent definition (appearing e.g., in [ML65]).
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3.15. Definition. Let T be a PRO and C be a locally small monoidal category. A
model of T in C consists of an object C ∈ C together with a PRO homomorphism
χ : T −→ EndC(C).

With the straightforward definition of homomorphisms of models (just like the case of
clones), we obtain the category of models Mod(T, C) and the associated forgetful functor.

The above definition of models not only looks similar to the corresponding definitions
for clones, symmetric operads and non-symmetric operads, but it also eliminates certain
redundancy involved in the definition of models as certain functors. That is, if we define
a model to be a strong monoidal functor T −→ C, to give such a data we have to specify
the image of each object in T, and this involves a choice, for each natural number n, of
a specific n-fold monoidal product of the underlying object; but such choices are usually
not included in the data of an algebraic structure. In more precise terms, such a definition
of models (in the spirit of functorial semantics) in general prevents the forgetful functor
out of the category of models from being amnestic [AHS06, Definition 3.27]. On the
other hand, it will turn out that all forgetful functors arising in our unified framework for
notions of algebraic theory are amnestic.

3.16. PROPs. PROPs [ML65] are the symmetric version of PROs.

3.17. Definition. A PROP is a small symmetric strict monoidal category whose set
of objects is N and whose monoidal product on objects is the sum of natural numbers.

Here, by a symmetric strict monoidal category we mean a symmetric monoidal
category whose structure isomorphisms except for the symmetry are identities. Similarly
to the case of PROs, we can take models of a PROP in any locally small symmetric
monoidal category.

3.18. Monads. The definition of monads on a category is well-known. For any large
category C, we shall denote the category of all monads on C and monad morphisms by
Mnd(C), which we define to be the category of monoid objects in the monoidal category
[C, C] of all endofunctors on C (with composition of endofunctors as monoidal product);
note that our definition of monad morphism is opposite in the direction to the one defined
in [Str72].

The following definition of models of a monad, usually called Eilenberg–Moore algebras,
is also well-known.

3.19. Definition. [EM65] Let C be a large category and T = (T, η, µ) be a monad on C.

1. An Eilenberg–Moore algebra of T consists of:

• an object C ∈ C;

• a morphism γ : TC −→ C in C,
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making the following diagrams commute:

C TC

C

ηC

γ
idC

TTC TC

TC C.

µC

γTγ

γ

2. Let (C, γ) and (C ′, γ′) be Eilenberg–Moore algebras of T. A homomorphism from
(C, γ) to (C ′, γ′) is a morphism f : C −→ C ′ in C making the following diagram
commute:

TC TC ′

C C ′.

Tf

γ′γ

f

The category of all Eilenberg–Moore algebras of T and their homomorphisms is called the
Eilenberg–Moore category of T, and is denoted by CT.

Excellent introductions to monads abound (see e.g., [ML98, Chapter VI]). Here we
simply remark that, seen as a notion of algebraic theory, monads on Set have stronger
expressive power than clones, and can express such infinitary structures as compact Haus-
dorff spaces and complete semilattices [Man76].

Let us make clear our convention as to which class of monads counts as a single notion
of algebraic theory. We understand that for each large category C, the monads on C form
a single notion of algebraic theory. So actually we have just introduced an infinite family
of notions of algebraic theory, one notion for each large category.

3.20. Generalised operads. Just like monads are a family of notions of algebraic
theory parameterised by a large category, the term generalised operads [Bur71, Kel92,
Her00, Lei04] also refer to a family of notions of algebraic theory, this time parameterised
by a large category with finite limits and a cartesian monad thereon. We start with the
definition of cartesian monad.

3.21. Definition.

1. Let C and D be categories, and F,G : C −→ D be functors. A natural transformation
α : F −→ G is called cartesian if and only if all naturality squares of α are pullback
squares; that is, if and only if for any morphism f : C −→ C ′ in C, the square

FC GC

FC ′ GC ′

αC

GfFf

αC′
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is a pullback of Gf and αC′.

2. Let C be a category with all pullbacks. A monad S = (S, η, µ) on C is called carte-
sian if and only if the functor S preserves pullbacks, and η and µ are cartesian.

For each cartesian monad S = (S, η, µ) on a large category C with all finite limits we
now introduce S-operads, which form a single notion of algebraic theory.

The crucial observation is that under this assumption, the slice category C/S1 (where
1 is the terminal object of C) acquires a canonical monoidal structure, given as follows.
(We write an object of C/S1 either as p : P −→ S1 or (P, p).)

• The unit object is I = (η1 : 1 −→ S1).

• Given a pair of objects p : P −→ S1 and q : Q −→ S1 in C/S1, first form the
pullback

(Q, q) ∗ P SP

Q S1,

π2

S!π1

q

(5)

where ! : P −→ 1 is the unique morphism to the terminal object. The monoidal
product (Q, q)⊗ (P, p) ∈ C/S1 is ((Q, q) ∗ P, µ1 ◦ Sp ◦ π2):

(Q, q) ∗ P SP SS1 S1.
π2 Sp µ1

We remark that this monoidal category arises as a restriction of Burroni’s bicategory of
S-spans [Bur71].

3.22. Definition. Let C be a large category with all finite limits and S = (S, η, µ) a
cartesian monad on C.

1. An S-operad is a monoid object in the monoidal category (C/S1, I,⊗) introduced
above.

2. A morphism of S-operads is a homomorphism of monoid objects in (C/S1, I,⊗).

We denote the category of S-operads and their homomorphisms by S-Opd; by definition
it is identical to the category of monoid objects in C/S1.

Given an S-operad T = ((arT : T −→ S1), e,m), we may interpret the object S1 in C
as the object of arities, T as the object of all (derived) operations of the algebraic theory
expressed by T, and arT as assigning an arity to each operation.
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3.23. Example. [Lei04, Example 4.2.7] If we let C = Set and S be the free monoid
monad (which is cartesian), then S-operads are equivalent to non-symmetric operads.
The arities are the natural numbers: S1 ∼= N.

In more detail, the data of an S-operad in this case consist of a set T , and functions
arT : T −→ N, e : 1 −→ T and m : (T, arT )∗T −→ T . Unravelling this, we obtain a family
of sets (Tn)n∈N, an element id ∈ T1 and a family of functions (mk,n1,...nk

: Tk × Tn1 × · · · ×
Tnk
−→ Tn1+···+nk

)k,n1,...,nk∈N, agreeing with Definition 3.8. Note that indeed Tn may be
interpreted as the set of all (derived) operations of arity n.

3.24. Example. If we set C = n-Gph, the category of n-graphs for n ∈ N∪{ω} and S be
the free strict n-category monad, then S-operads are called n-globular operads ; see [Lei04,
Chapter 8] for details. These generalised operads have been used to give a definition of
weak n-categories [Bat98, Lei04].

Next we define models of an S-operad. For this, we first note that the monoidal
category C/S1 has a canonical pseudo action on C. (The precise definition of pseudo action
is a variant of Definition 6.1, obtained by replacing the term “natural transformation”
there by “natural isomorphism”.) The functor

∗ : (C/S1)× C −→ C

defining this pseudo action is given by mapping ((Q, q), P ) ∈ (C/S1)×C to (Q, q)∗P ∈ C
defined as the pullback (5).

3.25. Definition. Let C be a large category with finite limits, S = (S, η, µ) be a cartesian
monad on C, and T = (T, e,m) be an S-operad.

1. A model of T consists of:

• an object C ∈ C;

• a morphism γ : T ∗ C −→ C in C,

making the following diagrams commute:

I ∗ C T ∗ C

C

e ∗ C

γ
∼=

(T ⊗ T ) ∗ C T ∗ C

T ∗ (T ∗ C) T ∗ C C,

∼=

m ∗ C

T ∗ γ γ

γ

where the arrows labelled with ∼= refer to the isomorphisms provided by the pseudo
action.
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2. Let (C, γ) and (C ′, γ′) be models of T. A homomorphism from (C, γ) to (C ′, γ′)
is a morphism f : C −→ C ′ in C making the following diagram commute:

T ∗ C T ∗ C ′

C C ′.

γ

T ∗ f

f

γ′

We saw in Example 3.23 that non-symmetric operads arise as a special case of gen-
eralised operads. In fact the definitions of models also agree, the models defined by the
above definition (where S is taken as in Example 3.23) being equivalent to the models as
in Definition 3.10, with C = Set equipped with the cartesian monoidal structure.

4. Metatheories and theories

In the previous section we have seen several examples of notions of algebraic theory, in
which the corresponding types of algebraic theories are called under various names, such as
clones, non-symmetric operads and monads (on C). Being a background theory for a type
of algebraic theories, each notion of algebraic theory has definitions of algebraic theory,
of model of an algebraic theory, and of homomorphism between models. Nevertheless,
different notions of algebraic theory take different approaches to define these concepts,
and the resulting definitions (say, of algebraic theory) can look quite remote.

As we have already mentioned, this paper introduces a unified framework for notions
of algebraic theory which includes all of the notions of algebraic theory reviewed in the
previous section as instances. To the best of our knowledge, this is the first framework
for notions of algebraic theory attaining such generality. Due to the diversity of notions
of algebraic theory we aim to capture, we take a very simple approach: the basic idea is
that we identify notions of algebraic theory with (large) monoidal categories, and algebraic
theories with monoid objects therein.

4.1. Definition. A metatheory is a large monoidal category M = (M, I,⊗).

Metatheories are intended to formalise notions of algebraic theory. We remark that,
in this paper, we leave the term notion of algebraic theory informal and will not give any
mathematical definitions to it.

4.2. Definition. Let M be a metatheory. A theory in M is a monoid object T =
(T, e,m) in M.

We denote the category of theories in M by Th(M), which we define to be the same
as the category of monoid objects in M and homomorphisms between them.

Theories formalise what we have been calling algebraic theories.
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The above definitions simply introduce aliases to well-known concepts. Our hope is
that, by using the terms which reflect our intention, statements and discussions become
easier to follow; think of the terms such as generalised element (which is synonymous
to morphism in a category) or map (used by some authors to mean left adjoint in a
bicategory) which have been used with great benefit in the literature.

4.3. The metatheory [F,Set] for clones. As a first example, we treat clones (Defi-
nition 3.2) within our framework. That is, we seek a suitable metatheory for which clones
are theories therein.

4.4. Definition. Let F be the category defined as follows:

• The set of objects is ob(F) = { [n] | n ∈ N }, where for each natural number n ∈ N,
[n] is defined to be the n-element set {1, . . . , n}.

• A morphism is any function between these sets.

So the category F is a skeleton of the category FinSet of all (small) finite sets and
functions. The underlying category of the metatheory for clones is the category [F,Set]
of all functors from F to Set and natural transformations. For X ∈ [F,Set] and [n] ∈ F,
we write the set X([n]) as Xn.

The monoidal structure on the category [F,Set] we shall consider is known as the
substitution monoidal structure.

4.5. Definition. [KP93, FPT99] The substitution monoidal structure on [F,Set]
is defined as follows:

• The unit object is I = F([1],−) : F −→ Set.

• Given X, Y : F −→ Set, their monoidal product Y ⊗ X : F −→ Set maps [n] ∈ F
to

(Y ⊗X)n =

∫ [k]∈F
Yk × (Xn)k. (6)

The integral sign with a superscript in (6) stands for a coend (dually, we will denote
an end by the integral sign with a subscript); see [ML98, Section IX. 6].

This defines a metatheory [F,Set]. We claim that clones correspond to theories in
[F,Set]. A theory in [F,Set] consists of

• a functor T : F −→ Set;

• a natural transformation e : I −→ T ;

• a natural transformation m : T ⊗ T −→ T
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satisfying the monoid axioms. By the Yoneda lemma, e corresponds to an element e ∈ T1,
and by the universality of coends, m corresponds to a natural transformation2

(mn,k : Tk × (Tn)k −→ Tn)n,k∈N.

Hence given a theory (T, e,m) in [F,Set], we can construct a clone with the underlying

family of sets (Tn)n∈N by setting p
(n)
i = Tdie(e) (here, die : [1] −→ [n] is the morphism

in F defined as die(1) = i) and ◦(n)
k = mn,k. Conversely, given a clone (T, p, ◦), we can

construct a theory in [F,Set] as follows. First we extend the family of sets T to a functor
T : F −→ Set by setting, for any u : [m] −→ [n] in F,

Tu(θ) = θ ◦(n)
m (p

(m)
u(1), . . . , p

(m)
u(m)).

Then we may set e = p
(1)
1 and mn,k = ◦(n)

k .

4.6. Proposition. [Cf. [Cur12, Hyl14]] The above constructions establish an isomor-
phism of categories between the category of clones and Th([F,Set]).

4.7. The metatheory [P,Set] for symmetric operads. Symmetric operads can be
similarly seen as theories in a suitable metatheory. The main difference from the case of
clones is that, instead of the category F, we use the following category.

4.8. Definition. Let P be the category defined as follows:

• The set of objects is the same as F: ob(P) = { [n] | n ∈ N } where [n] = {1, . . . , n}.

• A morphism is any bijective function.

So P is the subcategory of F consisting of all isomorphisms.
Symmetric operads are theories in a metatheory whose underlying category is the

functor category [P,Set]. The monoidal structure on [P,Set] we shall use is also called
the substitution monoidal structure.

4.9. Definition. [Kel05] The substitution monoidal structure on [P,Set] is defined
as follows:

• The unit object is I = P([1],−) : P −→ Set.

• Given X, Y : P −→ Set, their monoidal product Y ⊗X : P −→ Set maps [n] ∈ P
to

(Y ⊗X)n =

∫ [k]∈P
Yk × (X~k)n,

where

(X~k)n =

∫ [n1],...,[nk]∈P
P([n1 + · · ·+ nk], [n])×Xn1 × · · · ×Xnk

.

2In more detail, the relevant naturality here may also be phrased as “natural in [n] ∈ F and extranat-
ural in [k] ∈ F”; see [ML98, Section IX. 4]. Following [Kel82], in this paper we shall not distinguish
(terminologically) extranaturality from naturality, using the latter term for both.
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4.10. Proposition. [Cf. [Cur12, Hyl14]] The category of symmetric operads is isomor-
phic to Th([P,Set]).

4.11. The metatheory [N,Set] for non-symmetric operads. For non-symmetric
operads (Definition 3.8), we use the following category.

4.12. Definition. Let N be the category defined as follows:

• The set of objects is the same as F and P.

• There are only identity morphisms in N.

N is the discrete category with the same objects as F and P. We again consider the
functor category [N,Set].

4.13. Definition. The substitution monoidal structure on [N,Set] is defined as
follows:

• The unit object is I = N([1],−) : N −→ Set.

• Given X, Y : N −→ Set, their monoidal product Y ⊗X : N −→ Set maps [n] ∈ N
to

(Y ⊗X)n =
∐

[k]∈N

Yk ×
( ∐

[n1],...,[nk]∈N
n1+···+nk=n

Xn1 × · · · ×Xnk

)
.

