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NETWORK MODELS

JOHN C. BAEZ, JOHN FOLEY, JOE MOELLER, AND BLAKE S. POLLARD

Abstract. Networks can be combined in various ways, such as overlaying one on
top of another or setting two side by side. We introduce ‘network models’ to encode
these ways of combining networks. Different network models describe different kinds of
networks. We show that each network model gives rise to an operad, whose operations
are ways of assembling a network of the given kind from smaller parts. Such operads,
and their algebras, can serve as tools for designing networks. Technically, a network
model is a lax symmetric monoidal functor from the free symmetric monoidal category
on some set to Cat, and the construction of the corresponding operad proceeds via a
symmetric monoidal version of the Grothendieck construction.

1. Introduction

In this paper we study operads suited for designing networks. These could be networks
where the vertices represent fixed or moving agents and the edges represent communication
channels. More generally, they could be networks where the vertices represent entities of
various types, and the edges represent relationships between these entities, e.g. that one
agent is committed to take some action involving the other. This paper arose from an
example where the vertices represent planes, boats and drones involved in a search and
rescue mission in the Caribbean [2, 3]. However, even for this one example, we want a
flexible formalism that can handle networks of many kinds, described at a level of detail
that the user is free to adjust.

To achieve this flexibility, we introduce a general concept of ‘network model’. Simply
put, a network model is a kind of network. Any network model gives an operad whose
operations are ways to build larger networks of this kind by gluing smaller ones. This
operad has a ‘canonical’ algebra where the operations act to assemble networks of the
given kind. But it also has other algebras, where it acts to assemble networks of this kind
equipped with extra structure and properties. This flexibility is important in applications.

What exactly is a ‘kind of network’? At the crudest level, we can model networks as
simple graphs. If the vertices are agents of some sort and the edges represent commu-
nication channels, this means we allow at most one channel between any pair of agents.
However, simple graphs are too restrictive for many applications. If we allow multiple
communication channels between a pair of agents, we should replace simple graphs with
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‘multigraphs’. Alternatively, we may wish to allow directed channels, where the sender
and receiver have different capabilities: for example, signals may only be able to flow in
one direction. This requires replacing simple graphs with ‘directed graphs’. To combine
these features we could use ‘directed multigraphs’. It is also important to consider graphs
with colored vertices, to specify different types of agents, and colored edges, to specify
different types of channels. This leads us to ‘colored directed multigraphs’. All these
are examples of what we mean by a ‘kind of network’. Even more complicated kinds,
such as hypergraphs or Petri nets, are likely to become important as we proceed. Thus,
instead of separately studying all these kinds of networks, we introduce a unified notion
that subsumes all these variants: a ‘network model’. Namely, given a set C of ‘vertex
colors’, a network model F is a lax symmetric monoidal functor F : S(C)→ Cat, where
S(C) is the free strict symmetric monoidal category on C and Cat is the category of small
categories, considered with its cartesian monoidal structure. Unpacking this definition
takes a little work. It simplifies in the special case where F takes values in Mon, the
category of monoids. It simplifies further when C is a singleton, since then S(C) is the
groupoid S, where objects are natural numbers and morphisms from m to n are bijec-
tions σ : {1, . . . ,m} → {1, . . . , n}. If we impose both these simplifying assumptions, we
have what we call a one-colored network model: a lax symmetric monoidal functor
F : S → Mon. As we shall see, the network model of simple graphs is a one-colored
network model, and so are many other motivating examples.

Joyal began an extensive study of functors F : S → Set, which are now commonly
called ‘species’ [5, 14, 15]. Any type of extra structure that can be placed on finite sets
and transported along bijections defines a species if we take F (n) to be the set of structures
that can be placed on the set {1, . . . , n}. From this perspective, a one-colored network
model is a species with some extra operations.

This perspective is helpful for understanding what a one-colored network model F : S→
Mon is actually like. If we call elements of F (n) ‘networks with n vertices’, then:

1. Since F (n) is a monoid, we can overlay two networks with the same number of
vertices and get a new one. We denote this operation by

∪ : F (n)× F (n)→ F (n).

