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DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES

MURRAY BREMNER AND MARTIN MARKL

Abstract. By the Three Graces we refer, following J.-L. Loday, to the algebraic
operads Ass, Com, and Lie, each generated by a single binary operation; algebras over
these operads are respectively associative, commutative associative, and Lie. We classify
all distributive laws (in the categorical sense of Beck) between these three operads. Some
of our results depend on the computer algebra system Maple, especially its packages
LinearAlgebra and Groebner.

All algebras are equal, but some algebras are more equal than others.

1. Introduction

As the epigraph indicates1, some algebras are more important than others. Experience
teaches us that the most common classes of algebras are the Three Graces2 — associative,
commutative associative, and Lie — together with other classes of algebras that combine
these in a specific way. The algebras in these three classes are representations of the
quadratic Koszul operads denoted Ass , Com, and Lie, or created from these operads
using quadratic homogeneous distributive laws (the precise meaning of this phrase will be
explained in §2). Examples of structures combining two of these operads or their operadic
suspensions are the following:

• Poisson algebras, omnipresent in classical mechanics [4, 5, 26, 27, 28, 33, 37]

• Gerstenhaber algebras [3, 13, 21, 25, 32]
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• Batalin-Vilkovisky algebras [2, 18, 22, 24, 43, 53]

• en-algebras and the little cubes operad from homotopy theory [7, 12, 17, 40, 46, 47]

Notice that the Lie bracket of the last three structures is shifted.
The motivation for the present article is to investigate whether there are other combi-

nations of the Three Graces via such a distributive law, beyond the well-known examples.
It turned out that there are, up to isomorphism, only the classical, well-known distribu-
tive laws, plus the trivial and truncated ones. Since classifying distributive laws amounts
to solving hundreds of quadratic equations, we found it fascinating that for the Three
Graces this huge system has only a small finite number of solutions. This kind of rigidity
which the Three Graces possess might be another reason why they are more equal than
others. Although the results of this article might not surprise everyone, we thought that
at some point of the history of mankind this analysis had to be made3.

The existence of this paper was greatly facilitated by advances in computer-assisted
mathematics, and in particular the computer algebra system Maple; worksheets written
by the first author expressly for this project were used to extend hand calculations of the
second author dating from some 20 years ago.

In Section 2 we recall Jon Beck’s definition of distributive laws [6] along with its
operadic translation [16, 36]. In the subsequent sections we classify all homogeneous op-
eradic distributive laws between the Three Graces. The last section classifies distributive
laws between associative and magmatic multiplications. It points to the fact that, while
outside the realm of the Three Graces various bizarre-looking distributive laws exist, they
may turn out to be isomorphic to the expected ones. Classifying all possible distributive
laws is difficult, but to verify whether a given formula induces a distributive law is rel-
atively simple. We did so by hand in Sections 3 and 7, believing it might elucidate the
meaning of coherence of distributive laws.

Let us close this introduction by formulating the following

Problem. Characterize pairs of operads for which there exists only a finite number of
non-isomorphic distributive laws between them.

Any two of the Three Graces form such a pair as does, according to Section 7, also the
pair of operads for associative and magmatic multiplications. In a sequel to this paper
we intend to perform a similar analysis for bialgebras.

Acknowledgment. We are indebted to Vladimir Dotsenko for explaining to us that
the Eulerian substitution (13) brings one of our bizarre distributive laws to the standard
truncated one. Also the suggestions of an anonymous referee were very helpful.

3In the context of the present paper we found it interesting that, according to [19, 20], one of the
Three Graces — the operad Lie — has the property that the variety of its algebras is the only variety of
non-associative algebras which is locally algebraically cartesian closed.
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2. Distributive laws

2.1. Background. In this section we recall basic facts about distributive laws, closely
following the work of Fox and the second author [16]; see also the original paper by Beck
[6] and the works of Street [48] and Lack [31]. We will assume working knowledge of
operads and their various versions. Suitable references are the monographs [8, 39, 34]
complemented with [35] and the original source [23]. All algebraic objects will be defined
over a ground field k of characteristic 0, and the basic category will be the monoidal cate-
gory of Z-graded vector spaces with the Koszul sign rule. Loosely speaking, a distributive
law relates operations of two types, in the sense that it rearranges multiple applications of
these operations in such a way that operations of the first type are applied first, followed
by those of the second type. Moreover, this rearrangement must be done in a way that is
coherent in the categorical sense.

2.2. Example. Poisson algebras have two operations: the Lie bracket [a, b], and the
commutative associative multiplication a · b, which are related by the derivation law:

[a · b, c] = a · [b, c] + [a, c] · b. (1)

On the left side we see the operation of the second type, namely a · b, multiplied by c
using the operation of the first type, while in each term on the right side we first apply
the Lie bracket and then the operation of the second type. By repeated application of
equation (1) regarded as a directed (left to right) rewriting rule, we may convert any
monomial, involving some number of occurrences of the first and second operations, into
a sum of terms where all of the Lie brackets have been applied first. Coherence means
that equation (1) does not introduce any ‘unexpected relations’; in other words, the free
Poisson algebra generated by a vector space X is naturally isomorphic [45, Lemma 1] to
the free commutative associative algebra on the free Lie algebra generated by X:

Pois(X) ∼= Com(Lie(X)).

Distributive laws are ordered: equation (1) is a distributive law of a Lie multiplication
over a commutative associative multiplication; we denote this by

D : Lie(Com) Com(Lie).

2.3. Definition. Let us recall the precise definition introduced by Beck [6]. Assume that
T1 = (T1, µ1, η1) and T2 = (T2, µ2, η2) are monads (formerly called triples) on a category C.
A distributive law guarantees that for every T2-algebra A in C, the object T2(A) ∈ C has
the structure of a T1-algebra in a very explicit way. More precisely, a distributive law is
a natural transformation

λ : T1T2 → T2T1, (2)

such that, for every T2-algebra A = (A,α : T2(A) → A), the object T2(A) ∈ C is a T1-
algebra with structure morphism

T1T2A
λ−→ T2T1A

T2α−−−→ T2A.
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This imposes certain conditions on λ whose explicit form can be found in [6]; see also
[16, §3]. In this situation, the endofunctor T = T2T1 is again a monad, with structure
transformations

µ = T2µ1 ◦ µ2T
2
1 ◦ T2λT1, η = η1 ◦ η2 ◦ T1.

The equality
T (X) = T2

(
T1(X)

)
, X ∈ C,

may be interpreted as saying that the free T -algebra on X is (as an object of C) naturally
isomorphic to the free T2-algebra generated by the free T1-algebra on X.

2.4. Example. We know one example of a distributive law from elementary school. If C is
the category of sets, T1 the commutative monoid monad, and T2 the abelian group monad,
then the equation x(a + b) = xa + xb generates a natural transformation T1T2 → T2T1
taking a product of sums to a sum of products. The algebras for the combined monad
T = T2T1 are commutative rings.