4.14. Proposition. [Cf. [Cur12, Hyl14]] The category of non-symmetric operads is iso-
morphic to Th([N,Set]).

For unified studies of various substitution monoidal structures, see [TP06, FGHW18],
as well as the aforementioned [Cur12, Hyl14].

4.15. The metatheory MonCAT lax(Nop ×N,Set) for PROs. In order to charac-
terise PROs as theories in a metatheory, we combine the following known facts.

• A PRO (Definition 3.13) can be given equivalently as a small monoidal category
T equipped with an identity-on-objects strict monoidal functor from N (Defini-
tion 4.12; the monoidal structure on N is given by sum of natural numbers) to
T.

• Fix a small category C. A pair (D, J) consisting of a small category D (having the
same set of objects as C) and an identity-on-objects functor J : C −→ D is given
equivalently as a monad on C in the bicategory of (Set-valued) profunctors, that is
to say as a monoid in the monoidal category of endo-profunctors on C.

Hence it is natural to consider a monoidal version of endo-profunctors on N. Since the
notion of profunctor (and its monoidal variant) will recur in this paper, let us fix our
notation at this point. As we shall later be more concerned with SET-valued profunctors
than Set-valued ones (cf. Section 2), we consider the former as default.
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4.16. Definition. [Bén00, Law73] We define the bicategory PROF as follows.

• An object is a large category.

• A 1-cell from A to B is a profunctor from A to B, which we define to be a
functor

H : Bop ×A −→ SET.

We write H : A 7−→ B if H is a profunctor from A to B. The identity 1-cell on a
large category C is the hom-functor C(−,−). Given profunctors H : A 7−→ B and
K : B 7−→ C, their composite K �H : A 7−→ C maps (C,A) ∈ Cop ×A to

(K �H)(C,A) =

∫ B∈B
K(C,B)×H(B,A). (7)

• A 2-cell from H to H ′, both from A to B, is a natural transformation α : H =⇒
H ′ : Bop ×A −→ SET.

Between small categories we also consider Set-valued profunctors, defined by re-
placing SET by Set in the above definition of profunctors.

4.17. Definition. [Cf. [IK86]] Let M = (M, IM,⊗M) and N = (N , IN ,⊗N ) be large
monoidal categories. A monoidal profunctor from M to N is a lax monoidal functor

H = (H, h·, h) : N op ×M −→ SET,

where SET is regarded as a monoidal category via the cartesian monoidal structure. In
detail, it consists of:

• a functor H : N op ×M −→ SET;

• a function h· : 1 −→ H(IN , IM), where 1 is a singleton;

• a natural transformation h = (hN,N ′,M,M ′ : H(N ′,M ′) × H(N,M) −→ H(N ′ ⊗N
N,M ′ ⊗MM))N,N ′∈N ,M,M ′∈M

satisfying the suitable coherence axioms.

One can compose monoidal profunctors by the formula (7), giving rise to the bicat-
egory of large monoidal categories, monoidal profunctors, and monoidal natural trans-
formations; we shall use this in Section 8. Between small monoidal categories, one can
define Set-valued monoidal profunctors and their compositions. Corresponding to
the aforementioned fact about profunctors, it can be shown that for any small monoidal
categoryM, to give a monad onM in the bicategory of Set-valued monoidal profunctors
is equivalent to give a small monoidal category N (having the same set of objects asM)
together with an identity-on-objects strict monoidal functor J : M−→ N . It follows that
PROs correspond to theories in the metatheory of Set-valued monoidal endo-profunctors
on N, whose underlying category is MonCAT lax(Nop × N,Set), the category of lax
monoidal functors of type Nop ×N −→ Set and monoidal natural transformations.
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4.18. The metatheory SymMonCAT lax(Pop × P,Set) for PROPs. The case of
PROPs is a straightforward adaptation of that of PROs. For small symmetric monoidal
categories M and N , we define a Set-valued symmetric monoidal profunctor from
M to N to be a lax symmetric monoidal functor of type N op×M −→ Set. Similarly to
Set-valued monoidal profunctors, Set-valued symmetric monoidal profunctors compose
and form a bicategory, a monad therein (say, onM) being equivalent to a small symmet-
ric monoidal category equipped with an identity-on-objects strict symmetric monoidal
functor from M.

We can endow the category P (Definition 4.8) with the natural structure of a sym-
metric strict monoidal category. As a PROP (Definition 3.17) can be defined equivalently
as a small symmetric monoidal category equipped with an identity-on-objects strict sym-
metric monoidal functor from P, we conclude that PROPs correspond to theories in the
metatheory of Set-valued symmetric monoidal endo-profunctors on P, whose underlying
category is SymMonCAT lax(Pop × P,Set), the category of lax symmetric monoidal
functors of type Pop ×P −→ Set and monoidal natural transformations.

4.19. The metatheories for monads and generalised operads. Finally, we re-
call that monads and generalised operads were introduced as monoid objects in the first
place. Hence for a large category C, the metatheory for monads on C is [C, C] (with the
composition as monoidal product), whereas for a large category C with finite limits and
a cartesian monad S thereon, the metatheory for S-operads is C/S1 (with the monoidal
structure defined earlier).

5. Notions of model as enrichments

Let us proceed to incorporate semantical aspects of notions of algebraic theory into our
framework. We start with a discussion on notions of model. An important feature of
several notions of algebraic theory—especially clones, symmetric operads, non-symmetric
operads, PROPs and PROs—is that we may consider models of an algebraic theory in
more than one category. For example, models of a clone can be taken in any locally small
category with finite products (Definition 3.5). We may phrase this fact by saying that
clones admit multiple notions of model, one for each locally small category with finite
products.

Informally, a notion of model for a notion of algebraic theory is a definition of model
of an algebraic theory in that notion of algebraic theory. Hence whenever we consider
actual models of an algebraic theory, we must specify in advance a notion of model with
respect to which the models are taken. Our framework emphasises the inevitable fact that
models are always relative to notions of model, by treating notions of model explicitly as
mathematical structures.

But how can we formalise such notions of model? Below we show that the standard
notions of model for clones, symmetric operads, non-symmetric operads, PROPs and
PROs can be captured by a categorical structure which we call enrichment.
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5.1. Definition. [Cf. [Cam18, Definition 2.1]] Let M = (M, I,⊗) be a metatheory. An
enrichment over M consists of:

• a large category C;

• a functor 〈−,−〉 : Cop × C −→M;

• a natural transformation (jC : I −→ 〈C,C〉)C∈C;

• a natural transformation (MA,B,C : 〈B,C〉 ⊗ 〈A,B〉 −→ 〈A,C〉)A,B,C∈C,

making the following diagrams commute for all A,B,C,D ∈ C:

I ⊗ 〈A,B〉 〈B,B〉 ⊗ 〈A,B〉

〈A,B〉

jB ⊗ 〈A,B〉

MA,B,B∼=

〈A,B〉 ⊗ I 〈A,B〉 ⊗ 〈A,A〉

〈A,B〉

〈A,B〉 ⊗ jA

MA,A,B∼=

(〈C,D〉 ⊗ 〈B,C〉)⊗ 〈A,B〉 〈B,D〉 ⊗ 〈A,B〉

〈C,D〉 ⊗ (〈B,C〉 ⊗ 〈A,B〉) 〈C,D〉 ⊗ 〈A,C〉 〈A,D〉.

MB,C,D ⊗ 〈A,B〉

MA,B,D∼=

〈C,D〉 ⊗MA,B,C MA,C,D

We say that (C, 〈−,−〉, j,M) is an enrichment over M, or that (〈−,−〉, j,M) is an en-
richment of C over M.

An enrichment over M is not the same as a (large) M-category in enriched category
theory [Kel82]. It is rather a triple consisting of a large category C, a large M-category
D and an identity-on-objects functor J : C −→ D0, where D0 is the underlying category
of D.

In more detail, given an enrichment (〈−,−〉, j,M) of C in M, we may define the
M-category D with ob(D) = ob(C) using the data (〈−,−〉, j,M) of the enrichment, by
setting D(A,B) = 〈A,B〉 and so on. The identity-on-objects functor J : C −→ D0 may
be defined by mapping a morphism f : A −→ B in C to the composite 〈A, f〉 ◦ jA, or
equivalently, 〈f,B〉 ◦ jB:

I 〈B,B〉

〈A,A〉 〈A,B〉.

jA

jB

〈A, f〉

〈f,B〉

See [Cam18, Section 2] and [Fuj18, Section 3.1.2] for more about the relationship to
enriched category theory.
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From an enrichment, we now derive a definition of model of a theory. First observe
that, given an enrichment 〈−,−〉 = (〈−,−〉, j,M) of a large category C over a metatheory
M and an object C ∈ C, we have a theory End〈−,−〉(C) = (〈C,C〉, jC ,MC,C,C) in M.

5.2. Definition. Let M = (M, I,⊗) be a metatheory, T = (T, e,m) be a theory in M,
C be a large category, and 〈−,−〉 = (〈−,−〉, j,M) be an enrichment of C over M.

1. A model of T in C with respect to 〈−,−〉 is a pair (C, χ) consisting of an
object C of C and a theory homomorphism (= monoid homomorphism) χ : T −→
End〈−,−〉(C); that is, a morphism χ : T −→ 〈C,C〉 in M making the following
diagrams commute:

I T

〈C,C〉

e

χ
jC

T ⊗ T T

〈C,C〉 ⊗ 〈C,C〉 〈C,C〉.

χ⊗ χ

m

MC,C,C

χ

2. Let (C, χ) and (C ′, χ′) be models of T in C with respect to 〈−,−〉. A homomor-
phism from (C, χ) to (C ′, χ′) is a morphism f : C −→ C ′ in C making the follow-
ing diagram commute:

T 〈C ′, C ′〉

〈C,C〉 〈C,C ′〉.

χ

χ′

〈C, f〉

〈f, C′〉

We denote the (large) category of models of T in C with respect to 〈−,−〉 by Mod(T, (C, 〈−,−〉)).

The above definitions of model and homomorphism are reminiscent of ones for clones
(Definitions 3.5 and 3.6), symmetric operads, non-symmetric operads (Definition 3.10),
PROPs and PROs (Definition 3.15). Indeed, we can recover the standard notions of model
for these notions of algebraic theory via suitable enrichments.

5.3. Example. Recall that the metatheory for clones is [F,Set] with the substitution
monoidal structure. Let C be a locally small3 category with all finite products (or more
generally, with all finite powers). We have an enrichment of C over [F,Set] defined as
follows:

• The functor 〈−,−〉 : Cop × C −→ [F,Set] maps A,B ∈ C and [n] ∈ F to the set

〈A,B〉n = C(An, B).

3Note that according to our convention (Definition 2.1), “locally small” implies “large”.
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• The natural transformation (jC : I −→ 〈C,C〉)C∈C corresponds by the Yoneda
lemma (recall that I = F([1],−)) to the family

(jC = idC ∈ 〈C,C〉1)C∈C.

• The natural transformation (MA,B,C : 〈B,C〉 ⊗ 〈A,B〉 −→ 〈A,C〉)A,B,C∈C corre-

sponds by the universality of coends (recall that (Y ⊗ X)n =
∫ [k]∈F

Yk × (Xn)k)
to the family

(MA,B,C)n,k : 〈B,C〉k × (〈A,B〉n)k −→ 〈A,B〉n
mapping (g, f1, . . . , fk) ∈ C(Bk, C)× C(An, B)k to g ◦ 〈f1, . . . , fk〉 ∈ C(An, B).

Clearly the definition of the clone EndC(C) from an object C ∈ C (Definition 3.3) is
derived from the above enrichment. Consequently, we recover the classical definitions of
model (Definition 3.5) and homomorphism between models (Definition 3.6) for clones, as
instances of Definition 5.2.

5.4. Example. The metatheory for symmetric operads is [P,Set] with the substitution
monoidal structure. Let C = (C, I ′,⊗′) be a locally small symmetric monoidal category.
We have an enrichment of C over [P,Set] defined as follows:

• The functor 〈−,−〉 : Cop × C −→ [P,Set] maps A,B ∈ C and [n] ∈ P to the set

〈A,B〉n = C(A⊗′n, B),

where A⊗
′n is the monoidal product of n many copies of A.

• The natural transformation (jC : I −→ 〈C,C〉)C∈C corresponds by the Yoneda
lemma (recall that I = P([1],−)) to the family

(jC = idC ∈ 〈C,C〉1)C∈C.

• The natural transformation (MA,B,C : 〈B,C〉 ⊗ 〈A,B〉 −→ 〈A,C〉)A,B,C∈C corre-
sponds by the universality of coends (recall Definition 4.9) to the family

(MA,B,C)n,k,n1,...,nk
: 〈B,C〉k ×P([n1 + · · ·+ nk], [n])

× 〈A,B〉n1
× · · · × 〈A,B〉nk

−→ 〈A,B〉n,

which is the unique function from the empty set if n 6= n1 + · · ·+nk and, if n = n1 +
· · ·+nk, maps (g, u, f1, . . . , fk) ∈ C(B⊗

′k, C)×P([n1 + · · ·+nk], [n])×C(A⊗′n1 , B)×
· · · × C(A⊗′nk , B) to g ◦ (f1 ⊗′ · · · ⊗′ fk) ◦ A⊗

′u.

Via the above enrichment, we recover the classical definitions of model and homomor-
phism between models for symmetric operads.
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5.5. Example. The metatheory for non-symmetric operads is [N,Set] with the substi-
tution monoidal structure. Let C = (C, I ′,⊗′) be a locally small monoidal category. We
have an enrichment of C over [N,Set] which is similar to, and simpler than, the one in
the previous example.

5.6. Example. The metatheory for PROPs is SymMonCAT lax(Pop×P,Set) with the
monoidal structure given by composition of Set-valued symmetric monoidal profunctors.
Let C = (C, I ′,⊗′) be a locally small symmetric monoidal category. We have an enrichment
of C over SymMonCAT lax(Pop ×P,Set) defined as follows:

• The functor 〈−,−〉 : Cop × C −→ SymMonCAT lax(Pop × P,Set) maps A,B ∈ C
and [m], [n] ∈ P to the set

〈A,B〉([m], [n]) = C(A⊗′n, B⊗′m),

with the evident lax symmetric monoidal structure on 〈A,B〉.

• The natural transformation (jC : P(−,−) −→ 〈C,C〉) is determined by the functo-
riality of 〈C,C〉.

• The natural transformation (MA,B,C : 〈B,C〉 � 〈A,B〉 −→ 〈A,C〉)A,B,C∈C corre-
sponds by the universality of coends to the family

(MA,B,C)l,m,n : 〈B,C〉([l], [m])× 〈A,B〉([m], [n]) −→ 〈A,C〉([l], [n])

defined by composition in C.

This enrichment captures the classical definition of models of PROPs.