For example:

∪ =

21

4 3

21

4 3

21

4 3

2. Since F is a functor, the group Sn acts on the monoid F (n). Thus, for each σ ∈ Sn,
we have a monoid automorphism that we call

σ : F (n)→ F (n).
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For example, if σ = (2 3) ∈ S3, then

σ : 7→
21

3

21

3

3. Since F is lax monoidal, we have an operation

t : F (m)× F (n)→ F (m+ n)

We call this operation the disjoint union of networks. For example:

t =

21

3

21

4 3

54

7 6

21

3

The first two operations are present whenever we have a functor F : S → Mon. The last
two are present whenever we have a lax symmetric monoidal functor F : S→ Set. When
F is a one-colored network model we have all three—and unpacking the definition further,
we see that they obey some equations, which we list in Theorem 2.3. For example, the
‘interchange law’

(g ∪ g′) t (h ∪ h′) = (g t h) ∪ (g′ t h′)

holds whenever g, g′ ∈ F (m) and h, h′ ∈ F (n).
In Section 2 we study one-colored network models more formally, and give many

examples. In Section 3 we describe a systematic procedure for getting one-colored network
models from monoids. In Section 4 we study general network models and give examples of
these. In Section 5 we describe a category NetMod of network models, and show that the
procedure for getting network models from monoids is functorial. We also make NetMod
into a symmetric monoidal category, and give examples of how to build new networks
models by tensoring old ones.

Our main result is that any network model gives a typed operad, also known as a
‘colored operad’ or ‘symmetric multicategory’ [23]. A typed operad describes ways of
sticking together things of various types to get new things of various types. An algebra of
the operad gives a particular specification of these things and the results of sticking them
together. A bit more precisely, a typed operad O has:

� a set T of types,

� sets of operations O(t1, ..., tn; t) where ti, t ∈ T ,

� ways to compose any operation

f ∈ O(t1, . . . , tn; t)
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with operations
gi ∈ O(ti1, . . . , tiki ; ti) (1 ≤ i ≤ n)

to obtain an operation

f ◦ (g1, . . . , gn) ∈ O(t1i, . . . , t1k1 , . . . , tn1, . . . tnkn ; t),

� and ways to permute the arguments of operations,

which obey some rules [23]. An algebra A of O specifies a set A(t) for each type t ∈ T
such that the operations of O act on these sets. Thus, it has:

� for each type t ∈ T , a set A(t) of things of type t,

� ways to apply any operation

f ∈ O(t1, . . . , tn; t)

to things
ai ∈ A(ti) (1 ≤ i ≤ n)

to obtain a thing
α(f)(a1, . . . , an) ∈ A(t).

Again, we demand that some rules hold [23].
In Thm. 7.4 we describe the typed operad OF arising from a one-colored network

model F . The set of types is N, since we can think of ‘network with n vertices’ as a type.
The sets of operations are given as follows:

OF (n1, . . . , nk;n) =

{
Sn × F (n) if n1 + · · ·+ nk = n
∅ otherwise.

The key idea here is that we can overlay a network in F (n) on the disjoint union of
networks with n1, . . . , nk vertices and get a new network with n vertices as long as n1 +
· · ·nk = n. We can also permute the vertices; this accounts for the group Sn. But the
most important fact is that networks serve as operations to assemble networks, thanks to
our ability to overlay them.

Using this fact, we show in Ex. 8.1 that the operad OF has a canonical algebra AF
whose elements are simply networks of the kind described by F :

AF (n) = F (n).

In this algebra any operation

(σ, g) ∈ OF (n1, . . . , nk;n) = Sn × F (n)
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acts on a k-tuple of networks

hi ∈ AF (ni) = F (ni) (1 ≤ i ≤ k)

to give the network

α(σ, g)(h1, . . . , hk) = g ∪ σ(h1 t · · · t hk) ∈ AF (n).

In other words, we first take the disjoint union of the networks hi, then permute their
vertices with σ, and then overlay the network g.

An example is in order, since the generality of the formalism may hide the simplicity
of the idea. The easiest example of our theory is the network model for simple graphs. In
Ex. 2.4 we describe a one-colored network model SG: S → Mon such that SG(n) is the
collection of simple graphs with vertex set n = {1, . . . , n}. Such a simple graph is really
a collection of 2-element subsets of n, called ‘edges’. Thus, we may overlay simple graphs
g, g′ ∈ SG(n) by taking their union g ∪ g′. This operation makes SG(n) into a monoid.

Now consider an operation f ∈ OSG(3, 4, 2; 9). This is an element of S9 × SG(9): a
permutation of the set {1, . . . , 9} together with a simple graph having this set of vertices.
If we take the permutation to be the identity for simplicity, this operation is just a simple
graph g ∈ SG(9). We can draw an example as follows:

3

9

51

8

4

6

2

7

The dashed circles indicate that we are thinking of this simple graph as an element of
O(3, 4, 2; 9): an operation that can be used to assemble simple graphs with 3, 4, and 2
vertices, respectively, to produce one with 9 vertices.