2.5. Setting of this article. We restrict ourselves to monads given by the free P-
algebra functor for a binary quadratic finitely generated operad P. Moreover, the dis-
tributive laws we consider will be given by very specific data. Before we give a precise
definition, we need to establish some notational conventions; we write Σn for the sym-
metric group on n letters.

2.6. Notation. If E is a vector space which is also a Σ2-module, then F(E) denotes the
free operad generated by E placed in arity 2. For a Σ3-submodule R ⊆ F(E)(3), we write
〈E;R 〉 for the quotient F(E)/(R) of the free operad F(E) modulo the operad ideal (R)
generated by R.

Suppose that the Σ2-module E has an invariant decomposition E = E1 ⊕ E2. This
induces the decomposition

F(E)(3) = F(E)(3)11 ⊕F(E)(3)12 ⊕F(E)(3)21 ⊕F(E)(3)22,

where F(E)(3)ij is the Σ3-invariant subspace of F(E)(3) generated by the compositions
of the form µ(1, ν) and µ(ν, 1) with µ ∈ Ei and ν ∈ Ej for i, j = 1, 2. Notice that
F(E)(3)ii can be identified with the image of the map F (Ei)(3) → F(E)(3) induced by
the inclusion Ei ⊆ E. Let us consider a Σ3-invariant map

D : F(E)(3)12 −→ F(E)(3)21. (3)

Every such map defines a Σ3-submodule RD ⊆ F(E)(3) generated by elements of the
form x−D(x) for x ∈ F(E)(3)12.

Let P = 〈E;R 〉 be a binary quadratic operad for which there exists a Σ2-module
decomposition E = E1 ⊕ E2, a Σ3-equivariant linear map D : F(E)(3)12 → F(E)(3)21,
and Σ3-invariant subsets Ri ⊆ F(E)(3)ii, i = 1, 2, such that R = R1⊕RD ⊕R2. In other
words, the operad P has the presentation

P = 〈E1 ⊕ E2;R1 ⊕RD ⊕R2 〉. (4)
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We consider the suboperads Pi = 〈Ei;Ri 〉 ⊆ P for i = 1, 2. For 1 ≤ s ≤ l ≤ n, and
a sequence m1, . . . ,ml ≥ 1 with m1+ · · ·+ml = n, we write P(n)l for the Σn-submodule of
the free product4 P2 ∗P1 generated by the elements of the form µ(ν1, . . . , νl) for µ ∈ P2(l)
and νs ∈ P1(ms). The inclusions Pi ⊆ P (i = 1, 2) induce, for any n ≥ 2, an equivariant
linear map

ξ(n) :
⊕
1≤l≤n

P(n)l −→ P(n).

2.7. Definition. We say that the map D of equation (3) is an (operadic homogeneous
binary quadratic) distributive law of P1 over P2 if the map ξ(n) is an isomorphism for
every n ≥ 2. We express this fact by writing D : P1(P2) P2(P1).

We denote by Ti (i = 1, 2) the free Pi-operad monad acting on the category of Σ-
modules. From [36, Proposition 2.6] we know that a distributive law in the sense of
Definition 2.7 determines, in a very explicit way, a distributive law (2) in the sense of
Beck, namely λ : T1T2 → T2T1, for which the combined monad T = T2T1 is the monad
for P-algebras. Of course, not all distributive laws in the sense of Beck are distributive
laws in the sense of Definition 2.7: see Example 2.4, which is not even ‘operadic’ since x
appears twice in the right hand side.

2.8. Remark. One sometimes says more precisely that the map in (3) satisfying the
condition of Definition 2.7 is a rewriting rule defining a distributive law between the
associated monads. Rewriting rules are often conveniently expressed in the form of an
equation such as (1) whose left hand side belongs to F(E)(3)12 and right hand side to
F(E)(3)21.

The adjectives binary quadratic in Definition 2.7 mean that the distributive law in-
volves binary quadratic operads and is thereforedetermined by its behavior insideF(E)(3);
from this it follows that the resulting operad (4) is again binary quadratic. Quadratic
operads have their Koszul duals, and therefore we have the following result.

2.9. Lemma. [16, Lemma 9.3] In the situation of Definition 2.7 one has the following
canonical dual binary quadratic homogeneous distributive law of P!

2 over P!
1,

D! : P!
2(P

!
1) P!

1(P
!
2),

such that the resulting combined operad is the Koszul dual of the operad (4).

The adjective homogeneous in Definition 2.7 means that the distributive law preserves
the bigrading of the free operad F(E1⊕E2) given by the number of operations first from
E1 and then from E2. Therefore the resulting combined binary quadratic operad (4) is
also bigraded, and hence free P-algebras are also bigraded. As a consequence, the operadic
cohomology of P-algebras can be calculated as the cohomology of a bicomplex combining
P1- and P2-cochains; see [16, Theorem 10.2].

4I.e. of the coproduct in the category of unital operads.
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2.10. Example. An ‘archetypal’ distributive law in the sense of Definition 2.7 is equa-
tion (1) which combines Lie and commutative associative algebras into Poisson algebras.
A particular inhomogeneous binary quadratic operadic distributive law is that which de-
scribes associative algebras as algebras with two operations, a commutative nonassociative
multiplication − · − and a Lie bracket [−,−], with the relations

[x, y · z] = [x, y] · z + y · [x, z], [y, [x, z]] = (x · y) · z − x · (y · z).

This law is indeed not homogeneous, since on the left side of the second equation we
see a term of bidegree (0, 2), i.e., with no instance of the multiplication − · − but two
instances of [−,−], while the terms on the right hand side are of bidegree (2, 0).

In general, defining a transformation λ as in equation (2), and verifying that it is
indeed a distributive law, is a difficult problem; however, operadic distributive laws are
determined by a very small set of data of essentially finitary nature. Moreover, verifying
the required property (Definition 2.7) boils down to a finite calculation.

2.11. Theorem. [36, Theorem 2.3] The map ξ(n) is an isomorphism for all n ≥ 2 if and
only if it is an isomorphism for n = 4.

The image of the map ξ(4) is spanned by elements of P(4) that can be written as
µ(ν1, . . . , νl) for some µ ∈ P2(l) and νs ∈ P1(ms), m1, . . . ,ml ≥ 1, m1+· · ·+ml = 4, where
the composition now very crucially takes place inside P. Since, by iterated applications
of the distributive law, each element of P(4) can be brought to that form, ξ(4) is always
an epimorphism of finite-dimensional spaces. The condition of Theorem 2.11 is therefore
equivalent to the equality

dim
⊕
1≤l≤4

P(4)l = dimP(4).

The map ξ(4) need not be a monomorphism, since the distributive law can be applied
in several different ways, leading to potentially different preimages of a given element of
P(4). Let us illustrate it on an explicit example.