5.7. Example. The metatheory for PROs is MonCAT lax(Nop×N,Set) with the mon-
oidal structure given by composition of Set-valued monoidal profunctors. Let C =
(C, I ′,⊗′) be a locally small monoidal category. We have then an enrichment of C over
MonCAT lax(Nop×N,Set) which is similar to, and simpler than, the one in the previous
example.

5.8. Example. We may also consider infinitary variants of Example 5.3. Here we take
an extreme. Let C be a locally small category with all small powers. Then we obtain an
enrichment of C over [Set,Set], the metatheory for monads on Set.

• The functor 〈−,−〉 : Cop × C −→ [Set,Set] maps A,B ∈ C and X ∈ Set to the set

〈A,B〉(X) = C(AX , B),

where AX is the X-th power of A.

• The natural transformation (jC : idSet −→ 〈C,C〉)C∈C corresponds by the Yoneda
lemma (note that idSet

∼= Set(1,−), where 1 is a singleton) to the family

(jC = idC ∈ 〈C,C〉(1))C∈C.
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• The natural transformation (MA,B,C : 〈B,C〉 ◦ 〈A,B〉 −→ 〈A,C〉)A,B,C∈C has the
X-th component (X ∈ Set)

〈B,C〉 ◦ 〈A,B〉(X) = C(BC(AX ,B), C) −→ C(AX , C) = 〈A,C〉(X)

the function induced from the canonical morphism AX −→ BC(A
X ,B) in C.

This enrichment gives us a definition of model of a monad T on Set in C. To spell
this out, first note that for any object C ∈ C, the functor 〈C,C〉 : Set −→ Set which
maps X ∈ Set to C(CX , C) acquires the monad structure, giving rise to the monad
End〈−,−〉(C) on Set. A model of T is then an object C ∈ C together with a monad
morphism T −→ End〈−,−〉(C). This is the definition of relative algebra of a monad on
Set by Hino, Kobayashi, Hasuo and Jacobs [HKHJ16]. As noted in [HKHJ16], in the
case where C = Set, relative algebras of a monad T on Set agree with Eilenberg–Moore
algebras of T; we shall later show this fact in Example 6.9.

5.9. Example. Let S be a large category and consider the metatheory [S,S] of monads
on S. Then an enrichment over [S,S] is the same thing as an S-parameterised monad
(without strength) in the sense of Atkey [Atk09, Definition 1], introduced in the study of
computational effects.

Having reformulated semantics of notions of algebraic theory in terms of enrichments,
let us investigate some of its immediate consequences.

5.10. Mod(−,−) as a 2-functor. It is well-known that given clones T and T′, a clone
homomorphism f : T −→ T′, and a locally small category C with finite products, we have
the induced functor

Mod(f, C) : Mod(T′, C) −→Mod(T, C)

between the categories of models. An equally widely known phenomenon is that given a
clone T, locally small categories C and C ′ with finite products, and a functor G : C −→ C ′
preserving finite products, we obtain a functor

Mod(T, G) : Mod(T, C) −→Mod(T, C ′).

In order to capture such functoriality of Mod(−,−), we introduce a 2-category of enrich-
ments.

5.11. Definition. [Cf. [Cam18, Definitions 2.9 and 2.10]] Let M = (M, I,⊗) be a
metatheory. The (locally large) 2-category Enrich(M) of enrichments over M is defined
as follows:

• An object is an enrichment (C, 〈−,−〉, j,M) over M.
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• A 1-cell from (C, 〈−,−〉, j,M) to (C ′, 〈−,−〉′, j′,M ′) is a functor G : C −→ C ′ to-
gether with a natural transformation (gA,B : 〈A,B〉 −→ 〈GA,GB〉′)A,B∈C making the
following diagrams commute for all A,B,C ∈ C:

I 〈C,C〉

〈GC,GC〉′

jC

gC,C
j′GC

〈B,C〉 ⊗ 〈A,B〉 〈A,C〉

〈GB,GC〉′ ⊗ 〈GA,GB〉′ 〈GA,GC〉′.

MA,B,C

gA,CgB,C ⊗ gA,B

M ′GA,GB,GC

• A 2-cell from (G, g) to (G′, g′), both from (C, 〈−,−〉, j,M) to (C ′, 〈−,−〉′, j′, M ′), is
a natural transformation θ : G =⇒ G′ making the following diagram commute for
all A,B ∈ C:

〈A,B〉 〈GA,GB〉′

〈G′A,G′B〉′ 〈GA,G′B〉′.

gA,B

〈GA, θB〉′g′A,B

〈θA, G′B〉′

5.12. Example. Let FPow be the 2-category of locally small categories with chosen
finite powers, functors preserving finite powers (in the usual sense4) and all natural trans-
formations. We have a canonical 2-functor

FPow −→ Enrich([F,Set])

which is fully faithful.
Let FProd be the 2-category of locally small categories with chosen finite products,

functors preserving finite products (in the usual sense) and all natural transformations.
We have a canonical 2-functor

FProd −→ Enrich([F,Set])

which is locally fully faithful.
Hence we may recover the classical functoriality of Mod(T,−) for a clone T, recalled

above, if we could show that it is functorial with respect to morphisms in Enrich([F,Set]).

4That is, we do not require these functors to preserve the chosen finite powers on the nose.
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We also have canonical (locally faithful) 2-functors

SymMonCAT ls
lax −→ Enrich([P,Set]),

SymMonCAT ls
strong −→ Enrich(SymMonCAT lax(Pop ×P,Set)),

where the domain is the 2-category of locally small symmetric monoidal categories, sym-
metric lax (resp. strong) monoidal functors and monoidal natural transformations, and

MonCAT ls
lax −→ Enrich([N,Set]),

MonCAT ls
strong −→ Enrich(MonCAT lax(Nop ×N,Set)),

where the domain is the 2-category of locally small monoidal categories, lax (resp. strong)
monoidal functors and monoidal natural transformations.

Now the functoriality of Mod(−,−) may be expressed by saying that it is a 2-functor

Mod(−,−) : Th(M)op × Enrich(M) −→ CAT (8)

(when we say that (8) is a 2-functor, we are identifying the category Th(M) with the
corresponding locally discrete 2-category). Actually, the 2-functor (8) arises immediately
from the structure of Enrich(M). Observe that we may identify a theory in M with an
enrichment of the terminal category 1 over M. The full sub-2-category of Enrich(M)
consisting of all enrichments over the (fixed) terminal category 1 is in fact locally discrete,
and is isomorphic to Th(M). This way we obtain a fully faithful inclusion 2-functor
Th(M) −→ Enrich(M). It is straightforward to see that the appropriate 2-functor (8)
is given by the composite

Th(M)op × Enrich(M)

Enrich(M)op × Enrich(M)

CAT ,

inclusion

Enrich(M)(−,−)

where Enrich(M)(−,−) is the hom-2-functor for Enrich(M).

5.13. Comparing different notions of algebraic theory. So far we have been
working within a fixed notion of algebraic theory. We now turn to the question of com-
paring different notions of algebraic theory.

By way of illustration, let us consider the relationship of clones, symmetric operads
and non-symmetric operads. On the “syntactical” side, we have inclusions of algebraic
theories

{non-sym. operads} ⊆ {sym. operads} ⊆ {clones}, (9)
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in the sense that every symmetric operad may be derived from a regular presentation of
an equational theory, which is at the same time a presentation of an equational theory and
therefore defines a clone, etc. On the “semantical” side, in contrast, we have inclusions
of (standard) notions of models in the opposite direction, namely:

{mon. cat.} ⊇ {sym. mon. cat.} ⊇ {cat. with fin. prod.}. (10)

Furthermore, suppose we take the theory T of monoids (which is expressible as a
non-symmetric operad) and the category Set (which has finite products). Then we can
consider the category of models Mod(T,Set) in three different ways: either thinking of
T as a clone and Set as a category with finite products, T as a symmetric operad and Set
as a symmetric monoidal category (via finite products), or T as a non-symmetric operad
and Set as a monoidal category (via finite products). It turns out that the resulting
three categories of models are isomorphic to each other, indicating certain compatibility
between the three notions of algebraic theory.

The key to understand these phenomena in our framework is the functoriality of the
Enrich(−) construction. That is, we may extend (just like base change of enriched cate-
gories) Enrich(−) to a 2-functor

Enrich(−) : MonCAT lax −→ 2-CAT (11)

from the 2-category MonCAT lax of large monoidal categories (= metatheories), lax
monoidal functors and monoidal natural transformations, to the 2-category 2-CAT of
huge 2-categories, 2-functors and 2-natural transformations. We just describe the action
of a lax monoidal functor on an enrichment, as the rest of the data for the 2-functor (11)
follows routinely.

5.14. Definition. Let M = (M, IM,⊗M) and N = (N , IN ,⊗N ) be metatheories, F =
(F, f·, f) : M −→ N be a lax monoidal functor,5 C be a large category and 〈−,−〉 =
(〈−,−〉, j,M) be an enrichment of C over M. We define the enrichment F∗(〈−,−〉) =
(〈−,−〉′, j′,M ′) of C over N as follows:

• The functor 〈−,−〉′ : Cop × C −→ N maps (A,B) ∈ Cop × C to F 〈A,B〉.

• The natural transformation (j′C : IN −→ 〈C,C〉′)C∈C is defined by j′C = FjC ◦ f·:

IN FIM F 〈C,C〉.
f· FjC

• The natural transformation (M ′
A,B,C : 〈B,C〉′ ⊗N 〈A,B〉′ −→ 〈A,C〉′)A,B,C∈C is de-

fined by M ′
A,B,C = FMA,B,C ◦ f〈A,B〉,〈B,C〉:

F 〈B,C〉 ⊗N F 〈A,B〉 F (〈B,C〉 ⊗M 〈A,B〉) F 〈A,C〉.
f〈A,B〉,〈B,C〉 FMA,B,C

5Consisting of a functor F : M −→ N , a morphism f· : IN −→ FIM and a natural transformation
(fX,Y : FY ⊗N FX −→ F (Y ⊗M X))X,Y ∈M satisfying the suitable axioms.
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As an immediate consequence of the 2-functoriality of Enrich(−), it follows that when-
ever we have a monoidal adjunction (adjunction in MonCAT lax)

M N ,
L

R

a

we obtain a 2-adjunction

Enrich(M) Enrich(N ).
Enrich(L)

Enrich(R)

a

Therefore, if we take T ∈ Th(M) ⊆ Enrich(M) and (C, 〈−,−〉) ∈ Enrich(N ) in this
situation, then we get an isomorphism of categories

Enrich(M)(T,Enrich(R)(C, 〈−,−〉)) ∼= Enrich(N )(Enrich(L)(T), (C, 〈−,−〉)). (12)

Since the action of Enrich(−) preserves the underlying categories, we may regard Enrich(L)(T)
as a theory in N . Therefore (12) may be seen as an isomorphism between the category of
models of T in C with respect to R∗(〈−,−〉), and the category of models of Enrich(L)(T)
in C with respect to 〈−,−〉.

The relationship between clones, symmetric operads and non-symmetric operads men-
tioned above can be explained in this way. First note that there is a chain of inclusions

N P F.
J J ′

Therefore, precomposition and left Kan extensions induce a chain of adjunctions

[N,Set] [P,Set] [F,Set].
LanJ

[J,Set]

LanJ′

[J ′,Set]

a a

It turns out that these adjunctions acquire natural structures of monoidal adjunctions
(with respect to the substitution monoidal structures). Hence in our framework, the
inclusions (9) are expressed as the functors

Th([N,Set]) Th([P,Set]) Th([F,Set])
Th(LanJ ) Th(LanJ′ )

between the categories of theories, whereas the inclusions (10) are restrictions of the
2-functors

Enrich([N,Set]) Enrich([P,Set]) Enrich([F,Set])
Enrich([J,Set]) Enrich([J ′,Set])

between the 2-categories of enrichments.
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6. Notions of model as oplax actions

In order to capture the standard notions of model for monads and generalised operads,
enrichments do not suffice in general. A suitable structure is oplax action, defined as
follows.

6.1. Definition. LetM = (M, I,⊗) be a metatheory. An oplax action ofM consists
of:

• a large category C;

• a functor ∗ : M×C −→ C;

• a natural transformation (εC : I ∗ C −→ C)C∈C;

• a natural transformation (δX,Y,C : (Y ⊗X) ∗ C −→ Y ∗ (X ∗ C))X,Y ∈M,C∈C,
6

making the following diagrams commute for all X, Y, Z ∈M and C ∈ C:

(I ⊗X) ∗ C I ∗ (X ∗ C)

X ∗ C

δX,I,C

εX∗C∼=

(X ⊗ I) ∗ C X ∗ (I ∗ C)

X ∗ C

δI,X,C

X ∗ εC∼=

((Z ⊗ Y )⊗X) ∗ C (Z ⊗ Y ) ∗ (X ∗ C)

(Z ⊗ (Y ⊗X)) ∗ C Z ∗ ((Y ⊗X) ∗ C) Z ∗ (Y ∗ (X ∗ C)).

δX,Z⊗Y,C

δY,Z,X∗C∼=

δY⊗X,Z,C Z ∗ δX,Y,C

We say that (C, ∗, ε, δ) is an oplax action of M, or that (∗, ε, δ) is an oplax action of M
on C.

An oplax action (∗, ε, δ) of M on C is called a pseudo action (resp. strict action)
if both ε and δ are natural isomorphisms (resp. identities).

The definition of model we derive from an oplax action is the following (cf. [BD98,
Section 2.2]).

6We have chosen to set δX,Y,C : (Y ⊗ X) ∗ C −→ Y ∗ (X ∗ C) and not δX,Y,C : (X ⊗ Y ) ∗ C −→
X ∗ (Y ∗ C), because the former agrees with the convention to write composition of morphisms in the
anti-diagrammatic order, which we adopt in this paper.
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6.2. Definition. Let M = (M, I,⊗) be a metatheory, T = (T, e,m) be a theory in M,
C be a large category, and ∗ = (∗, ε, δ) be an oplax action of M on C.

1. A model of T in C with respect to ∗ is a pair (C, γ) consisting of an object C ∈ C
and a morphism γ : T ∗ C −→ C in C making the following diagrams commute:

I ∗ C T ∗ C

C

e ∗ C

γ
εC

(T ⊗ T ) ∗ C T ∗ C

T ∗ (T ∗ C) T ∗ C C.

δT,T,C

m ∗ C

T ∗ γ γ

γ

2. Let (C, γ) and (C ′, γ′) be models of T in C with respect to ∗. A homomorphism
from (C, γ) to (C ′, γ′) is a morphism f : C −→ C ′ in C making the following
diagram commute:

T ∗ C T ∗ C ′

C C ′.

γ

T ∗ f

f

γ′

We denote the (large) category of models of T in C with respect to ∗ by Mod(T, (C, ∗)).

6.3. Example. Let C be a large category. Recall that the metatheory for monads on C
is [C, C]. We have a strict action

∗ : [C, C]× C −→ C

given by evaluation: (X,C) 7−→ XC.
This clearly generates the definitions of Eilenberg–Moore algebra and homomorphism

(Definition 3.19).