Next let us see how this operation acts on the canonical algebra ASG, whose elements
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are simple graphs. Suppose we have elements a1 ∈ ASG(3), a2 ∈ ASG(4) and a3 ∈ ASG(2):

3

2

21

1

1

3

2

4

We can act on these by the operation f to obtain α(f)(a1, a2, a3) ∈ ASG(9). It looks like
this:

3

9

51

8

4

6

2

7

We have simply taken the disjoint union of a1, a2, and a3 and then overlaid g, obtaining
a simple graph with 9 vertices.

The canonical algebra is one of the simplest algebras of the operad OSG. We can
define many more interesting algebras for this operad. For example, we might wish to use
this operad to describe communication networks where the communicating entities have
locations and the communication channels have limits on their range. To include location
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data, we can choose A(n) for n ∈ N to be the set of all graphs with n vertices where
each vertex is an actual point in the plane R2. To handle range-limited communications,
we could instead choose A(n) to be the set of all graphs with n vertices in R2 where an
edge is permitted between two vertices only if their Euclidean distance is less than some
specified value. This still gives a well-defined algebra: when we apply an operation, we
simply omit those edges from the resulting graph that would violate this restriction.

Besides the plethora of interesting algebras for the operad OSG, and useful homo-
morphisms between these, one can also modify the operad by choosing another network
model. This provides additional flexibility in the formalism. Different network models
give different operads, and the construction of operads from network models is functorial,
so morphisms of network models give morphisms of operads.

The technical heart of our paper is Section 6, which provides the machinery to con-
struct operads from network models in a functorial way. This section is of independent
interest, because it describes enhancements of the well-known ‘Grothendieck construc-
tion’ of the category of elements

∫
F of a functor F : C → Cat, where C is any small

category. For example, suppose C is symmetric monoidal and F : C → Cat is lax sym-
metric monoidal, where we give Cat its cartesian symmetric monoidal structure. Then we
show

∫
F is symmetric monoidal. Moreover, we show that the construction sending the

lax symmetric monoidal functor F to the symmetric monoidal category
∫
F is functorial.

In Section 7 we apply this machinery to build operads from network models. In
Section 8 we describe some algebras of these operads, and in Ex. 8.4 we discuss an algebra
whose elements are networks of range-limited communication channels. In future work
we plan to give many more detailed examples, and to explain how these algebras, and the
homomorphisms between them, can be used to design and optimize networks.

2. One-colored network models

We begin with a special class of network models: those where the vertices of the network
have just one color. To define these, we use S to stand for a skeleton of the groupoid of
finite sets and bijections:

2.1. Definition. Let S, the symmetric groupoid, be the groupoid for which:

� objects are natural numbers n ∈ N,

� a morphism from m to n is a bijection σ : {1, . . . ,m} → {1, . . . , n}

and bijections are composed in the usual way.

There are no morphisms in S from m to n unless m = n. For each n ∈ N, the morphisms
σ : n→ n form the symmetric group Sn. It is convenient to write n for the set {1, . . . , n},
so that a morphism σ : n→ n in S is the same as a bijection σ : n→ n.
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There is a functor +: S× S→ S defined as follows. Given m,n ∈ N we let m + n be
the usual sum, and given σ ∈ Sm and τ ∈ Sn, let σ + τ ∈ Sm+n be as follows:

(σ + τ)(j) =

{
σ(j) if j ≤ m

τ(j −m) +m otherwise.
(1)

For objects m,n ∈ S, let Bm,n be the block permutation of m + n which swaps the first
m with the last n. For example B4,3 : 7→ 7 is the permutation (1473625):

The tensor product + and braiding B give S the structure of a strict symmetric monoidal
category. This follows as a special case of Prop. 4.1.

2.2. Definition. A one-colored network model is a lax symmetric monoidal functor

F : S→ Mon.

Here Mon is the category with monoids as objects and monoid homomorphisms as mor-
phisms, considered with its cartesian monoidal structure.

For lax symmetric monoidal functors, see Mac Lane [17], who however calls them just
symmetric monoidal functors.

Many examples of network models are given below. A pedestrian way to verify that
these examples really are network models is to use the following result:

2.3. Theorem. A one-colored network model F : S→ Mon is the same as:

� a family of sets {F (n)}n∈N

� distinguished identity elements en ∈ F (n)

� a family of overlaying functions ∪ : F (n)× F (n)→ F (n)

� a bijection σ : F (n)→ F (n) for each σ ∈ Sn

� a family of disjoint union functions t : F (m)× F (n)→ F (m+ n)

satisfying the following equations:

1. en ∪ g = g ∪ en = g

2. g1 ∪ (g2 ∪ g3) = (g1 ∪ g2) ∪ g3

3. σ(g1 ∪ g2) = σg1 ∪ σg2
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4. σen = en

5. (σ2σ1)g = σ2(σ1g)

6. 1(g) = g

7. (g1 ∪ g2) t (h1 ∪ h2) = (g1 t h1) ∪ (g2 t h2)

8. em t en = em+n

9. σg t τh = (σ + τ)(g t h)

10. g1 t (g2 t g3) = (g1 t g2) t g3

11. e0 t g = g t e0 = g

12. Bm,n(h t g) = g t h

for g, gi ∈ F (n), h, hi ∈ F (m), σ, σi ∈ Sn, τ ∈ Sm, and 1 the identity of Sn.