We assume for simplicity that our operads are non-Σ and concentrated in degree zero;
the general case has the same essential features. Let {as} resp. {bt} be a basis of the vector
space E1 resp. E2, where s and t run over some finite sets. Then the set {as(bt, 1), as(1, bt)}
forms a basis of F(E)(3)12, and {bt(as, 1), bt(1, as)} a basis of F(E)(3)21. The map in (3)
is thus determined by a finite set of parameters {Auvst , Buv

st , C
uv
st , D

uv
st } in the ground field k,

via the equations

D(as(bt, 1)) = Auvst bu(av, 1) +Buv
st bu(1, av),

D(as(1, bt)) = Cuv
st bu(av, 1) +Duv

st bu(1, av),

where the summation over repeated indexes is assumed. We are going to use the distribu-
tive law to bring the element as(bi, bj) ∈ P(4) into a form manifestly in the image of ξ(4).
We calculate

as(bi, bj) = as(bi, 1)(1, 1, bj) = Auvsi bu(av, 1)(1, 1, bj) +Buv
si bu(1, av)(1, 1, bj)
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= Auvsi bu(1, bj)(av, 1, 1) +Buv
si bu(1, av(1, bj))

= Auvsi bu(1, bj)(av, 1, 1) +Buv
si C

xy
vj bu(1, bx(ay, 1)) +Buv

si D
xy
vj bu(1, bx(1, ay))

= Auvsi bu(1, bj)(av, 1, 1) +Buv
si C

xy
vj bu(1, bx)(1, ay, 1) +Buv

si D
xy
vj bu(1, bx)(1, 1, ay).

We may however do the calculation differently, namely

as(bi, bj) = as(1, bj)(bi, 1, 1) = Cuv
sj bu(av, 1)(bi, 1, 1) +Duv

sj bu(1, av)(bi, 1, 1)

= Cuv
sj bu(av(bi, 1), 1) +Duv

sj bu(bi, 1)(1, 1, av)

= Cuv
sj A

xy
vi bu(bx(ay, 1), 1) + Cuv

sj B
xy
vi bu(bx(1, ay), 1) +Duv

sj bu(bi, 1)(1, 1, av)

= Cuv
sj A

xy
vi bu(bx, 1)(ay, 1, 1) + Cuv

sj B
xy
vi bu(bx, 1)(1, ay, 1) +Duv

sj bu(bi, 1)(1, 1, av).

Notice that all sums above are finite. Both expressions in the last lines of the displays
represent the same element of P(4) in the image of ξ(4). But they may also be interpreted
inside P(4)3 as expressions defining elements Lsij resp. Rsij such that

ξ(Lsij) = ξ(Rsij).

Requiring that ξ(4) is a monomorphism therefore needs that

Lsij = Rsij

in P(4)3. The last equation is obviously equivalent to a finite set of quadratic equa-
tions without constant terms indexed by a basis of P(4)3, for the structure parameters
{Auvst , Buv

st , C
uv
st , D

uv
st }.

The analysis for other types of elements of P(4) leads to the same type of conclu-
sion, i.e. to a finite set of quadratic equations without constant terms in the structure
parameters of the distributive law, as we will also see in the second part of the article. In
particular, taking D to be identically zero always gives a distributive law, the trivial one.

The discussion in this section makes clear the prominent role played by operadic
homogeneous binary quadratic distributive laws. In the rest of this article we will deal
exclusively with such distributive laws, and will therefore omit the adjectives operadic
homogeneous binary quadratic and speak simply about distributive laws.

2.12. Case studies. In the following sections we describe all distributive laws between
the Three Graces. Since the correspondence D 7−→ D! of Lemma 2.9 is clearly one-to-one,
it translates the classification problem for distributive laws of the type P1(P2) P2(P1)
into an equivalent problem for distributive laws of the type P!

2(P
!
1) P!

1(P
!
2). It therefore

suffices to consider the seven cases in the first column of the following table:
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type of distributive laws the dual type

Ass(Ass) Ass(Ass) the same
Ass(Ass) Ass(Ass) the same
Lie(Ass) Ass(Lie) Ass(Com) Com(Ass)
Com(Ass) Ass(Com) Ass(Lie) Lie(Ass)
Com(Com) Com(Com) Lie(Lie) Lie(Lie)
Com(Lie) Lie(Com) the same
Lie(Com) Com(Lie) the same

3. Distributive laws Ass(Ass) Ass(Ass)

In this section we describe all distributive laws of the associative operad over itself. We
will analyze first the versions living in the world of nonsymmetric operads5 where dis-
tributive laws are given by formulas without permutation of variables, and then we move
to the general case. The main result, Theorem 3.6, states that there are only three
non-isomorphic distributive laws — the trivial one, the truncated one, and the one for
nonsymmetric Poisson algebras (see Remark 3.3 below).

3.1. Non-Σ version. In this subsection we prove:

3.2. Theorem. The only distributive laws between two associative multiplications that
do not involve permutations of variables are given by

(a) (x ◦ y) • z = 0, x • (y ◦ z) = 0
(b) (x ◦ y) • z = 0, x • (y ◦ z) = (x • y) ◦ z
(c) (x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = 0
(d) (x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = (x • y) ◦ z

3.3. Remark. Distributive law (a) is the trivial one. Distributive law (d) describes
structures studied by the second author in [36], where they were called ‘nonsymmetric
Poisson algebras’. The corresponding distributive law was written as

〈x · y, z〉 = x · 〈y, z〉, 〈x, y · z〉 = 〈x, y〉 · z,

which is indeed a nonsymmetric form of equation (1). The same structures were later
called As(2)-algebras in [54].

Proof of Theorem 3.2. To save space, we will omit in this proof the symbol ◦ and
write · instead of •. We will also omit parentheses whenever the meaning is clear. We
therefore write for example xy · z instead of (x ◦ y) • z.

Let BB be the free nonsymmetric operad generated by two binary operations denoted
xy and x · y. We use the following ordered basis for BB(3) consisting of eight monomials:

(xy)z, x(yz), (x · y) · z, x · (y · z), xy · z, x · yz, (x · y)z, x(y · z).

5Sometimes also called non-Σ operads.
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We identify quadratic relations with row vectors of coefficients with respect to this basis.
Consider the ideal I ⊂ BB generated by the subspace R = I(3) ⊂ BB(3) which is the row
space of the following matrix:

[R] =

 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 0 a b
0 0 0 0 0 1 c d


Row 1 expresses the associativity of xy. Row 2 expresses the associativity of x · y. Rows
3 and 4 express two relations which may also be written as rewriting rules:

xy · z + a (x · y)z + b x(y · z) ≡ 0 or xy · z −→ −a (x · y)z − b x(y · z),
x · yz + c (x · y)z + d x(y · z) ≡ 0 or x · yz −→ −c (x · y)z − d x(y · z).

These rules allow us to eliminate binary trees6 with root operation x ·y by replacing them
by linear combinations of binary trees with root operation xy. Let us denote the four
relations corresponding to the four rows of [R] as follows:

α1(x, y, z) = (xy)z − x(yz),
α2(x, y, z) = (x · y) · z − x · (y · z),
β1(x, y, z) = xy · z + a (x · y)z + b x(y · z),
β2(x, y, z) = x · yz + c (x · y)z + d x(y · z).