6.4. Example. Let C be a large category with finite limits and S = (S, η, µ) be a cartesian
monad on C. Recall that the metatheory for S-operads is C/S1. Models of an S-operad
and their homomorphisms (Definition 3.25) were introduced by using the pseudo action

∗ : (C/S1)× C −→ C

in the first place, and therefore are an instance of the above general definitions.

6.5. The 2-category of oplax actions ofM. For a metatheoryM, we can define
the 2-category of oplax actions of M (cf. Definition 5.11).
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6.6. Definition. Let M = (M, I,⊗) be a metatheory. The (locally large) 2-category
Actoplax(M) of oplax actions of M is defined as follows:

• An object is an oplax action (C, ∗, ε, δ) of M.

• A 1-cell from (C, ∗, ε, δ) to (C ′, ∗′, ε′, δ′) is a functor G : C −→ C ′ together with a
natural transformation (gX,C : X ∗′GC −→ G(X ∗C))X∈M,C∈C making the following
diagrams commute for all X, Y ∈M and C ∈ C:

I ∗′ GC G(I ∗ C)

GC

gI,C

GεC
ε′GC

(Y ⊗X) ∗′ GC G((Y ⊗X) ∗ C)

Y ∗′ (X ∗′ GC) Y ∗′ G(X ∗ C) G(Y ∗ (X ∗ C)).

gY⊗X,C

GδX,Y,Cδ′X,Y,GC

Y ∗′ gX,C gY,X∗C

• A 2-cell from (G, g) to (G′, g′), both from (C, ∗, ε, δ) to (C ′, ∗′, ε′, δ′), is a natural
transformation θ : G =⇒ G′ making the following diagram commute for all X ∈M
and C ∈ C:

X ∗′ GC G(X ∗ C)

X ∗′ G′C G′(X ∗ C).

gX,C

θX∗CX ∗′ θC

g′X,C

Similarly to the case of enrichments, we may extend the Mod(−,−) construction into
a 2-functor

Mod(−,−) : Th(M)op ×Actoplax(M) −→ CAT .

On the other hand, Actoplax(−) extends to a 2-functor in an apparently different
manner than Enrich(−). Namely, it is a 2-functor of type

Actoplax(−) : (MonCAT oplax)coop −→ 2-CAT ,

where MonCAT oplax is the 2-category of large monoidal categories (= metatheories),
oplax monoidal functors and monoidal natural transformations. The apparent discrepancy
between functoriality of Actoplax(−) and Enrich(−) will be solved in Section 8 with the
introduction of morphisms of metatheories.
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6.7. The relation between enrichments and oplax actions. We have intro-
duced two types of structures—enrichment and oplax action—to formalise notions of
model. The former captures the standard notions of model for clones, symmetric oper-
ads, non-symmetric operads, PROPs and PROs, whereas the latter captures those for
monads and generalised operads. We will unify enrichment and oplax action by the no-
tion of metamodel in the next section, but before doing so we remark on the relationship
between them. We also explain why in some good cases we can give definition of model
both in terms of enrichment and oplax actions; for instances of this phenomenon in the
literature, see e.g., [Kel74a, Section 3] and [Lei04, Section 6.4].

Let M = (M, I,⊗) be a metatheory and C be a large category. The relationship
between enrichment and oplax action is summarised in the adjunction

M C.
− ∗ C

〈C,−〉
a (13)

In more detail, what we mean is the following. Suppose that we have an enrichment
(〈−,−〉, j,M) of C over M. If, in addition, for each C ∈ C the functor 〈C,−〉 has
a left adjoint as in (13), then—by the parameter theorem for adjunctions; see [ML98,
Section IV.7]—the left adjoints canonically extend to a bifunctor ∗ : M×C −→ C, and j
and M define appropriate natural transformations ε and δ, giving rise to an oplax action
(∗, ε, δ) of M on C. And vice versa, if we start from an oplax action.

To make this idea into a precise mathematical statement, let us introduce the following
2-categories.

6.8. Definition. Let M be a metatheory.

1. Let Enrichr(M) be the full sub-2-category of Enrich(M) consisting of all enrich-
ments (C, 〈−,−〉, j,M) such that for each C ∈ C, 〈C,−〉 is a right adjoint.

2. Let Actloplax(M) be the full sub-2-category of Actoplax(M) consisting of all oplax
actions (C, ∗, ε, δ) such that for each C ∈ C, − ∗ C is a left adjoint.

The above discussion can be summarised in the statement that the two 2-categories
Enrichr(M) and Actloplax(M) are equivalent. A direct proof of this equivalence would be
essentially routine, but seems to involve rather lengthy calculation. We shall defer a proof
to Corollary 7.13.

This observation, also mentioned in [Cam18] in a more general setting, is a variant
of well-known categorical folklore. In the literature, it is usually stated in a slightly
more restricted form than the above, for example as a correspondence between tensored
M-categories and closed pseudo actions of M [Kel74a, GP97, Lin81, JK01].

Furthermore, the above correspondence is compatible with the definitions of model
(Definitions 5.2 and 6.2). Suppose that (C, 〈−,−〉, j,M) and (C, ∗, ε, δ) form a pair of
an enrichment over M and an oplax action of M connected by the adjunctions (13) (in
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a way compatible with the natural transformations j,M, ε and δ). Then for any theory
T = (T, e,m) in M and any object C ∈ C, a morphism

χ : T −→ 〈C,C〉

is a model of T in C with respect to 〈−,−〉 (Definition 5.2) if and only if its transpose
under the adjunction − ∗ C a 〈C,−〉

γ : T ∗ C −→ C

is a model of T in C with respect to ∗ (Definition 6.2), and similarly for homomorphism
between models of T. Hence we obtain an isomorphism of categories

Mod(T, (C, 〈−,−〉)) ∼= Mod(T, (C, ∗))

commuting with the forgetful functors into C.
Some of the enrichments and oplax actions we have introduced so far are good enough

to obtain the corresponding oplax actions or enrichments, giving rise to alternative defi-
nitions of model.

6.9. Example. Let C be a locally small category with all small powers. Recall the strict
action

∗ : [C, C]× C −→ C

of the metatheory [C, C] for monads on C, used to capture their Eilenberg–Moore algebras.
For any object C ∈ C, write by dCe : 1 −→ C the functor from the terminal category 1
which maps the unique object of 1 to C ∈ C (the name of C).

By the assumptions on C, for any object A ∈ C the functor −∗A (which may be seen
as the precomposition by dAe : 1 −→ C) admits a right adjoint 〈A,−〉, which maps any
B ∈ C (equivalently, dBe : 1 −→ C) to the right Kan extension 〈A,B〉 = RandAedBe of dBe
along dAe. The functor RandAedBe : C −→ C maps C ∈ C to RandAedBe(C) = BC(C,A).

For any object C ∈ C, RandCedCe exists and acquires a canonical monad structure
(the codensity monad of dCe). For any monad T on C, to give a structure of an Eilenberg–
Moore algebra on C ∈ C is equivalent to give a monad morphism from T to RandCedCe.
This observation is in e.g., [Kel74a, Section 3].

In particular, if we take C = Set, we see that the above enrichment agrees with the
one given in Example 5.8. Hence the notion of relative algebra [HKHJ16] agrees with that
of Eilenberg–Moore algebra in this case.

7. Metamodels and models

In Sections 5 and 6, we have seen that the standard notions of model for various notions
of algebraic theory can be formalised either as enrichments or as oplax actions. With two
definitions, however, we cannot claim to have formalised notions of model in a sufficiently
satisfactory manner. We now unify enrichments and oplax actions by introducing a more
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general structure of metamodel (of a metatheory). We also derive definitions of models of
theories and of their homomorphisms from a metamodel, and show that they generalise
the corresponding definitions for enrichments and oplax actions.

We may approach the concept of metamodel of a metatheoryM in two different ways,
one by generalising enrichments over M and the other by generalising oplax actions of
M. Before giving a formal (and neutral) definition of metamodel, we describe these two
perspectives.

7.1. Metamodels as generalised enrichments. Let us first discuss how a gen-
eralisation of enrichments over M leads to the notion of metamodel. For this, we
use the construction known as the Day convolution [Day70]. Given any metatheory

M = (M, I,⊗), this construction endows the presheaf category M̂ = [Mop,SET] with a

(biclosed) monoidal structure (Î , ⊗̂), in such a way that the Yoneda embeddingM−→ M̂
canonically becomes strong monoidal.

7.2. Definition. [Day70] Let M = (M, I,⊗) be a metatheory. The convolution

monoidal structure (Î , ⊗̂) on the presheaf category M̂ = [Mop,SET] is defined as
follows.

• The unit object Î is the representable functor M(−, I) : Mop −→ SET.

• Given P,Q ∈ M̂, their monoidal product Q ⊗̂ P : Mop −→ SET maps Z ∈M to

(Q ⊗̂ P )(Z) =

∫ X,Y ∈M
M(Z, Y ⊗X)×Q(Y )× P (X).

For a metatheoryM, a metamodel ofM is simply an enrichment over M̂ = (M̂, Î , ⊗̂).7

Thanks to the strong monoidal Yoneda embedding, every enrichment over M induces a
metamodel of M.

We can find several uses of M̂-categories (in the sense of enriched category theory)
in the literature. In particular, [KLSS02, Section 6] and [Mel12] contain discussions on

relationship between M̂-categories and various actions of M.

7.3. Metamodels as generalised oplax actions. Let us move on to the second
perspective on metamodels, namely as generalised oplax actions. First note that an oplax
action (C, ∗, ε, δ) of a metatheory M can be equivalently given as an oplax monoidal
functor

M−→ [C, C]
defined by X 7−→ X ∗ −, or as a colax functor

ΣM−→ CAT , (14)

7Although we have defined enrichment (Definition 5.1) only for metatheories, i.e., large monoidal cat-
egories, the definition does not depend on any size condition and it is clear what we mean by enrichments
over non-large monoidal categories, such as M̂.
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where ΣM denotes M seen as a one-object bicategory [Bén67].
To generalise this, we use the bicategory PROF of profunctors (Definition 4.16). It is

well-known that both CAT and CAT coop canonically embed into PROF . Both embed-
dings are identity-on-objects and locally fully faithful pseudofunctors. The embedding

(−)∗ : CAT −→PROF

maps a functor F : A −→ B to the profunctor F∗ : A 7−→ B defined by F∗(B,A) =
B(B,FA), whereas the embedding

(−)∗ : CAT coop −→PROF

maps a functor F : A −→ B to the profunctor F ∗ : B 7−→ A with F ∗(A,B) = B(FA,B).
Moreover, for any functor F : A −→ B we have an adjunction F∗ a F ∗ in PROF .

A metamodel of M is a colax functor

ΣM−→PROF coop,

or equivalently a lax functor

(ΣM)co = Σ(Mop) −→PROF op. (15)

Clearly, oplax actions ofM, in the form (14), give rise to metamodels ofM by postcom-
posing the pseudofunctor (−)∗.

Let us restate what a lax functor of type (15) amounts to, in monoidal categorical
terms.

7.4. Definition. Let C be a large category. Define the monoidal category [Cop×C,SET] =
([Cop×C,SET], C(−,−),�rev) of endo-profunctors on C to be the endo-hom-category
PROF op(C, C). More precisely:

• The unit object is the hom-functor C(−,−) : Cop × C −→ SET.

• Given H,K : Cop × C −→ SET, their monoidal product H �rev K maps (A,C) ∈
Cop × C to

(H �rev K)(A,C) =

∫ B∈C
H(B,C)×K(A,B).

Note that H �rev K ∼= K �H (i.e., �rev is “� reversed”).
Using this monoidal structure on [Cop×C,SET], a metamodel ofM in a large category

C may be written as a lax monoidal functor

Mop −→ [Cop × C,SET].

We now give the neutral definition of metamodels.
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7.5. Definition. [Cf. [Cam18, Definition 4.1]] Let M = (M,⊗, I) be a metatheory. A
metamodel of M consists of:

• a large category C;

• a functor Φ: Mop × Cop × C −→ SET (whose action we write as (X,A,B) 7−→
ΦX(A,B));

• a natural transformation ((φ·)C : 1 −→ ΦI(C,C))C∈C;

• a natural transformation

((φX,Y )A,B,C : ΦY (B,C)× ΦX(A,B) −→ ΦY⊗X(A,C))X,Y ∈M,A,B,C∈C,

making the following diagrams commute for all X, Y, Z ∈M and A,B,C,D ∈ C:

1× ΦX(A,B) ΦI(B,B)× ΦX(A,B)

ΦX(A,B) ΦI⊗X(A,B)

(φ·)B × ΦX(A,B)

(φX,I)A,B,B
∼=

∼=

ΦX(A,B)× 1 ΦX(A,B)× ΦI(A,A)

ΦX(A,B) ΦX⊗I(A,B)

ΦX(A,B)× (φ·)A

(φI,X)A,A,B
∼=

∼=

(
ΦZ(C,D)× ΦY (B,C)

)
× ΦX(A,B) ΦZ⊗Y (B,D)× ΦX(A,B)

Φ(Z⊗Y )⊗X(A,D)ΦZ(C,D)×
(
ΦY (B,C)× ΦX(A,B)

)

ΦZ(C,D)× ΦY⊗X(A,C) ΦZ⊗(Y⊗X)(A,D).

(φY,Z)B,C,D × ΦX(A,B)

(φX,Z⊗Y )A,B,D

∼=

∼=

ΦZ(C,D)× (φX,Y )A,B,C

(φY⊗X,Z)A,C,D

We say that (C,Φ, φ·, φ) is a metamodel of M, or that (Φ, φ·, φ) is a metamodel of M in
C.

The above definition perfectly makes sense even if we replace the category SET of large
sets by the category Set of small sets. Indeed, most of the naturally occurring notions
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of model can be captured by such “Set-valued” metamodels. However, for theoretical
development it turns out to be more convenient to define metamodels as above.

Note that we may replace ((φ·)C)C∈C by

((jC)Z : Î(Z) −→ ΦZ(C,C))C∈C,Z∈M

and ((φX,Y )A,B,C)X,Y ∈M,A,B,C∈C by

((MA,B,C)Z : (Φ(−)(B,C) ⊗̂ Φ(−)(A,B))(Z) −→ ΦZ(A,C))A,B,C∈M,Z∈M.

The axioms for metamodel then translate to the ones for enrichments (over M̂).
On the other hand, we may also replace ((φ·)C)C∈C by

((φ·)A,B : C(A,B) −→ ΦI(A,B))A,B∈C

and ((φX,Y )A,B,C)X,Y ∈M,A,B,C∈C by

((φX,Y )A,C : (ΦY �rev ΦX)(A,C) −→ ΦY⊗X(A,C))A,C∈C,X,Y ∈M.

The axioms for metamodel then state that

(Φ, φ·, φ) : (Mop, I,⊗) −→ ([Cop × C,SET], C(−,−),�rev)

is an oplax monoidal functor.
Hence the attempts to generalise enrichments and oplax actions mentioned above

coincide and both give rise to Definition 7.5.

The definitions of model and homomorphism we derive from a metamodel are the
following.

7.6. Definition. Let M = (M, I,⊗) be a metatheory, T = (T, e,m) be a theory in M,
C be a large category and Φ = (Φ, φ·, φ) be a metamodel of M in C.

1. A model of T in C with respect to Φ is a pair (C, ξ) consisting of an object C
of C and an element ξ ∈ ΦT (C,C) such that (Φe)C,C(ξ) = (φ·)C(∗) (where ∗ is the
unique element of 1) and (Φm)C,C(ξ) = (φT,T )C,C,C(ξ, ξ):

ΦT (C,C)

ΦI(C,C)

1

(Φe)C,C (φ·)C

ΦT (C,C)

ΦT⊗T (C,C).

ΦT (C,C)× ΦT (C,C)

(Φm)C,C (φT,T )C,C,C

2. Let (C, ξ) and (C ′, ξ′) be models of T in C with respect to Φ. A homomorphism
from (C, ξ) to (C ′, ξ′) is a morphism f : C −→ C ′ in C such that ΦT (C, f)(ξ) =
ΦT (f, C ′)(ξ′):

ΦT (C,C)

ΦT (C,C ′).

ΦT (C ′, C ′)

ΦT (C, f) ΦT (f, C′)

We denote the (large) category of models of T in C with respect to Φ by Mod(T, (C,Φ)).
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7.7. Example. LetM = (M, I,⊗) be a metatheory, C be a large category and (〈−,−〉, j,M)
be an enrichment of C overM. This induces a metamodel (Φ, φ·, φ) ofM in C as follows.

• The functor Φ: Mop × Cop × C −→ SET maps (X,A,B) ∈Mop × Cop × C to

ΦX(A,B) =M(X, 〈A,B〉).

• For each C ∈ C, (φ·)C : 1 −→ ΦI(C,C) is the name of jC (i.e., (φ·)C maps the unique
element of the singleton 1 to jC).

• For each A,B,C ∈ C and X, Y ∈ M, the function (φX,Y )A,B,C : ΦY (B,C) ×
ΦX(A,B) −→ ΦY⊗X(A,C) maps g : Y −→ 〈B,C〉 and f : X −→ 〈A,B〉 to

Y ⊗X 〈B,C〉 ⊗ 〈A,B〉 〈A,C〉.
g ⊗ f MA,B,C

The definition of model and homomorphism (Definition 5.2) we derive from an enrich-
ment may be seen as a special case of the corresponding definition (Definition 7.6) for
metamodel.

7.8. Example. Let M = (M, I,⊗) be a metatheory, C be a large category and (∗, ε, δ)
be an oplax action ofM on C. This induces a metamodel (Φ, φ·, φ) ofM in C as follows.

• The functor Φ: Mop × Cop × C −→ SET maps (X,A,B) ∈Mop × Cop × C to

ΦX(A,B) = C(X ∗ A,B).

• For each C ∈ C, (φ·)C : 1 −→ ΦI(C,C) is the name of εC .

• For each A,B,C ∈ C and X, Y ∈ M, the function (φX,Y )A,B,C : ΦY (B,C) ×
ΦX(A,B) −→ ΦY⊗X(A,C) maps g : Y ∗B −→ C and f : X ∗ A −→ B to

(Y ⊗X) ∗ A Y ∗ (X ∗ A) Y ∗B C.
δX,Y,A Y ∗ f g

The definition of model and homomorphism (Definition 6.2) we derive from an oplax
action may be seen as a special case of the corresponding definition (Definition 7.6) for
metamodel.

7.9. The 2-category of metamodels. Metamodels of a metatheory naturally form
a 2-category, just as enrichments and oplax actions do.
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7.10. Definition. [Cf. [Cam18, Definitions 4.10 and 4.11]] Let M = (M, I,⊗) be a
metatheory. We define the (locally large) 2-category MMod(M) of metamodels of M as
follows.

• An object is a metamodel (C,Φ, φ·, φ) of M.

• A 1-cell from (C,Φ, φ·, φ) to (C ′,Φ′, φ′·, φ′) is a functor G : C −→ C ′ together with a
natural transformation (gX,A,B : ΦX(A,B) −→ Φ′X(GA,GB))X∈M,A,B∈C making the
following diagrams commute for all X, Y ∈M and A,B,C ∈ C:

1 ΦI(C,C)

Φ′I(GC,GC)

(φ·)C

gI,C,C
(φ′·)GC

ΦY (B,C)× ΦX(A,B) ΦY⊗X(A,C)

Φ′Y (GB,GC)× Φ′X(GA,GB) Φ′Y⊗X(GA,GC).

(φX,Y )A,B,C

gY⊗X,A,CgY,B,C × gX,A,B

(φ′X,Y )GA,GB,GC

• A 2-cell from (G, g) to (G′, g′), both from (C,Φ, φ·, φ) to (C ′,Φ′, φ′·, φ′), is a natural
transformation θ : G =⇒ G′ making the following diagram commute for all X ∈M
and A,B ∈ C:

ΦX(A,B) Φ′X(GA,GB)

Φ′X(G′A,G′B) Φ′X(GA,G′B).

gX,A,B

Φ′X(GA, θB)g′X,A,B

Φ′X(θA, G
′B)

Recall that for a functor (resp. a 2-functor) F : A −→ B, the essential image of F is
the full subcategory (resp. full sub-2-category) of B consisting of all objects B ∈ B such
that there exists an object A ∈ A and an isomorphism FA ∼= B. If A is a large category,
a contravariant presheaf Aop −→ SET (resp. a covariant presheaf A −→ SET) over A is
called representable if and only if it is in the essential image of the Yoneda embedding
A −→ [Aop,SET] (resp. A −→ [A,SET]op).

7.11. Proposition. [Cf. [Cam18, Proposition 4.12 (b)]] Let M be a metatheory. The
construction given in Example 7.7 canonically extends to a fully faithful 2-functor

Enrich(M) −→MMod(M).
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A metamodel (C,Φ, φ·, φ) of M is in the essential image of this 2-functor if and only if
for each A,B ∈ C, the functor

Φ(−)(A,B) : Mop −→ SET

is representable.

Proof. The construction of the 2-functor Enrich(M) −→MMod(M) is straightforward.
The rest can also be proved by a standard argument using the Yoneda lemma. We sketch
the argument below.

Let us focus on the characterisation of the essential image. Suppose that (C,Φ, φ·, φ)
is a metamodel of M such that for each A,B ∈ C, the functor Φ(−)(A,B) is repre-
sentable. From such a metamodel we obtain an enrichment (〈−,−〉, j,M) of C over M
as follows. For each A,B ∈ C, choose an object 〈A,B〉 ∈ M and an isomorphism
αA,B : M(−, 〈A,B〉) −→ Φ(−)(A,B). By functoriality of Φ, 〈−,−〉 uniquely extends to
a functor of type Cop × C −→ M while making (αA,B)A,B∈C natural. For each C ∈ C,
(φ·)C : 1 −→ ΦI(C,C) ∼= M(I, 〈C,C〉) gives rise to a morphism jC : I −→ 〈C,C〉 in M.
For each A,B,C ∈M, consider the function

M(〈B,C〉, 〈B,C〉)×M(〈A,B〉, 〈A,B〉)

Φ〈B,C〉(B,C)× Φ〈A,B〉(A,B)

Φ〈B,C〉⊗〈A,B〉(A,C)

M(〈B,C〉 ⊗ 〈A,B〉, 〈A,C〉).

(φ〈A,B〉,〈B,C〉)A,B,C

(αB,C)〈B,C〉 × (αA,B)〈A,B〉

(αA,C)−1
〈B,C〉⊗〈A,B〉

Let the image of (id〈B,C〉, id〈A,B〉) under this function be MA,B,C : 〈B,C〉 ⊗ 〈A,B〉 −→
〈A,C〉. The axioms of metamodel then shows that (〈−,−〉, j,M) is an enrichment.

Moreover, if we consider the metamodel induced from this enrichment (see Exam-
ple 7.7), then it is isomorphic to our original (C,Φ, φ·, φ). In particular, for each X, Y ∈M
and A,B,C ∈ C, the function (φX,Y )A,B,C is completely determined by MA,B,C , as in Ex-
ample 7.7. To see this, note that for each f ∈ M(X, 〈A,B〉) and g ∈ M(Y, 〈B,C〉), the
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diagram

M(Y, 〈B,C〉)×M(X, 〈A,B〉)

ΦY (B,C)× ΦX(A,B)

ΦY⊗X(A,C)

M(〈B,C〉 ⊗ 〈A,B〉, 〈A,C〉)

M(〈B,C〉, 〈B,C〉)×M(〈A,B〉, 〈A,B〉)

Φ〈B,C〉(B,C)× Φ〈A,B〉(A,B)

Φ〈B,C〉⊗〈A,B〉(A,C)

M(〈B,C〉 ⊗ 〈A,B〉, 〈A,C〉)

(φ〈A,B〉,〈B,C〉)A,B,C

α× α

α−1

(φX,Y )A,B,C

α× α

α−1

M(g, id)×M(f, id)

Φg(B,C)× Φf (A,B)

Φg⊗f (A,C)

M(g ⊗ f, id)

commutes. Hence by chasing the element (id〈B,C〉, id〈A,B〉) in the top left set, we observe

that (modulo the isomorphisms α) (g, f) is mapped by (φX,Y )A,B,C to MA,B,C ◦ (g ⊗ f).

7.12. Proposition. [Cf. [Cam18, Proposition 4.2 (a)]] Let M be a metatheory. The
construction given in Example 7.8 canonically extends to a fully faithful 2-functor

Actoplax(M) −→MMod(M).

A metamodel (C,Φ, φ·, φ) of M is in the essential image of this 2-functor if and only if
for each X ∈M and A ∈ C, the functor

ΦX(A,−) : C −→ SET

is representable.

Proof. Similar to the proof of Proposition 7.11.
In particular, given a metamodel (C,Φ, φ·, φ) of M such that for each X ∈ M and

A ∈ C, the functor ΦX(A,−) is representable, we may construct an oplax action (∗, ε, δ) of
C as follows. For each X ∈M and A ∈ C, choose an object X ∗A ∈ C and an isomorphism
βX,A : C(X∗A,−) −→ ΦX(A,−). We easily obtain a functor ∗ : M×C −→ C and a natural
transformation (εC)C∈C. To get δ, for each X, Y ∈M and A ∈ C consider the function

C(Y ∗ (X ∗ A), Y ∗ (X ∗ A))× C(X ∗ A,X ∗ A)

ΦY (X ∗ A, Y ∗ (X ∗ A))× ΦX(A,X ∗ A)

ΦY⊗X(A, Y ∗ (X ∗ A))

C((Y ⊗X) ∗ A, Y ∗ (X ∗ A)).

(φX,Y )A,X∗A,Y ∗(X∗A)

(βY,X∗A)Y ∗(X∗A) × (βX,A)X∗A

(βY⊗X,A)−1
Y ∗(X∗A)
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We define δX,Y,A : (Y ⊗X)∗A −→ Y ∗ (X ∗A) to be the image of (idY ∗(X∗A), idX∗A) under
this function.

To verify that the metamodel induced from this oplax action (see Example 7.8) is
isomorphic to (C,Φ, φ·, φ), essentially we only need to check that (φX,Y )A,B,C for each
X, Y ∈ M and A,B,C ∈ C is determined by δX,Y,A as in Example 7.8. Suppressing the
isomorphisms β from now on, for each f : X ∗A −→ B and g : Y ∗B −→ C consider the
following diagram:

C((Y ⊗X) ∗ A, Y ∗ (X ∗ A))

C((Y ⊗X) ∗ A,C)

C(Y ∗B,C)× C(X ∗ A,B).

C(Y ∗ (X ∗ A), Y ∗ (X ∗ A))× C(X ∗ A,X ∗ A)

C(Y ∗ (X ∗ A), C)× C(X ∗ A,X ∗ A)

C(Y ∗B,C)× C(X ∗ A,X ∗ A)

C(Y ∗ f, id)× C(id, id)

C(id, g ◦ (Y ∗ f))× C(id, id)

(φX,Y )A,B,C

C(id, g ◦ (Y ∗ f))

(φX,Y )A,X∗A,Y ∗(X∗A)

(φX,Y )A,X∗A,C

C(id, id)× C(id, f)

The top square commutes by naturality in C of ((φX,Y )A,B,C) and the bottom square
commutes by (extra) naturality in B of it. By chasing the appropriate elements as follows

δX,Y,A

g ◦ (Y ∗ f) ◦ δX,Y,A

(g, f),

(idY ∗(X∗A), idX∗A)

(g ◦ (Y ∗ f), idX∗A)

(g, idX∗A)

C(Y ∗ f, id)× C(id, id)

C(id, g ◦ (Y ∗ f))× C(id, id)

(φX,Y )A,B,C

C(id, g ◦ (Y ∗ f))

(φX,Y )A,X∗A,Y ∗(X∗A)

(φX,Y )A,X∗A,C

C(id, id)× C(id, f)

we conclude that (φX,Y )A,B,C(g, f) = g ◦ (Y ∗ f) ◦ δX,Y,A, as desired.

Recall the 2-categories Enrichr(M) and Actloplax(M) defined in Definition 6.8.

7.13. Corollary. [Cf. [Cam18, Corollary 4.13]] Let M be a metatheory.

1. The 2-functors in Proposition 7.11 and Proposition 7.12 restrict to fully faithful
2-functors

Enrichr(M) −→MMod(M) Actloplax(M) −→MMod(M)

with the same essential image characterised as follows: a metamodel (C,Φ, φ·, φ) of
M is in the essential image if and only if for each X ∈ M and A,B ∈ C, the
functors

Φ(−)(A,B) : Mop −→ SET ΦX(A,−) : C −→ SET

are representable.
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2. The 2-categories Enrichr(M) and Actloplax(M) are equivalent.

Proof. The first clause is immediate from the definition of adjunction. For instance,
an enrichment (C, 〈−,−〉, j,M) over M is in Enrichr(M) if and only if for each A ∈ C,
〈A,−〉 is a right adjoint, which in turn is the case if and only if for each X ∈ M and
A ∈ C, the functor

M(X, 〈A,−〉) : C −→ SET

is representable.
The second clause is a direct consequence of the first.

The reader might have noticed that there is another representability condition not
covered by Propositions 7.11 and 7.12, namely metamodels (C,Φ, φ·, φ) such that for each
X ∈M and B ∈ C, the functor

ΦX(−, B) : Cop −→ SET

is representable. They correspond to right lax actions of Mop on C, or equivalently, to
right oplax actions of M on Cop.

Extending the definition of enrichment (Definition 5.1) and the 2-category of enrich-
ments (Definition 5.11) to huge monoidal categories, we obtain the following.