Let ρ(x, y, z) represent any of these four relations. Then ρ(x, y, z) has ten cubic (arity 4)
consequences, namely

ρ(wx, y, z), ρ(w · x, y, z), ρ(w, xy, z), ρ(w, x · y, z), ρ(w, x, yz),
ρ(w, x, y · z), ρ(w, x, y)z, ρ(w, x, y) · z, wρ(x, y, z), w · ρ(x, y, z).

(5)

Altogether the four relations α1, α2, β1, β2 have 40 cubic consequences which span the
subspace RR = I(4) ⊂ BB(4). The subspace RR may be identified with the row space of
the 40× 40 matrix [RR]: the rows correspond to the consequences of the four quadratic
relations (ordered in some convenient way), and the columns correspond to the monomial
basis of BB(4) ordered first by association type as follows:

((w ?1 x) ?2 y) ?3 z, (w ?1 (x ?2 y)) ?3 z, (w ?1 x) ?2 (y ?3 z),
w ?1 ((x ?2 y) ?3 z), w ?1 (x ?2 (y ?3 z)).

(6)

Within each association type, the sequence ?1?2?3 represents one of the eight sequences
of operation symbols; we order these as follows, where the vertical line | represents the
operation symbol for xy:

?1?2?3 = |||, ||·, |·|, |··, ·||, ·|·, ··|, ···, (7)
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+ . . . . . . . − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . + . . . − . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. + . . . . . . . . . . − . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . + . . . . . . . . . . − . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . + . . . . − . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . + . . . . . . . . . − . . . . . . . . . . . . . . . . . . . .
+ − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . + − . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . + − . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + − . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . + . . . . − . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . − . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . − . . .
. . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . − . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . − . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . − . . . .
. . + − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . + − . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . + − . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + − . . . .
. . . . a . . . . b . . . . . . . . . . + . . . . . . . . . . . . . . . . . . .
. . a . . . . . . . . b . . . . . . . . . . . . . . + . . . . . . . . . . . . .
. . . . . a . . . . . . . . . . b . . . . + . . . . . . . . . . . . . . . . . .
. . . a . . . . . . . . . . b . . . . . . . . . . . . + . . . . . . . . . . . .
. . . . . . . . . . a . . . . . . b . . . . . . . . . . + . . . . . . . . . . .
. . . . . . . . . . . a . . . b . . . . . . . . . . . . . + . . . . . . . . . .
. . . . + . a b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . + . a b . . . . . . . . . . . .
. . . . . . . . . . . . . . . . + . a b . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . a b
. . . . c . . . . d . . . . . . . . . . . . . . . . . . + . . . . . . . . . . .
. . c . . . . . . . . d . . . . . . . . . . . . . . . . . . + . . . . . . . . .
. . . . . c . . . . . . . . . . d . . . . . . . . . . . . . . . + . . . . . . .
. . . c . . . . . . . . . . d . . . . . . . . . . . . . . . . . . . . . . . + .
. . . . . . . . . . c . . . . . . d . . . . . . . . . . . . . . . + . . . . . .
. . . . . . . . . . . c . . . d . . . . . . . . . . . . . . . . . . . . . . . +
. . . . . + c d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . + c d . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . + c d . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + c d



Figure 1: Matrix [RR]: cubic consequences of quadratic relations

The matrix [RR] has entries in the set {0, 1,−1, a, b, c, d} and hence may be regarded as
a matrix over the polynomial ring k[a, b, c, d]. This matrix is displayed in Figure 1 with
dot, +,− for 0, 1,−1 respectively.

To understand how the rank of [RR] depends on the parameters a, b, c, d we first use
elementary row and column operations to compute a partial Smith form as described in
[8, Chapter 8]. Roughly speaking, we repeatedly move entries equal to ±1 to the upper
left diagonal of the matrix, change their signs if necessary, and then use each resulting
diagonal 1 to eliminate the entries below and to the right, continuing until the lower right
block no longer contains a nonzero scalar. When this computation terminates, we have
reduced [RR] to the block-diagonal matrix diag(I32, L), which is row-column equivalent
to [RR] and hence has the same rank as [RR], where L is an 8× 8 matrix over k[a, b, c, d]
which has two zero rows and two zero columns. After deleting these superfluous rows and

6We use the standard bijection between monomials and rooted trees, cf. Remark 3.10.
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columns, we obtain this 6× 6 matrix:

L′ =


−ad −b2 − b a2 − ac 0 0 0

0 bd+ d −ac− a 0 0 0
ad bd− d2 c2 + c 0 0 0
0 0 0 −b2 − b −ab− a −a2 − ab
0 0 0 −ad 0 ad
0 0 0 −cd− d2 −cd− d −c2 − c


In order for the map representing the distributive law to be an isomorphism, it is necessary
and sufficient that [RR] have rank 32, or equivalently that L′ be the zero matrix. Consider
the set G consisting of the nonzero entries of L′. We compute a Gröbner basis for the ideal
J ⊂ k[a, b, c, d] generated by G with respect to the deglex monomial order determined by
a ≺ b ≺ c ≺ d. This Gröbner basis for J consists of the polynomials a, d, b(b+1), c(c+1).
Hence J is a zero-dimensional ideal whose zero set consists of exactly four points:

(a, b, c, d) = (0, 0, 0, 0), (0, 0,−1, 0), (0,−1, 0, 0), (0,−1,−1, 0).

These solutions correspond to the following pairs of rewriting rules

(a) xy · z −→ 0, x · yz −→ 0
(b) xy · z −→ 0, x · yz −→ (x · y)z
(c) xy · z −→ x(y · z), x · yz −→ 0
(d) xy · z −→ x(y · z), x · yz −→ (x · y)z

which give the four nonsymmetric laws Ass(Ass) Ass(Ass) of Theorem 3.2.

3.4. General version. In this subsection we generalize Theorem 3.2 by allowing per-
mutations of variables:

3.5. Theorem. The only distributive laws between two associative multiplications are the
four laws of Theorem 3.2 together with the following three:

(e) (x ◦ y) • z = 0, x • (y ◦ z) = y ◦ (x • z)
(f) (x ◦ y) • z = (x • z) ◦ y, x • (y ◦ z) = 0
(g) (x ◦ y) • z = (x • z) ◦ y, x • (y ◦ z) = y ◦ (x • z).

The proof is postponed to the end of this subsection. We note that the rewriting rule
(x ◦ y) • z = (x • z) ◦ y states that the right multiplications − ◦ y and − • z commute;
similarly, x • (y ◦ z) = y ◦ (x • z) states that the left multiplications y ◦ − and x • −
commute.

Let us denote by Aa, . . .Ag the operads defined by distributive laws (a)–(g) of The-
orems 3.2 and 3.5 (in the given order). It turns out that these operads fall into three
isomorphism classes: {Aa}, {Ab,Ac,Ae,Af}, and {Ad,Ag}. The corresponding isomor-
phisms are given by changing one or both multiplications into the opposite, that is ◦ 7→ ◦op
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and/or • 7→ •op. It is easy to verify that one gets the following isomorphism diagrams:

Ab ∼=
◦7→◦op //

•7→•op ∼=

��

Ae

∼= •7→•op

��
Af

◦7→◦op
∼=

// Ac

and

Ad
◦7→◦op
∼=

//

•7→•op ∼=

��

Ag

•7→•op∼=

��
Ag

◦7→◦op
∼=

// Ad.

One therefore has:

3.6. Theorem. There are precisely three isomorphism classes of distributive laws between
two associative multiplications, namely

• the trivial law (a),

• the truncated law represented by rewriting rules (b), (c), (e) or (f), and

• the law for nonsymmetric Poisson algebras represented by (d) or (g).

3.7. Remark. Note that the operads Aa, Ab, Ac, and Ad defined by distributive laws
(a)–(d) of Theorem 3.2 are mutually nonisomorphic in the category of non-Σ operads.
Therefore in the category of algebras over nonsymmetric operads there are four different
distributive laws between two associative multiplications.

Theorem 3.6 has the following simple but very interesting consequence:

3.8. Corollary. Up to isomorphism, the only distributive law between two associative
multiplications in the monoidal category of sets is that of nonsymmetric Poisson algebras.

3.9. Example. Let us verify ‘by hand’ that (e) indeed determines a distributive law.
We must check that it is compatible with the associativity of • and ◦. We also need
to check that the result of repeated applications of (e) does not depend on their order.
Theorem 2.11 tells us that it suffices to consider only expressions involving four variables.

Compatibility with the associativity of ◦. The associativity of ◦ means that(
(y ◦ z) ◦ w

)
=
(
y ◦ (z ◦ w)

)
,

for arbitrary symbols y, z, w. Thus, for a symbol x, one has

x •
(
(y ◦ z) ◦ w

)
= x •

(
y ◦ (z ◦ w)

)
. (8)

The compatibility with associativity means that both sides of this equation remain equal
after we apply, possibly repeatedly, rule (e) to them. For the left side of (8) we get

x •
(
(y ◦ z) ◦ w

)
= (y ◦ z) ◦ (x • w),
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while the right hand side becomes

x •
(
y ◦ (z ◦ w)

)
= y ◦

(
x • (z ◦ w)

)
= y ◦

(
z ◦ (x • w)

)
.

So we need to check whether

(y ◦ z) ◦ (x • w) = y ◦
(
z ◦ (x • w)

)
.

This equality follows from the associativity of ◦ . We need to do the same analysis for(
(x ◦ y) ◦ z) • w =

(
x ◦ (y ◦ z)

)
• w.

In this case (e) turns both sides into 0.
Compatibility with the associativity of •. We need to consider three equations implied

by the associativity of •. The first one is

(x • y) • (z ◦ w) = x •
(
y • (z ◦ w)

)
.

Modifying the left hand side using (e) gives

(x • y) • (z ◦ w) = z ◦
(
(x • y) • w),

while for the right hand side we obtain

x •
(
y • (z ◦ w)

)
= x •

(
z ◦ (y • w)

)
= z ◦

(
x • (y • w)

)
.

However thanks to the associativity of • we have

z ◦ (
(
x • y) • w) = z ◦

(
x • (y • w)

)
.

The next equation to analyze is(
x • (y ◦ z)

)
• w = x •

(
(y ◦ z) • w

)
.

The left side expands as(
x • (y ◦ z)

)
• w =

(
y ◦ (x • z)

)
• w = 0,

while the right side is seen to be zero immediately. The last equation to be considered is(
(x ◦ y) • z) • w = (x ◦ y) • (z • w).

But applying (e) turns both sides immediately to zero.
Independence of order. All expressions featured above offered at most one way to

apply (e). This is not true for
(x ◦ y) • (z ◦ w).

Applying the first rule of (e) first, with (z ◦ w) instead of z, turns it into zero, while
applying the second rule of (e) first we get

(x ◦ y) • (z ◦ w) = z ◦
(
(x ◦ y) • w)

)
,

which is zero again, by the first rule of (e). It is not difficult to see that the above finite
number of cases was all we needed to check, and thus the verification that (e) defines
a distributive law is finished.
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3.10. Remark. The above calculations can be visualized by labelled planar rooted trees.
Representing the ◦-multiplication by a white vertex with two inputs and one output,
and the •-multiplication by a similar black vertex, the associativity of ◦ and • can be
depicted as

◦
◦
@
@

6

zyx

= ◦
◦
�
�

6

x y z

and •
•
@
@

6

zyx

= •
•
�
�

6

x y z

while rule (e) reads

◦
•
@
@

6

zyx

= 0 and ◦
•
�
�

6

x y z

= •
◦
�
�

6

y x z

.

A pictorial verification of the compatibility of rule (e) with equation (8) is shown in
Figure 2; the remaining (and in fact easier) cases can be verified similarly.

◦
wzyx

◦•
6

@@
�
��

=

wzyx

◦◦
•6

��
�

��

wzxy

◦•
◦6

��
�

��

wxzy

•◦
◦6

��
�

��
wxzy

◦
•◦

6

@@��
=

ww�

ww�ww�

Figure 2: Tree diagrams for compatibility proof

Proof of Theorem 3.5. We use the same conventions regarding the notation for the
◦ and • products as in the proof of Theorem 3.2. The method for the symmetric case is
essentially the same as for the nonsymmetric case, although the matrices and the number
of parameters are six times larger. Let BB be the free symmetric operad generated by
two binary operations denoted xy and x · y. We use the following ordered basis for BB(3)
consisting of 48 monomials:

(xσyσ)zσ, xσ(yσzσ), (xσ · yσ) · zσ, xσ · (yσ · zσ),
xσyσ · zσ, xσ · yσzσ, (xσ · yσ)zσ, xσ(yσ · zσ).
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The permutations σ ∈ S3 permuting the arguments x, y, z (not the positions) are in
lexicographical order. We identify quadratic relations with row vectors of coefficients
with respect to this basis. Consider the ideal I ⊂ BB generated by the subspace R = I(3)
which is the row space of the following block matrix:

[R] =


I6 −I6 · · · · · ·
· · I6 −I6 · · · ·
· · · · I6 · A B
· · · · · I6 C D

 (9)

We write I6 and dot for the 6× 6 identity and zero matrices, together with

A =


a1 a2 a3 a4 a5 a6
a2 a1 a5 a6 a3 a4
a3 a4 a1 a2 a6 a5
a5 a6 a2 a1 a4 a3
a4 a3 a6 a5 a1 a2
a6 a5 a4 a3 a2 a1

 , (10)

and similarly for B, C and D. Thus [R] contains 24 parameters. We point out that
rows 1, 7, 13, 19 generate the row space of [R] as an S3-module: rows 1 and 7 represent
associativity for operations xy and x·y; rows 13 and 19 represent the rewriting rules which
show how to express a binary tree with operation x · y at the root as a linear combination
of binary trees with operation xy at the root:

xy · z + a1(x · y)z + a2(x · z)y + a3(y · x)z + a4(y · z)x+ a5(z · x)y + a6(z · y)x

+ b1x(y · z) + b2x(z · y) + b3y(x · z) + b4y(z · x) + b5z(x · y) + b6z(y · x) ≡ 0,

x · yz + c1(x · y)z + c2(x · z)y + c3(y · x)z + c4(y · z)x+ c5(z · x)y + c6(z · y)x

+ d1x(y · z) + d2x(z · y) + d3y(x · z) + d4y(z · x) + d5z(x · y) + d6z(y · x) ≡ 0.