7.14. Proposition. Let M be a metatheory and M̂ = ([Mop,SET], Î , ⊗̂) (see Defini-

tion 7.2). The 2-categories MMod(M) and Enrich(M̂) are canonically isomorphic.

7.15. Mod(−,−) as a 2-functor. Let M be a metatheory. Similarly to the cases of
enrichments and oplax actions, we can view the Mod(−,−) construction as a 2-functor
using the 2-category MMod(M). In fact, via the inclusion

Th(M) −→ Enrich(M) −→MMod(M), (16)

the 2-functor Mod(−,−) is simply given by the following composite:

Th(M)op ×MMod(M)

MMod(M)op ×MMod(M)

CAT ,

inclusion

MMod(M)(−,−)

where MMod(M)(−,−) is the hom-2-functor for the locally large MMod(M). The

inclusion (16) identifies a theory T = (T,m, e) inM with the metamodel (Φ(T), φ(T)
·, φ

(T))
ofM in the terminal category 1 (whose unique object we denote by ∗), defined as follows:

• the functor Φ(T) : Mop × 1op × 1 −→ SET maps (X, ∗, ∗) to M(X,T );
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• the function (φ(T)
·)∗ : 1 −→M(I, T ) maps the unique element of 1 to e;

• for each X, Y ∈ M, the function (φ(T)
X,Y )∗,∗,∗ : M(Y, T ) ×M(X,T ) −→ M(Y ⊗

X,T ) maps (g, f) to m ◦ (g ⊗ f).

8. Morphisms of metatheories

In this section, we introduce a notion of morphism between metatheories. The main
purpose of morphisms of metatheories is to provide a means to compare different notions
of algebraic theory. An example of such comparison is given in Section 5, where we
compare clones, symmetric operads and non-symmetric operads. Recall that the crucial
observation used there was the fact that the Enrich(−) construction extends to a 2-functor

Enrich(−) : MonCAT lax −→ 2-CAT . (17)

Therefore, we want to define morphisms of metatheories with respect to which MMod(−)
behaves (2-)functorially.

On the other hand, recall from Section 6 that Actoplax(−) is a 2-functor of type

Actoplax(−) : (MonCAT oplax)coop −→ 2-CAT . (18)

Since metamodels unify both enrichments and oplax actions, we would like to explain both
(17) and (18) by introducing a sufficiently general notion of morphism of metatheories.

The requirement to unify both MonCAT lax and (MonCAT oplax
coop) suggests the

possibility of using a suitable variant of profunctors, namely monoidal profunctors intro-
duced in Definition 4.17.

8.1. Definition. Let M = (M, IM,⊗M) and N = (N , IN ,⊗N ) be metatheories. A
morphism of metatheories from M to N is a monoidal profunctor from M to N .

8.2. Definition. We define the bicategory MTH of metatheories as follows.

• An object is a metatheory.

• A 1-cell from M to N is a morphism of metatheories M 7−→ N . The identity
1-cell on a metatheory M is the hom-functor M(−,−), equipped with the evi-
dent structure for a morphism of metatheories. Given morphisms of metatheories
(H, h·, h) : M 7−→ N and (K, k·, k) : N 7−→ L, their composite is (K � H, k· �
h·, k � h) : M 7−→ L where K �H is the composition of the profunctors H and K
(Definition 4.16), and k· � h· and k � h are the evident natural transformations.

• A 2-cell from H to H ′, both from M to N , is a monoidal natural transformation
α : H =⇒ H ′ : N op ×M −→ SET.
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Similarly to the case of profunctors, we have identity-on-objects fully faithful pseudo-
functors

(−)∗ : MonCAT lax −→MTH

and
(−)∗ : (MonCAT oplax)coop −→MTH .

In detail, a lax monoidal functor

F = (F, f·, f) : M−→ N

gives rise to a morphism of metatheories

F∗ = (F∗, (f∗)·, f∗) : M 7−→ N

with F∗(N,M) = N (N,FM), (f∗)· : 1 −→ N (IN , F IM) mapping the unique element
of 1 to f· : IN −→ FIM, and (f∗)N,N ′,M,M ′ : N (N ′, FM ′) × N (N,FM) −→ N (N ′ ⊗N
N,F (M ′⊗MM)) mapping g′ : N ′ −→ FM ′ and g : N −→ FM to fM,M ′ ◦ (g′⊗g) : N ′⊗N
N −→ F (M ′ ⊗MM). Given an oplax monoidal functor

F = (F, f·, f) : M−→ N ,

we obtain a morphism of metatheories

F ∗ = (F ∗, (f ∗)·, f
∗) : N 7−→M

analogously.
In particular, a strong monoidal functor

F : M−→ N

gives rise to both F∗ : M 7−→ N and F ∗ : N 7−→M, and it is straightforward to see that
these form an adjunction F∗ a F ∗ in MTH .

A morphism of metatheories H : M 7−→ N induces a 2-functor

MMod(H) : MMod(M) −→MMod(N ).

Its action on objects is as follows.

8.3. Definition. Let M = (M, IM,⊗M) and N = (N , IN ,⊗N ) be metatheories, H =
(H, h·, h) : M 7−→ N be a morphism of metatheories, C be a large category and Φ =
(Φ, φ·, φ) be a metamodel of M in C. We define the metamodel H(Φ) = (Φ′, φ′·, φ

′) of N
on C as follows:

• The functor Φ′ : N op×Cop×C −→ SET maps (N,A,B) ∈ N op×Cop×C to the set

Φ′N(A,B) =

∫ M∈M
H(N,M)× ΦM(A,B). (19)
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• The natural transformation ((φ′·)C : 1 −→ Φ′IN (C,C))C∈C is defined by mapping the
unique element ∗ of 1 to

[IM ∈M, h·(∗) ∈ H(IN , IM), (φ·)C(∗) ∈ ΦIM(C,C)]

∈
∫ M∈M

H(IN ,M)× ΦM(C,C)

for each C ∈ C.

• The natural transformation

((φ′N,N ′)A,B,C : Φ′N ′(B,C)× Φ′N(A,B) −→ Φ′N ′⊗NN(A,C))N,N ′∈N ,A,B,C∈C

is defined by mapping a pair consisting of [M ′, x′, y′] ∈ Φ′N ′(B,C) and [M,x, y] ∈
Φ′N(A,B) to

[M ′ ⊗MM,hN,N ′,M,M ′(x
′, x), (φM,M ′)A,B,C(y′, y)]

for each N,N ′ ∈ N and A,B,C ∈ C.

The above construction extends routinely, giving rise to a pseudofunctor

MMod(−) : MTH −→ 2-CAT .

8.4. Comparing different notions of algebraic theory. We now demonstrate
how we can compare different notions of algebraic theory via morphisms of metatheories.

We start with a few remarks on simplification of the action (Definition 8.3) of a
morphism of metatheories on metamodels, in certain special cases. Let M and N be
metatheories, H : M 7−→ N be a morphism of metatheories, C be a large category and
Φ = (Φ, φ·, φ) be a metamodel of M in C.

First consider the case where for each A,B ∈ C, the functor Φ(−)(A,B) : Mop −→
SET is representable. This means that Φ is in fact (up to an isomorphism) an enrichment
〈−,−〉; see Proposition 7.11. In this case, ΦM(A,B) may be written as M(M, 〈A,B〉)
and hence the formula (19) simplifies:

Φ′N(A,B) =

∫ M∈M
H(N,M)×M(M, 〈A,B〉) ∼= H(N, 〈A,B〉).

In particular, if moreover H is of the form

F∗ : M 7−→ N

for some lax monoidal functor F : M−→ N , then we have

Φ′N(A,B) ∼= N (N,F 〈A,B〉),

implying that H(Φ) = F∗(Φ) is again isomorphic to an enrichment; indeed, this case
reduces to F∗(〈−,−〉) defined in Definition 5.14. Note that, as a special case, for any
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theory T in M (recall that such a theory is identified with a metamodel of M in the
terminal category 1), F∗(T) is again isomorphic to a theory in N . Therefore the 2-functor

MMod(F∗) : MMod(M) −→MMod(N )

extends the functor
Th(F ) : Th(M) −→ Th(N )

between the categories of theories induced by F , using the well-known fact that a lax
monoidal functor preserves theories (= monoid objects).

Next consider the case where H is of the form

G∗ : M 7−→ N

for some oplax monoidal functor G : N −→M. In this case H(N,M) =M(GN,M) and
the formula (19) simplifies as follows:

Φ′N(A,B) =

∫ M∈M
M(GN,M)× ΦM(A,B) ∼= ΦGN(A,B).

Suppose now that we have a strong monoidal functor

F : M−→ N

between metatheories M and N . On the one hand, F induces a functor

Th(F ) : Th(M) −→ Th(N )

between the categories of theories, which is a restriction of the 2-functor MMod(F∗). On
the other hand, F induces a 2-functor

MMod(F ∗) : MMod(N ) −→MMod(M)

between the 2-categories of metamodels. The 2-adjointness MMod(F∗) a MMod(F ∗)
yields, for each theory T in M and each metamodel (C,Φ) of N , an isomorphism of
categories

Mod(F∗(T), (C,Φ)) ∼= Mod(T, (C, F ∗(Φ))).

Observe that F∗(T) = Th(F )(T) is the standard action of a strong monoidal functor on
a theory, and F ∗(Φ) is, in essence, simply precomposition by F .

Now we apply the above argument to some concrete cases.
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8.5. Example. Recall from Section 5, where we have compared clones, symmetric oper-
ads and non-symmetric operads, that there is a chain of lax monoidal functors

[N,Set] [P,Set] [F,Set].
LanJ LanJ′

These functors, being left adjoints in MonCAT lax, are in fact strong monoidal [Kel74b].
Theories are mapped as follows, as noted in Section 5:

Th([N,Set]) Th([P,Set]) Th([F,Set]).
Th(LanJ ) Th(LanJ′ )

In this case, the suitable 2-functors between 2-categories of metamodels can be given
either as MMod((LanJ)∗) or MMod(([J,Set])∗) (and similarly for J ′), because (LanJ)∗ ∼=
([J,Set])∗ in MTH .

8.6. Example. Let us consider the relationship between clones and monads on Set. The
inclusion functor

J ′′ : F −→ Set

induces a functor
LanJ ′′ : [F,Set] −→ [Set,Set],

which naturally acquires the structure of a strong monoidal functor. The essential im-
age of this functor is precisely the finitary endofunctors on Set, i.e., those endofunctors
preserving filtered colimits. The functor Th(LanJ ′′) maps a clone to a finitary monad
on Set, in accordance with the well-known correspondence between clones (= Lawvere
theories) and finitary monads on Set [Lin66]. Between the 2-categories of metamodels,
we have a 2-functor

MMod((LanJ ′′)
∗) : MMod([Set,Set]) −→MMod([F,Set]).

The standard metamodel of [Set,Set] in Set (corresponding to the definition of Eilenberg–
Moore algebras) is given by the strict action described in Example 6.3; in particular, its
functor part Φ: [Set,Set]op×Setop×Set −→ SET maps (F,A,B) to Set(FA,B). The
metamodel (LanJ ′′)

∗(Φ) of [F,Set] in Set has the functor part (LanJ ′′)
∗(Φ) : [F,Set]op×

Setop × Set −→ SET mapping (X,A,B) to

Set((LanJ ′′X)A,B) = Set

(∫ [n]∈F
An ×Xn, B

)
∼=
∫

[n]∈F
Set(Xn,Set(A

n, B))

∼= [F,Set](X, 〈A,B〉),

where 〈A,B〉 ∈ [F,Set] in the final line is the one in Example 5.3. Hence MMod((LanJ ′′)
∗)

preserves the standard metamodels and this way we recover the well-known observation
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that the classical correspondence of clones and finitary monads on Set preserves seman-
tics.

Note that by combining the previous example we obtain the chain

[N,Set] [P,Set] [F,Set] [Set,Set]
LanJ LanJ′ LanJ′′

of strong monoidal functors, connecting non-symmetric and symmetric operads with mon-
ads on Set.

8.7. Example. LetM be a metatheory, C a large category, and ∗ a pseudo action ofM
on C. We obtain a strong monoidal functor

F : M−→ [C, C]

(where [C, C] is equipped with the composition monoidal structure) as the transpose of
∗ : M×C −→ C. The functor Th(F ) maps any theory T = (T, e,m) inM to the monad
F (T) = (T ∗ (−), e ∗ (−),m ∗ (−)) on C. The 2-functor MMod(F ∗) : MMod([C, C]) −→
MMod(M) maps the standard metamodel Φ of [C, C] in C (Example 6.3) to the metamodel
F ∗(Φ) : Mop × Cop × C −→ SET mapping (X,A,B) to

C((FX)A,B) = C(X ∗ A,B).

Therefore it maps the standard metamodel Φ to the metamodel induced from ∗.
As a special case, for a large category C with finite limits and a cartesian monad S on

C, the standard metamodel for S-operads (Example 6.4) may be related to the standard
metamodel of monads on C, and models of an S-operad T may alternatively be defined as
Eilenberg–Moore algebras of the monad on C induced from T (as noted in [Lei04]).

8.8. The universal theory. We conclude this section with another application of
the aforementioned method to compare different notions of algebraic theory via strong
monoidal functors.

Let us fix a large category C for the rest of this section. As we have already seen,
whenever we are given a metatheory M, a theory T in M and a metamodel Φ of M in
C, we can consider the category Mod(T, (C,Φ)) of models and the associated forgetful
functor to C.

We now know that there are in general multiple choices of the input data (M,T,Φ)
generating a given category of models and the associated forgetful functor. That is, given
metatheories M and N , a strong monoidal functor F : M−→ N , a theory T in M and
a metamodel Φ of N in C, the triples (M,T, F ∗(Φ)) and (N , F∗(T),Φ) define canonically
isomorphic categories of models over C. Let us combine this observation with the well-
known concept of universal monoid object [ML98, Section VII.5].

We define the augumented simplex category (also known as the algebraists’
simplex category) ∆a [ML98, Section VII.5] to be the category of all finite ordinals
(including the empty ordinal 0) and monotone functions. The ordinal with n elements
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{0 < 1 < · · · < n − 1} is denoted by n. We endow ∆a with the structure of a strict
monoidal category via ordinal sum as monoidal product. The (terminal) object 1 ∈ ∆a,
together with the unique morphisms !0 : 0 −→ 1 and !2 : 2 −→ 1 define a monoid object,
i.e., a theory, in ∆a. This theory U = (1, !0, !2) is in fact the universal theory, in the
sense that for any metatheory M and a theory T therein, there exists a strong monoidal
functor F : ∆a −→ M, uniquely up to monoidal natural isomorphisms, which carries U
to T. (The monoidal category ∆a being isomorphic to the PRO of monoids, this last
assertion is just the reformulation of its models in the style of functorial semantics.)