Let ρ(x, y, z) be the relation represented by one of the rows 1, 7, 13, 19. Each of these
four relations has ten cubic consequences as in equation (5), for a total of 40 relations
which generate the S4-module RR = I(4) ⊂ BB(4). Each of these 40 relations has 24
permutations, for a total of 960 relations which span RR as a subspace of BB(4). If we
apply the 24 permutations of w, x, y, z to the 40 nonsymmetric monomials in equations
(6)-(7) then we obtain 960 monomials which form an ordered basis of BB(4). Thus we
can represent RR as the row space of a 960× 960 matrix [RR] whose entries belong to

{0,±1} ∪X, where X = {ak, bk, ck, dk | 1 ≤ k ≤ 6}.

Thus [RR] may be regarded as a matrix over the polynomial ring k[X] with 24 variables.
As in the nonsymmetric case, we compute a partial Smith form for [RR] and obtain
a block diagonal matrix diag(I768, L) where L has size 192× 192 and contains no nonzero
scalar entries. The set of nonzero entries of L contains 575 polynomials, all of which have
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total degree 1 or 2 in the variables X. From this large set of ideal generators we obtain
a deglex Gröbner basis of only 28 polynomials:

a1, a3, a4, a5, a6, b2, b3, b4, b5, b6, c2, c3, c4, c5, c6, d1, d2, d4, d5, d6,

a22 + a2, a2b1, a2c1, b21 + b1, b1d3, c21 + c1, c1d3, d23 + d3.

From this we easily determine that the ideal is zero-dimensional and that its zero set
consists of the following seven points:

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6 d1 d2 d3 d4 d5 d6

1 · · · · · · · · · · · · · · · · · · · · · · · ·
2 · · · · · · · · · · · · −1 · · · · · · · · · · ·
3 · · · · · · −1 · · · · · · · · · · · · · · · · ·
4 · · · · · · −1 · · · · · −1 · · · · · · · · · · ·

5 · · · · · · · · · · · · · · · · · · · · −1 · · ·
6 · −1 · · · · · · · · · · · · · · · · · · · · · ·
7 · −1 · · · · · · · · · · · · · · · · · · −1 · · ·

For points 1–4, the matrices A,B,C,D from equations (9)-(10) are as follows:[
A B
C D

]
=

[
0 0
0 0

]
,

[
0 0
−I6 0

]
,

[
0 −I6
0 0

]
,

[
0 −I6
−I6 0

]
.

The corresponding distributive laws are simply the symmetrizations of the four laws from
the nonsymmetric case. Points (5)-(7) give new symmetric distributive laws which have
no analogue in the nonsymmetric case. Consider these (negative) permutation matrices:

P =


· −1 · · · ·
−1 · · · · ·
· · · −1 · ·
· · −1 · · ·
· · · · · −1
· · · · −1 ·

 , Q =


· · −1 · · ·
· · · · −1 ·
−1 · · · · ·
· · · · · −1
· −1 · · · ·
· · · −1 · ·

 .

Then points 5–7 correspond to[
A B
C D

]
=

[
0 0
0 Q

]
,

[
P 0
0 0

]
,

[
P 0
0 Q

]
.

These solutions correspond respectively to (all permutations of) these rewriting rules:

5 : xy · z −→ 0, x · yz −→ y(x · z)
6 : xy · z −→ (x · z)y, x · yz −→ 0
7: xy · z −→ (x · z)y, x · yz −→ y(x · z).

These are the three remaining distributive laws of Theorem 3.5.
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4. Distributive laws Com(Ass) Ass(Com)

4.1. Theorem. The only distributive law Com(Ass) Ass(Com) is the trivial one.

Proof. We write ab for the associative operation, and a·b for the commutative associative
operation. Commutativity implies that we need to consider only six association types in
arity 3, which we order as follows:

∗ · ∗ · ∗ = (∗ · ∗) · ∗, (∗∗) · ∗, (∗ · ∗)∗, ∗∗∗ = (∗∗)∗, ∗(∗ · ∗), ∗(∗∗).

Similarly, we need consider only 25 association types in arity 4; in the following ordered
list we include all the parentheses:

((∗ · ∗) · ∗) · ∗, ((∗∗) · ∗) · ∗, ((∗ · ∗)∗) · ∗, ((∗∗)∗) · ∗, (∗(∗ · ∗)) · ∗,
(∗(∗∗)) · ∗, (∗ · ∗) · (∗ · ∗), (∗ · ∗) · (∗∗), (∗∗) · (∗∗), ((∗ · ∗) · ∗)∗,
((∗∗) · ∗)∗, ((∗ · ∗)∗)∗, ((∗∗)∗)∗, (∗(∗ · ∗))∗, (∗(∗∗))∗,
(∗ · ∗)(∗ · ∗), (∗ · ∗)(∗∗), (∗∗)(∗ · ∗), (∗∗)(∗∗), ∗((∗ · ∗) · ∗),
∗((∗∗) · ∗), ∗((∗ · ∗)∗), ∗((∗∗)∗), ∗(∗(∗ · ∗)), ∗(∗(∗∗)).

The number of distinct association types for a sequence of n arguments with two associa-
tive binary operations, one commutative and one noncommutative, is sequence A276277
in the Online Encyclopedia of Integer Sequences (oeis.org):

1, 2, 6, 25, 111, 540, 2736, 14396, 77649, 427608, 2392866, 13570386, 77815161, . . .

Applying all permutations to the arguments, and ignoring duplications which follow from
commutativity, we obtain 27 distinct multilinear monomials in arity 3, ordered as follows:

(a · b) · c, (a · c) · b, (b · c) · a, (ab) · c, (ac) · b, (ba) · c, (bc) · a, (ca) · b, (cb) · a,
(a · b)c, (a · c)b, (b · c)a, (ab)c, (ac)b, (ba)c, (bc)a, (ca)b, (cb)a,
a(b · c), b(a · c), c(a · b), a(bc), a(cb), b(ac), b(ca), c(ab), c(ba).

Similarly, we obtain 405 distinct multilinear monomials of arity 4. The number of distinct
multilinear monomials with two associative binary operations, one commutative and one
noncommutative, is the sextuple factorial, sequence A011781 in the OEIS:

n−1∏
k=0

(6k+3) = 1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, . . .

Figure 3 displays the matrix whose row space is the S3-submodule generated by three
quadratic relations: associativity for ab, associativity for a · b, and the relation expressing
the reduction of a monomial of the form (ab) · c to a linear combination of permutations
of the monomial (a · b)c.

The S4-module generated by the consequences of the three quadratic relations has size
540 × 405. Its partial Smith form consists of an identity matrix of size 330 and a lower

oeis.org
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. . . . . . . . . . . . + . . . . . . . . − . . . . .

. . . . . . . . . . . . . + . . . . . . . . − . . . .

. . . . . . . . . . . . . . + . . . . . . . . − . . .

. . . . . . . . . . . . . . . + . . . . . . . . − . .

. . . . . . . . . . . . . . . . + . . . . . . . . − .

. . . . . . . . . . . . . . . . . + . . . . . . . . −

+ . − . . . . . . . . . . . . . . . . . . . . . . . .
. − + . . . . . . . . . . . . . . . . . . . . . . . .
− + . . . . . . . . . . . . . . . . . . . . . . . . .

. . . + . . . . . a1 a2 a3 . . . . . . b1 b2 b3 . . . . . .

. . . . + . . . . a2 a1 a3 . . . . . . b1 b3 b2 . . . . . .

. . . . . + . . . a1 a3 a2 . . . . . . b2 b1 b3 . . . . . .

. . . . . . + . . a2 a3 a1 . . . . . . b3 b1 b2 . . . . . .

. . . . . . . + . a3 a1 a2 . . . . . . b2 b3 b1 . . . . . .

. . . . . . . . + a3 a2 a1 . . . . . . b3 b2 b1 . . . . . .


Figure 3: Associative-commutative quadratic relation matrix

right block L of size 210× 75. The matrix L contains 56 distinct nonzero polynomials of
degrees 1 and 2; replacing each by its monic form gives the following 43 polynomials:

a3, b2, a
2
2, a

2
3, b

2
1, b

2
2, a1b3, a1(a2+1), a1(a1+a2+a3+b1+b2+b3), a2a1, a2a3, a2b2,

a2(a2+1), a2(a3+b2), a3a1, a3b1, a3(a2+b1+1), b1b2, b1b3, b1(a3+b2), b1(b1+1),

b2b3, b2(a2+b1+1), b3(b1+1), b3(a1+a2+a3+b1+b2+b3), a1(a2−a1), a1(a3−a1),
a1(a3−a2), a1(b2−b1), b3(a3−a2), b3(b2−b1), b3(b3−b1), b3(b3−b2), a2b1+a23,
a2b1+b

2
2, a1a2+a3b3, a1b1+a2b3, a1b2+a3b3, a1b2+b1b3, a

2
2+a3b2+a2, a3b2+b

2
1+b1,

a1a3+a2b3+b3, a1b1+b2b3+a1.

One easily verifies that the deglex Gröbner basis for the ideal generated by these polyno-
mials consists of the six variables a1, a2, a3, b1, b2, b3 and this completes the proof.

5. Distributive laws Lie(Ass) Ass(Lie)

The methods in this case are very similar to the case Com(Ass) Ass(Com) except that
instead of a commutative associative operation we have a Lie bracket: an anticommutative
operation satisfying the Jacobi identity. This requires keeping track of sign changes that
occur as a result of anticommutativity when calculating normal forms of the monomials
in consequences and permutations of various quadratic and cubic relations.

5.1. Theorem. The only distributive law Lie(Ass) Ass(Lie) is the trivial one. By
Koszul duality, the same conclusion holds for Ass(Com) Com(Ass).

5.2. Non-example. One is tempted to relax the commutativity of the associative mul-
tiplication of Poisson algebras, keeping other axioms unchanged, as done e.g. in [1].
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We show that in this case the derivation rule (1) does not define a distributive law
Lie(Ass) Ass(Lie), so we suspect that these näıve noncommutative Poisson algebras
are ill-behaved. More specifically, we show that the rule (1) is not compatible with the
anticommutativity of [−,−]. Let us consider the equation

[ab, cd] = −[cd, ab]. (11)

Expanding its left side using (1) twice gives

[ab, cd] = a[b, cd] + [a, cd]b = ac[b, d] + a[b, c]d+ c[a, d]b+ [a, c]db,

while the right side results in

−[cd, ab] = −c[d, ab]− [c, ab]d = −ca[d, b]− c[d, a]b− a[c, b]d− [c, a]bd

= ca[b, d] + c[a, d]b+ a[b, c]d+ [a, c]bd.

The compatibility of (1) with (11) would require the equality

ac[b, d] + c[a, d]b+ a[b, c]d+ [a, c]db = ca[b, d] + c[a, d]b+ a[b, c]d+ [a, c]bd,

which is the same as
(ac− ca)[b, d] + [a, c](db− bd) = 0.

One however cannot expect this to be true in general unless ac = ca and db = bd. If we
denote the commutator of the associative multiplication by {−,−} then we obtain

{a, c}[b, d] = [a, c]{b, d}, (12)

which can be found e.g. in [14, Lemma 1.1], in [51, Lemma 1.1] or in [52, Theorem 1].
Theodore Voronov informed us, referring to a rare 1932 book7 by Fok, that (12) was first
obtained by Dirac, who used it to motivate his argument that in quantum mechanics,
the ‘quantum Poisson bracket’ has to be proportional to the commutator of the opera-
tors. As shown in [14, Theorem 1.2], a similar statement holds for prime noncommutative
Poisson algebras – their bracket is always proportional to the commutator of the associa-
tive multiplication.

5.3. Remark. We advise the reader that there are other structures called ‘noncommuta-
tive Poisson algebras’ in the literature. The structure in [29, 30] combines Leibniz and as-
sociative algebras via the derivation rule (1); it is therefore of type Lei(Ass) Ass(Lei).
The structure in [11] is defined as a Poisson algebra on the abelization A/[A,A] of an asso-
ciative algebra A. Other generalizations include double Poisson algebras [49, 50] equipped
with a ‘double bracket’ A⊗ A→ A⊗ A, or a twisted version in the physics paper [44].

Close in nature to Poisson algebras are Gerstenhaber algebras whose Lie bracket has
an odd degree, usually +1 or −1, depending on the conventions. They naturally appear

7Cf. formula (14), page 41, of the second edition [15] of that book.
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as the structure of the Hochschild cohomology of associative algebras. Noncommutative
versions of Gerstenhaber algebras, their role in deformation theory and their relation to
the commutative ones, were considered in [41, 42]. The Gerstenhaber analog of (12) can
be found in [41, Remark 1.9]. Sergei Merkulov in the same paper conjectured that the
operad Gerst for noncommutative Gerstenhaber algebras is Koszul. As Vladimir Dotsenko
informed us, the conjecture is still open, but we expect the contrary, believing that the
Gerstenhaber analog of the ‘unexpected’ relation (12) may play the same role as the
equation implied by the ‘fake pentagon’ [38, page 380] does for the non-Koszulity of the
operad for anti-associative algebras.

6. The remaining cases

In this section we analyze the remaining three types of distributive laws between the
Three Graces.

6.1. Theorem. For Com(Com) Com(Com) we obtain only the trivial distributive law.

Proof. The calculations are similar to those discussed in detail in previous sections, so
we provide only a brief outline. The number of distinct association types in arity n for
two commutative operations is sequence OEIS A226909; see also [10]:

1, 2, 4, 14, 44, 164, 616, 2450, 9908, 41116, 173144, 739884, 3196344, 13944200, . . . .