Consequently, given any triple (M,T,Φ) defining a category of models over C, we
get the strong monoidal functor F : ∆a −→M corresponding to T (so that F∗(U) ∼= T),
and hence obtain the triple (∆a,U, F

∗(Φ)) which defines the category of models over C
isomorphic to the original one. So, in fact, whichever triple (M,T,Φ) we choose, the
category of models over C defined by it can be realised (up to an isomorphism) as the
category of models of the universal theory U, with a suitable choice of a metamodel of ∆a

in C (or equivalently, in light of Proposition 7.14, with a suitable choice of an enrichment
of C over [∆op

a ,SET]). Let us define the category MModC(∆a) of metamodels of ∆a in C
as the fibre of MMod(∆a) (thought of as a 2-category over CAT via the evident forgetful
2-functor) above C ∈ CAT , namely as the pullback

MModC(∆a) MMod(∆a)

1 CAT

forgetful

dCe

in 2-CAT (then this pullback is locally discrete). We have a functor

Mod(U,−) : MModC(∆a) −→ CAT/C (20)

mapping a metamodel Φ of ∆a over C to the category of models Mod(U, (C,Φ)) equipped
with the forgetful functor to C.

The open problem of finding an intrinsic characterisation of the class of forgetful
functors arising in our framework, mentioned in the introduction, may be phrased as that
of finding intrinsic properties of objects in CAT/C which identify the essential image
of the functor (20). From the definition of category of models (Definition 7.6), it is
immediate that such forgetful functors are faithful and amnestic [AHS06, Definition 3.27]
isofibrations,8 for example. We note that the functor (20) admits a left adjoint, which
maps (V : X −→ C) ∈ CAT/C to the metamodel Φ: ∆op

a × Cop × C −→ SET defined as

Φn(A,B) =

∫ X1,...,Xn∈X
C(A, V X1)× C(V X1, V X2)× · · · × C(V Xn, B).

8A functor F : A −→ B is an isofibration iff for any A ∈ A and an isomorphism g : FA −→ B′ in B,
there exists an isomorphism f : A −→ A′ in A such that Ff = g.
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9. Structure-semantics adjunctions

Structure-semantics adjunctions are a classical topic in categorical algebra. They are a
family of adjunctions parametrised by a metatheory M and its metamodel (C,Φ, φ·, φ);
if we fix these parameters, the structure-semantics adjunction is ideally of type

Th(M)op CAT/C,
Str

Sem

` (21)

and the functor Sem is essentially Mod(−, (C,Φ)). The idea is that we may regard an
object of CAT/C, say V : A −→ C, as specifying an additional structure (of a very general
kind) on objects in C, by viewing A as the category of C-objects with the additional
structure and V as the associated forgetful functor. The functor Str then extracts a
theory from V , giving the “best approximation” of this additional structure by structures
expressible by theories in M. Various authors have constructed such adjunctions for
a variety of notions of algebraic theory, most notably for clones [Law63, Lin66, Isb72]
and monads [Dub70, Str72]. There are also some attempts to unify these results [Lin69,
Ave17].

If we try to work this idea out, however, there turn out to be size-issues or other
problems, and usually we cannot obtain an adjunction of type (21); we cannot find a
suitable functor Str of that type. To get an adjunction, various conditions on objects
in CAT/C were introduced in the literature in order to single out well-behaved (usually
called tractable) objects, yielding a restricted version of (21):

Th(M)op (CAT/C)tr.
Str

Sem

` (22)

Here, (CAT/C)tr is the full-subcategory of CAT/C consisting of all tractable objects.
In this section, we construct a structure-semantics adjunction for an arbitrary metathe-

ory and an arbitrary metamodel of it. Of course, we cannot obtain an adjunction of type
(21), for the same reasons that have prevented other authors from doing so. However,
we shall obtain a modified adjunction by a strategy different from theirs (and similar to

[Lin69, Ave17]): instead of restricting CAT/C, we extend Th(M) to Th(M̂)9 (where

M̂ = [Mop,SET] is equipped with the convolution monoidal structure), and obtain an
extended version of (21):

Th(M̂)
op

CAT/C.
Str

Sem

` (23)

We may then obtain known adjunctions of the form (22) for clones and monads, by
suitably restricting (23).

9The monoidal category M̂ is not a metatheory because it is not large. Extending Definition 4.2, by
Th(M̂) we mean the category of monoids in M̂.
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9.1. The structure and semantics functors. Let M = (M, I,⊗) be a metathe-
ory, C be a large category, and Φ = (Φ, φ·, φ) be a metamodel ofM in C. The metamodel Φ
enables us to define, for each theory T ∈ Th(M), the category of models Mod(T, (C,Φ))
together with the forgetful functor U : Mod(T, (C,Φ)) −→ C. This construction is func-
torial, and gives rise to a functor

Th(M)op −→ CAT/C.

However, as we have remarked in Proposition 7.14, a metamodel of M in C corresponds
to an enrichment of C over M̂; hence using Φ we can actually give the definition of models
for any theory (i.e., monoid object) in M̂. Therefore the previous functor can be extended
to

Sem: Th(M̂)
op
−→ CAT/C. (24)

The category Th(M̂) is isomorphic to the category of lax monoidal functors of type
Mop −→ SET and monoidal natural transformations between them. Indeed, an object
(P, e,m) of Th(M̂) consists of:

• a functor P : Mop −→ SET;

• a natural transformation (eX : Î(X) −→ P (X))X∈M;

• a natural transformation (mX : (P ⊗̂ P )(X) −→ P (X))X∈M

satisfying the monoid axioms, and such a data is equivalent to

• a functor P : Mop −→ SET;

• a function e : 1 −→ P (I);

• a natural transformation (mX,Y : P (Y )× P (X) −→ P (Y ⊗X))X,Y ∈M

satisfying the axioms for (P, e,m) to be a lax monoidal functor Mop −→ SET. We shall

use these two descriptions of objects in Th(M̂) interchangeably.
Let us describe the action of the functor Sem concretely. For any P = (P, e,m) ∈

Th(M̂), we define the category Mod(P, (C,Φ)) as follows:

• An object is a pair consisting of an object C ∈ C and a natural transformation

(ξX : P (X) −→ ΦX(C,C))X∈M

making the following diagrams commute for each X, Y ∈M:

1 P (I)

ΦI(C,C)

e

ξI
(φ·)C

P (Y )× P (X) P (Y ⊗X)

ΦY (C,C)× ΦX(C,C) ΦY⊗X(C,C).

mX,Y

ξY⊗XξY × ξX

(φX,Y )C,C,C

(25)
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• A morphism from (C, ξ) to (C ′, ξ′) is a morphism f : C −→ C ′ in C making the
following diagram commute for each X ∈M:

P (X) ΦX(C,C)

ΦX(C ′, C ′) ΦX(C,C ′).

ξX

ΦX(C, f)ξ′X

ΦX(f, C′)

There exists an evident forgetful functor U : Mod(P, (C,Φ)) −→ C mapping (C, ξ) to C
and f to f ; the functor Sem maps P to U .

We have a canonical fully faithful functor

J : Th(M) −→ Th(M̂)

mapping (T, e,m) ∈ Th(M) to the functor M(−, T ) with the evident monoid structure

induced from e and m. An object (P, e,m) ∈ Th(M̂) is in the essential image of J if and
only if P : Mop −→ SET is representable.

Let us describe the left adjoint Str to (24). Given an object V : A −→ C of CAT/C,
we define Str(V ) = (P (V ), e(V ),m(V )) ∈ Th(M̂) as follows:

• The functor P (V ) : Mop −→ SET maps X ∈M to

P (V )(X) =

∫
A∈A

ΦX(V A, V A). (26)

• The function e(V ) : 1 −→ P (V )(I) maps the unique element of 1 to ((φ·)V A(∗))A∈A
∈ P (V )(I).

• The (X, Y )-th component of the natural transformation

(m(V )
X,Y : P (V )(Y )× P (V )(X) −→ P (V )(Y ⊗X))X,Y ∈M

maps ((yA)A∈A, (xA)A∈A) to ((φX,Y )V A,V A,V A(yA, xA))A∈A.

The monoid axioms for (P (V ), e(V ),m(V )) follow easily from the axioms for metamodels,

and Str routinely extends to a functor of type CAT/C −→ Th(M̂)
op

.

9.2. Theorem. Let M be a metatheory, C be a large category and Φ = (Φ, φ·, φ) be a
metamodel of M in C. The functors Sem and Str defined above form an adjunction:

Th(M̂)
op

CAT/C.
Str

Sem

`
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Proof. We show that there are bijections

Th(M̂)(P, Str(V )) ∼= (CAT/C)(V, Sem(P))

natural in P = (P, e,m) ∈ Th(M̂) and (V : A −→ C) ∈ CAT/C.
In fact, we show that the following three types of data naturally correspond to each

other.

1. A morphism α : P −→ Str(V ) in Th(M̂); that is, a natural transformation

(αX : P (X) −→ P (V )(X))X∈M

making the suitable diagrams commute.

2. A natural transformation

(ξA,X : P (X) −→ ΦX(V A, V A))X∈M,A∈A

making the following diagrams commute for each A ∈ A and X, Y ∈M:

1 P (I)

ΦI(V A, V A)

e

ξA,I
(φ·)V A

P (Y )× P (X) P (Y ⊗X)

ΦY (V A, V A)× ΦX(V A, V A) ΦY⊗X(V A, V A).

mX,Y

ξA,Y⊗XξA,Y × ξA,X

(φX,Y )V A,V A,V A

3. A morphism F : V −→ Sem(P) in CAT/C; that is, a functor F : A −→Mod(P, (C,Φ))
such that U ◦ F = V (U : Mod(P, (C,Φ)) −→ C is the forgetful functor).

The correspondence between 1 and 2 is by the universality of ends (see (26)). To
give ξ as in 2 without requiring naturality in A ∈ A, is equivalent to give a function
ob(F ) : ob(A) −→ ob(Mod(P, (C,Φ))) such that ob(U) ◦ ob(F ) = ob(V ) (see (25)). To
say that ξ is natural also in A ∈ A is equivalent to saying that ob(F ) extends to a functor
F : A −→Mod(P, (C,Φ)) by mapping each morphism f in A to V f .

9.3. The classical cases. We now show that one can recover the known structure-
semantics adjunctions for clones and monads, by restricting our version of structure-
semantics adjunctions (Theorem 9.2).

In both cases of clones and monads, we shall consider the diagram

Th(M̂)
op

CAT/C
Str

Sem

`

Th(M)op (CAT/C)tr

Str′

Sem′

`

J K
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in which the top adjunction is the one we have constructed above, the bottom adjunction
is a classical structure-semantics adjunction, and J and K are the canonical fully faithful
functors (the precise definition of (CAT/C)tr will be given below). We shall prove that
the two squares, one involving Str and Str′, the other involving Sem and Sem′, commute,
showing that Str′ (resp. Sem′) arises as a restriction of Str (resp. Sem).

First, that K ◦ Sem′ ∼= Sem ◦ J holds is straightforward, and this is true as soon
as Sem′ maps any T ∈ Th(M) to the forgetful functor U : Mod(T, (C,Φ)) −→ C. In-

deed, for any theory T = (T, e,m) in M, J(T) ∈ Th(M̂) has the underlying object

M(−, T ) ∈ M̂, and the description of Mod(J(T), (C,Φ)) in the previous section coin-
cides with Mod(T, (C,Φ)) by the Yoneda lemma.

Let us check that J ◦ Str′ ∼= Str ◦K holds.10 For this, we have to review the classical
structure functors and the tractability conditions.

We begin with the case of clones as treated in [Lin66]. Let C be a locally small category
with finite powers and consider the standard metamodel Φ of [F,Set] in C (derived from
the enrichment 〈−,−〉 in Example 5.3). An object V : A −→ C ∈ CAT/C is called
tractable if and only if for any natural number n, the set [A, C]((−)n ◦ V, V ) is small.
Given a tractable V , Str′(V ) ∈ Th([F,Set]) has the underlying functor |Str′(V )| mapping
[n] ∈ F to [A, C]((−)n ◦ V, V ). On the other hand, our formula (26) reduces as follows:

P (V )(X) =

∫
A∈A

ΦX(V A, V A)

=

∫
A∈A

[F,Set](X, 〈V A, V A〉)

∼=
∫
A∈A,[n]∈F

Set(Xn, C((V A)n, V A))

∼=
∫

[n]∈F
Set

(
Xn,

∫
A∈A
C((V A)n, V A)

)
∼=
∫

[n]∈F
Set(Xn, [A, C]((−)n ◦ V, V ))

∼= [F,Set](X, |Str′(V )|).

It is routine from this to see that J ◦ Str′ ∼= Str ◦K holds.
As for monads, we take as a classical structure-semantics adjunction the one in [Dub70,

Section II. 1]. Let C be a large category and consider the standard metamodel Φ of [C, C]
in C (derived from the standard strict action ∗ in Example 6.3). An object V : A −→
C ∈ CAT/C is called tractable if and only if the right Kan extension RanV V of V along
itself exists.11 A functor of the form RanV V acquires a canonical monad structure, giving

10This does not seem to follow formally from K ◦ Sem′ ∼= Sem ◦ J , even if we take into consideration
the fact that J and K are fully faithful.

11In fact, in [Dub70, p. 68] Dubuc defines tractability as a slightly stronger condition. However, the
condition we have introduced above is the one which is used for the construction of structure-semantics
adjunctions in [Dub70].
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rise to the so-called codensity monad of V . For a tractable V , Str′(V ) is defined to be the
codensity monad of V . Now let us return to our formula (26):

P (V )(X) =

∫
A∈A

ΦX(V A, V A)

=

∫
A∈A
C(XV A, V A)

∼= [A, C](X ◦ V, V )
∼= [C, C](X,RanV V ).

Again we see that J ◦ Str′ ∼= Str ◦K holds.

10. Categories of models as double limits

LetM be a metatheory, T be a theory inM, C be a large category and Φ be a metamodel
of M in C. Given these data, in Definition 7.6 we have defined—in a concrete manner—
the category Mod(T, (C,Φ)) of models of T in C with respect to Φ, equipped with the
forgetful functor U : Mod(T, (C,Φ)) −→ C.

In this section, we give an abstract characterisation of the categories of models. A
similar result is known for the Eilenberg–Moore category of a monad; Street [Str72] has
proved that it can be abstractly characterised as the lax limit in CAT of a certain diagram
canonically constructed from the original monad. We prove that the categories of models
in our framework can also be characterised by a certain universal property. A suitable
language to express this universal property is that of pseudo double categories [GP99].
We show that the category Mod(T, (C,Φ)), together with the forgetful functor U and
some other natural data, form a double limit in the pseudo double category PROF of
large categories, profunctors, functors and natural transformations.