For arities 3 and 4, these types are as follows:

(∗∗)∗, (∗ · ∗)∗, (∗∗) · ∗, (∗ · ∗) · ∗;
((∗∗)∗)∗, ((∗ · ∗)∗)∗, ((∗∗) · ∗)∗, ((∗ · ∗) · ∗)∗, (∗∗)(∗∗),
(∗∗)(∗ · ∗), (∗ · ∗)(∗ · ∗), ((∗∗)∗) · ∗, ((∗ · ∗)∗) · ∗, ((∗∗) · ∗) · ∗,
((∗ · ∗) · ∗) · ∗, (∗∗) · (∗∗), (∗∗) · (∗ · ∗), (∗ · ∗) · (∗ · ∗).

The number of distinct multilinear monomials is the quadruple factorial (OEIS A001813):

(2n)!

n!
= 1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, . . . .

For arity 3, these monomials are as follows (in lex order):

(ab)c, (ac)b, (bc)a, (a·b)c, (a·c)b, (b·c)a, (ab)·c, (ac)·b, (bc)·a, (a·b)·c, (a·c)·b, (b·c)·a.

Using these monomials, associativity has the form

(ab)c− (bc)a, (a · b) · c− (b · c) · a.

The most general distributive law relating the operations is as follows, where x1, x2, x3
are free parameters:

x1(ab) · c+ x2(ac) · b+ x3(bc) · a− (a · b)c.
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Applying all permutations of the variables a, b, c to these three relations, and expressing
the relations as row vectors of coefficients, we obtain this matrix:

1 · −1 · · · · · · · · ·
· −1 1 · · · · · · · · ·
−1 1 · · · · · · · · · ·
· · · · · · · · · 1 · −1
· · · · · · · · · · −1 1
· · · · · · · · · −1 1 ·
· · · x1 x2 x3 1 · · · · ·
· · · x2 x3 x1 · · 1 · · ·
· · · x3 x1 x2 · 1 · · · ·


We compute the consequences in arity 4 of these nine relations I in arity 3. If we write
ω1, ω2 for the two operations then for each I we obtain I ◦k ωj (k = 1, 2, 3; j = 1, 2)
and ωj ◦k I (j, k = 1, 2) where ◦k denotes operadic partial composition. Each term of
each consequence must be straightened using commutativity to convert the underlying
monomial to one of the 120 normal forms in arity 4. Each quadratic relation I produces
10 cubic consequences for a total of 30; applying all permutations of the four variables
a, b, c, d we obtain altogether 360 cubic relations, which we store in a 360× 120 matrix R
with entries 0, 1, −1, x1, x2, x3. Following [8], we compute a partial Smith form[

I105 0
0 B

]
,

where the lower right block B contains the following nonzero entries:

x22, x2x3, x3x1, −x21, −x22, −x2x3, −x3x1, x2 − x3, x3 − x2, −x23 − x3, x23 + x3,
−x1x2 − x1, x1x2 + x1, −x23 − x2, x23 + x2, −x2x3 − x3, x2x3 + x3, −x2x3 − x2,
x2x3 + x2, −x2x3 + x23, x2x3 − x23, −x22 + x23, −x22 + x2x3, x

2
2 − x2x3, −x1x2 + x1x3,

x1x2 − x1x3, −x1x2 − x1x3 − x1, x1x2 + x1x3 + x1, −x21 − x1x2 − x1x3,
−x21 − x1x2 + x1x3, −x21 + x1x2 − x1x3, x21 − x1x2 + x1x3, x

2
1 + x1x2 + x1x3.

The ideal in k[x1, x2, x3] generated by these polynomials has Gröbner basis x1, x2, x3.

6.2. Theorem. For Com(Lie) Lie(Com) we obtain only the trivial distributive law.

Proof. Very similar to the proof of Theorem 6.1.

6.3. Theorem. The only nontrivial distributive law Lie(Com) Com(Lie) is that for
Poisson algebras.

The theorem is a particular case of the classification of generalized distributive laws
between Lie and Com given in [9].
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7. Associative-magmatic laws

In this final section we analyze distributive laws Ass(Mag) Mag(Ass) between asso-
ciative and magmatic (no axioms) multiplications denoted • resp. ◦.

7.1. Theorem. There are only two non-isomorphic distributive laws between the asso-
ciative and magmatic multiplication, the trivial one and the truncated one represented by
the rewriting rules (b), (c), (e) or (f) of Theorems 3.2 and 3.5.

Proof. Maple found the following rewriting rules, with α, γ ∈ k arbitrary parameters for
which the square roots in the formulas exist, and ι =

√
−1:

1) (x◦y)•z = 0, x•(y◦z) = 0,

2) (x◦y)•z = 0,

x•(y◦z) = 1
2

(x•y)◦z + 1
2
ι (x•z)◦y + 1

2
y◦(x•z)− 1

2
ι z◦(x•y),

3) (x◦y)•z = 1
2

(x•z)◦y + 1
2
ι (y•z)◦x+ 1

2
x◦(y•z)− 1

2
ι y◦(x•z),

x•(y◦z) = 0,

4) (x◦y)•z = 0,

x•(y◦z) = −γ (x•y)◦z +
√
γ2+γ (x•z)◦y + (γ+1) y◦(x•z)−

√
γ2+γ z◦(x•y),

5) (x◦y)•z = −α (x•z)◦y +
√
α2+α (y•z)◦x+ (α+1)x◦(y•z)−

√
α2+α y◦(x•z),

x•(y◦z) = 0.

Law 1) is the trivial one. Laws 4) and 5) are isomorphic, via the replacement • 7→ •op of
the •-product by the opposite one. Law 2) is obtained from 4) by substituting γ = −1

2

and, likewise, the substitution α = −1
2

brings 5) into 3).
The proof will therefore be finished if we show that 4) is isomorphic to the truncated

distributive law. The following method, suggested by Vladimir Dotsenko, is based on the
substitution

γ =
1

t2 − 1
, t 6= ±1. (13)

Notice that its inverse can be written as

t =

√
γ2 + γ

γ
,

thus for any γ 6= 0 for which
√
γ2 + γ exists one has t fulfilling (13). It is straightforward

to verify that the replacement

x ◦ y 7→ x ◦ y + t(y ◦ x)

brings 4) into the truncated rule

(x ◦ y) • z = 0, x • (y ◦ z) = (x ◦ y) • z.
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If γ = 0, in which case the substitution (13) cannot be used, then 4) becomes another
(but isomorphic) truncated rule

(x ◦ y) • z = 0, x • (y ◦ z) = y ◦ (x • z).

This finishes the proof.

7.2. Remark. The reason for including the above proof instead of just referring to the
result of Maple calculation was to show that, outside the realm of Three Graces, various
bizarre-looking distributive laws, such as 4) or 5), may exist. Since one of the operads
— in this case Mag — may have a huge group of automorphisms, these weird laws may
however turn to be isomorphic to mild and expected ones.

Theorem 7.1 has the following obvious but surprising

7.3. Corollary. In the cartesian monoidal category of sets, there are no distributive
laws of type Ass(Mag) Mag(Ass).
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