10.1. The universality of Eilenberg–Moore categories. Let us begin with
quickly reviewing the 2-categorical characterisation in [Str72] of the Eilenberg–Moore
category of a monad on a large category, in elementary terms.12 Let C be a large cat-
egory and T = (T, η, µ) be a monad on C. The Eilenberg–Moore category CT of T is
equipped with a canonical forgetful functor U : CT −→ C, mapping an Eilenberg–Moore
algebra (C, γ) of T to its underlying object C. Moreover, there exists a canonical natural

12The main point of the paper [Str72] is the introduction of the general notion of Eilenberg–Moore
object in a 2-category B via a universal property and show that, if exists, it satisfies certain formal
properties of Eilenberg–Moore categories. However, for our purpose, it suffices to consider the simple
case B = CAT only. It is left as future work to investigate whether we can develop a similar “formal
theory” from the double-categorical universal property of categories of models.
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transformation u : T ◦ U =⇒ U , i.e., of type

CT CT

C C.

U

idCT

T

Uu

We are depicting u in a square rather than in a triangle for later comparison with similar
diagrams in a pseudo double category. For each (C, γ) ∈ CT, the (C, γ)-th component
of u is simply γ : TC −→ C. The claim is that the data (CT, U, u) is characterised by a
certain universal property.

To state this universal property, let us define a left T-module to be a triple (A, V, v)
consisting of a large category A, a functor V : A −→ C and a natural transformation
v : T ◦ V =⇒ V , such that the following equations hold:

A A

C C

idA

VV T

idC

v

η

=

A A

C C

idA

VV

idC

idV

A A

C C

idA

VV T

T ◦ T

v

µ

=

A A

C C

A

C.

idA idA

V VV

T T

v v

The triple (CT, U, u) is then a universal left T-module, meaning that it satisfies the
following:

1. it is a left T-module;

2. for any left T-module (A, V, v), there exists a unique functor K : A −→ CT such
that

A A

C C

idA

VV

T

v =

A A

CT CT

C C

idA

KK

idCT

UU

T

idK

u

holds;
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3. for any pair of left T-modules (A, V, v) and (A, V ′, v′) on a common large category
A and any natural transformation θ : V =⇒ V ′ such that

A A

C C

idA

V V ′V

T

θ
v =

A A

C C

idA

V ′V V ′

T

θ
v′

holds, there exists a unique natural transformation σ : K =⇒ K ′ such that θ = U ◦σ,
where K : A −→ CT and K ′ : A −→ CT are the functors corresponding to (A, V, v)
and (A, V ′, v′) respectively.

In more conceptual terms, what is asserted is that we have a family of isomorphisms of
categories

CAT (A, CT) ∼= CAT (A, C)CAT (A,T)

natural in A ∈ CAT , where the right hand side denotes the Eilenberg–Moore category
of the monad CAT (A,T); note that CAT (A,−) is a 2-functor and therefore preserves
monads.

As with any universal characterisation, the above property characterises the triple
(CT, U, u) uniquely up to unique isomorphisms. One can also express this universal prop-
erty in terms of the standard 2-categorical limit notions, such as lax limit or weighted
2-limit [Str76].

10.2. Pseudo double categories. We shall see that our category of models admit a
similar characterisation, in a different setting: instead of the 2-category CAT , we will
work within the pseudo double category PROF. The notion of pseudo double category is
due to Grandis and Paré [GP99], and it generalises the classical notion of double category
[Ehr65] in a way similar to the generalisation of 2-categories to bicategories.

Recall that a double category consists of objects A, vertical morphisms f : A −→
A′, horizontal morphisms X : A 7−→ B and squares

A B

A′ B′,

X

gf

X′

α

together with several identity and composition operations, namely:

• for each object A we have the vertical identity morphism idA : A −→ A;

• for each composable pair of vertical morphisms f : A −→ A′ and f ′ : A′ −→ A′′ we
have the vertical composition f ′ ◦ f : A −→ A′′;
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• for each horizontal morphism X : A 7−→ B we have the vertical identity square

A B

A B;

X

idBidA

X

idX

• for each vertically composable pair of squares

A B

A′ B′

X

gf

X′

α and

A′ B′

A′′ B′′

X′

g′f ′

X′′

α′

we have the vertical composition

A B

A′′ B′′;

X

g′ ◦ gf ′ ◦ f

X′′

α′ ◦ α

and symmetrically:

• for each object A we have the horizontal identity morphism IA : A 7−→ A;

• for each composable pair of horizontal morphisms X : A 7−→ B and Y : B 7−→ C we
have the horizontal composition Y ⊗X : A 7−→ C;

• for each vertical morphism f : A −→ A′ we have the horizontal identity square

A A

A′ A′;

IA

ff

IA′

If

• for each horizontally composable pair of squares

A B

A′ B′

X

gf

X′

α and

B C

B′ C ′

Y

hg

Y ′

β
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we have the horizontal composition

A C

A′ C ′.

Y ⊗X

hf

Y ′ ⊗X′

β ⊗ α

These identity and composition operations are required to satisfy several axioms, such as
the unit and associativity axioms for vertical (resp. horizontal) identity and composition,
as well as the axiom idIA = IidA

for each object A and the interchange law, saying that
whenever we have a configuration of squares as in

• • •

• • •

• • •,

α

α′

β

β′

(β′ ⊗ α′) ◦ (β ⊗ α) = (β′ ◦ β)⊗ (α′ ◦ α) holds.

Some naturally arising double-category-like structure, including PROF, are such that
whose vertical morphisms are homomorphism-like (e.g., functors) and whose horizontal
morphisms are bimodule-like (e.g., profunctors); cf. [Shu08, Section 1]. However, a prob-
lem crops up from the bimodule-like horizontal morphisms: in general, their composition
is not unital nor associative on the nose. Therefore such structures fail to form (strict)
double categories, but instead form pseudo (or weak) double categories [GP99, Lei04,
Gar06, Shu08], in which horizontal composition is allowed to be unital and associative up
to suitable isomorphism.13 We refer the reader to e.g. [Gar06, Section 2.1] for a detailed
definition of pseudo double category.

10.3. Example. [GP99] Let B be a bicategory. This induces a pseudo double category
HB, given as follows:

• an object of HB is an object of B;

• all vertical morphisms of HB are vertical identity morphisms;

• a horizontal morphism of HB is a 1-cell of B;

• a square of HB is a 2-cell of B.

13In the literature, definitions of pseudo double category differ as to whether to weaken horizontal
compositions or vertical compositions. We follow [Gar06, Shu08] and weaken horizontal compositions,
but note that the original paper [GP99] weakens vertical compositions.
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Conversely, for any pseudo double category D, we obtain a bicategory H D given as
follows:

• an object of H D is an object of D;

• a 1-cell of H D is a horizontal morphism of D;

• a 2-cell of H D is a square in D whose horizontal source and target are both vertical
identity morphisms.

Let us introduce the pseudo double category PROF.

10.4. Definition. [GP99, Section 3.1] We define the pseudo double category PROF as
follows.

• An object is a large category.

• A vertical morphism from A to A′ is a functor F : A −→ A′.

• A horizontal morphism from A to B is a profunctor H : A 7−→ B, i.e., a functor
H : Bop × A −→ SET. Horizontal identities and horizontal compositions are the
same as in Definition 4.16.

• A square as in

A B

A′ B′

H

GF

H′

α

is a natural transformation of type

Bop ×A
B′op ×A′

SET.

Gop × F H′

H

α

Observe that PROF = H PROF, using the construction introduced in Example 10.3.
Given a pseudo double category D, denote by Dop, Dco, and Dcoop the pseudo double

categories obtained from D by reversing the horizontal direction, reversing the vertical
direction and reversing both the horizontal and vertical directions, respectively. In the
following we shall mainly work within PROFop, though most of the diagrams are symmet-
ric in the horizontal direction and this makes little difference. (In fact, the pseudo double
category defined in [GP99, Section 3.1] amounts to our PROFop, because our convention
on the direction of profunctors differs from theirs.)
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10.5. The universality of categories of models. Let M be a metatheory, T =
(T, e,m) be a theory in M, C be a large category, and Φ = (Φ, φ·, φ) be a metamodel of
M in C. Recall from Section 7 that in the data of the metamodel (Φ, φ·, φ), the natural
transformations

((φ·)C : 1 −→ ΦI(C,C))C∈C

and
((φX,Y )A,B,C : ΦY (B,C)× ΦX(A,B) −→ ΦY⊗X(A,C))X,Y ∈M,A,B,C∈C,

may be replaced by the natural transformations

((φ·)A,B : C(A,B) −→ ΦI(A,B))A,B∈C

and
((φX,Y )A,B : (ΦY �rev ΦX)(A,B) −→ ΦY⊗X(A,B))X,Y ∈M,A,B∈C,

respectively. In this section we shall mainly use the expression of metamodel via the data
(Φ, φ·, φ). The category of models Mod(T, (C,Φ)), henceforth abbreviated as Mod(T, C),
defined in Definition 7.6 admits a canonical forgetful functor U : Mod(T, C) −→ C and a
natural transformation (a square in PROFop) u as in

Mod(T, C) Mod(T, C)

C C.

U

Mod(T, C)(−,−)

ΦT

Uu

Concretely, u is a natural transformation

(u(C,ξ),(C′,ξ′) : Mod(T, C)((C, ξ), (C ′, ξ′)) −→ ΦT (C,C ′))(C,ξ),(C′,ξ′)∈Mod(T,C)

whose ((C, ξ), (C ′, ξ′))-th component maps each morphism f : (C, ξ) −→ (C ′, ξ′) in Mod(T, C)
to the element ΦT (C, f)(ξ) = ΦT (f, C ′)(ξ′) ∈ ΦT (C,C ′). Alternatively, by the Yoneda
lemma, u may be equivalently given as a natural transformation

(u(C,ξ) : 1 −→ ΦT (C,C))(C,ξ)∈Mod(T,C)

whose (C, ξ)-th component maps the unique element of 1 to ξ ∈ ΦT (C,C).
We claim that the triple (Mod(T, C), U, u) has a certain universal property.

10.6. Definition. We define a vertical double cone over Φ(T) to be a triple (A, V, v)
consisting of a large category A, a functor V : A −→ C, and a square v in PROFop of type

A A

C C,

V

A(−,−)

ΦT

Vv
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satisfying the following equations:

A A

C C

A(−,−)

VV ΦT

ΦI

v

Φe

=

A A

C C

A(−,−)

VV C(−,−)

ΦI

IV

φ·

A A

C C

A(−,−)

VV ΦT

ΦT⊗T

v

Φm

=

A A

C C

A

C.

A(−,−) A(−,−)

V VV

ΦT ΦT

ΦT⊗T

A(−,−)

v v

φT,T

∼=

Using this notion, we can state the universal property of the triple (Mod(T, C), U, u),
just as in the case of Eilenberg–Moore categories.

10.7. Theorem. Let M = (M, I,⊗) be a metatheory, T = (T, e,m) be a theory in
M, C be a large category, and Φ = (Φ, φ·, φ) be a metamodel of M in C. The triple
(Mod(T, C), U, u) defined above is a universal vertical double cone over Φ(T), namely:

1. it is a vertical double cone over Φ(T);

2. for any vertical double cone (A, V, v) over Φ(T), there exists a unique functor
K : A −→Mod(T, C) such that

A A

C C

A(−,−)

VV

ΦT

v =

A A

Mod(T, C) Mod(T, C)

C C

A(−,−)

KK

Mod(T, C)(−,−)

UU

ΦT

IK

u

holds;

3. for any pair of vertical cones (A, V, v) and (A′, V ′, v′) over Φ(T), any horizontal
morphism H : A 7−→ A′ in PROFop and any square

A A′

C C

H

V ′V

C(−,−)

θ
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in PROFop such that

A A A′

C C C

H

A(−,−) H

V V V ′

ΦT C(−,−)

ΦT

∼=

v θ

∼=

=

A A′ A′

C C C

H

H A′(−,−)

V V ′ V ′

C(−,−) ΦT

ΦT

∼=

θ v′

∼=

(27)

holds, there exists a unique square

A A′

Mod(T, C) Mod(T, C)

H

K′K

Mod(T, C)(−,−)

σ

in PROFop such that

A A′

C C

H

V ′V

C(−,−)

θ =

A A′

Mod(T, C) Mod(T, C)

C C

H

K′

UU

K

Mod(T, C)(−,−)

C(−,−)

σ

IU

holds, where K and K ′ are the functors corresponding to (A, V, v) and (A′, V ′, v′)
respectively.

The above statements are taken from the definition of double limit [GP99, Section 4.2].

Proof of Theorem 10.7. First, that (Mod(T, C), U, u) is a vertical double cone over
Φ(T) follows directly from the definition of model of T in C with respect to Φ (Defini-
tion 7.6).

Given a vertical double cone (A, V, v) over Φ(T), for each object A ∈ A, the pair
(V A, vA,A(idA)) is a T-model in C with respect to Φ, and for each morphism f : A −→ A′ in
A, the morphism V f is a T-model homomorphism from (V A, vA,A(idA)) to (V A′, vA′,A′(idA′)).
The functor K : A −→Mod(T, C) can therefore be given as KA = (V A, vA,A(idA)) and
Kf = V f . The uniqueness is clear.

Finally, given H and θ as in the third clause, the equation (27) says that for each
A ∈ A, A′ ∈ A′ and x ∈ H(A,A′), the morphism θA,A′(x) : V A −→ V ′A′ in C satis-
fies ΦT (V A, θA,A′(x))(vA,A(idA)) = ΦT (θA,A′(x), V A′)(v′A′,A′(idA′)); in other words, that
θA,A′(x) is a T-model homomorphism from KA to K ′A′. The square σ can then be given
as the natural transformation with σA,A′(x) = θA,A′(x).
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10.8. Relation to double limits. We conclude this paper by a brief sketch of how
the double categorical universal property (Theorem 10.7) of categories of models in our
framework can be expressed via the notion of double limit [GP99], thus connecting our
characterisation to a well-established notion. An outline of this reduction is as follows.

1. A theory T in a metatheory M may be equivalently given as a strong monoidal
functor T : ∆a −→M, where ∆a is the augmented simplex category (cf. Section 8).

2. A metamodel Φ of a metatheory M may be identified with a lax double functor
Φ: HΣ(Mop) −→ PROFop, where Σ turns a monoidal category to the correspond-
ing one-object bicategory and H turns a bicategory to the corresponding vertically
discrete pseudo double category (see Example 10.3).

3. Therefore given a theory T and a metamodel Φ (in C) of a metatheoryM, we obtain
a lax double functor Φ(T) : HΣ(∆op

a ) −→ PROFop as the following composition:

HΣ(∆op
a ) HΣ(Mop) PROFop.

HΣ(Top) Φ

Theorem 10.7 may then be interpreted as establishing that Mod(T, C) is (the apex
of) the double limit of Φ(T) in the sense of [GP99].

We refer the reader to [Fuj18, Section 5.4] for a somewhat more detailed sketch.

10.9. Corollary. Let M be a metatheory, T be a theory in M, C be a large category
and Φ be a metamodel of M in C. The category Mod(T, (C,Φ)) of models of T in C with
respect to Φis the apex of the double limit of the lax double functor Φ(T).
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