Proof. Having a functor F : S→ Mon is equivalent to having the first four items satisfy-
ing equations 1–6. The binary operation ∪ gives the set F (n) the structure of a monoid,
with en acting as the identity. Equation 1 tells us en acts as an identity, and Equation 2
gives the associativity of ∪. Equations 3 and 4 tell us that σ is a monoid homomorphism.
Equations 5 and 6 say that the map (σ, g) 7→ σg defines an action of Sn on F (n) for each
n. All of these actions together give us the functor F : S→ Mon.

That the functor is lax monoidal is equivalent to having item 5 satisfying Equations
7–11. Equations 7 and 8 tell us that t is a family of monoid homomorphisms. Equation
9 tells us that it is a natural transformation. Equation 10 tells us that the associativity
hexagon diagram for lax monoidal functors commutes for F . Equation 11 implies the
commutativity of the left and right unitor square diagrams. That the lax monoidal func-
tor is symmetric is equivalent to Equation 12. It tells us that the square diagram for
symmetric monoidal functors commutes for F .

This is one of the simplest examples of a network model:

2.4. Example. [Simple graphs] Let a simple graph on a set V be a set of 2-element
subsets of V , called edges. There is a one-colored network model SG: S → Mon such
that SG(n) is the set of simple graphs on n.

To construct this network model, we make SG(n) into a monoid where the product
of simple graphs g1, g2 ∈ SG(n) is their union g1 ∪ g2. Intuitively speaking, to form their
union, we ‘overlay’ these graphs by taking the union of their sets of edges. The simple
graph on n with no edges acts as the unit for this operation. The groups Sn acts on the
monoids SG(n) by permuting vertices, and these actions define a functor SG: S→ Mon.

Given simple graphs g ∈ SG(m) and h ∈ SG(n) we define gth ∈ SG(m+n) to be their
disjoint union. This gives a monoid homomorphism t : SG(m) × SG(n) → SG(m + n)
because

(g1 ∪ g2) t (h1 ∪ h2) = (g1 t h1) ∪ (g2 t h2).
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This in turn gives a natural transformation with components

tm,n : SG(m)× SG(n)→ SG(m+ n),

which makes SG into lax symmetric monoidal functor.
One can prove this construction really gives a network model using either Thm. 2.3,

which requires verifying a list of equations, or Thm. 3.1, which gives a general procedure
for getting a network model from a monoid M by letting elements of ΓM(n) be maps from
the complete graph on n to M . If we take M = B = {F, T} with ‘or’ as the monoid
operation, this procedure gives the network model SG = ΓB. We explain this in Ex. 3.2.

There are many other kinds of graph, and many of them give network models:

2.5. Example. [Directed graphs] Let a directed graph on a set V be a collection of
ordered pairs (i, j) ∈ V 2 such that i 6= j. These pairs are called directed edges. There
is a network model DG: S → Mon such that DG(n) is the set of directed graphs on n.
As in Ex. 2.4, the monoid operation on DG(n) is union.

2.6. Example. [Multigraphs] Let a multigraph on a set V be a multiset of 2-element
subsets of V . If we define MG(n) to be the set of multigraphs on n, then there are at least
two natural choices for the monoid operation on MG(n). The most direct generalization
of SG of Ex. 2.4 is the network model MG: S → Mon with values (MG(n),∪) where ∪
is now union of edge multisets. That is, the multiplicity of {i, j} in g ∪ h is maximum
of the multiplicity of {i, j} in g and the multiplicity of {i, j} in h. Alternatively, there
is another network model MG+ : S → Mon with values (MG(n),+) where + is multiset
sum. That is, g + h obtained by adding multiplicities of corresponding edges.

2.7. Example. [Directed multigraphs] Let a directed multigraph on a set V be
a multiset of ordered pairs (i, j) ∈ V 2 such that i 6= j. There is a network model
DMG: S→ Mon such that DMG(n) is the set of directed multigraphs on n with monoid
operation the union of multisets. Alternatively, there is a network model with values
(DMG(n),+) where + is multiset sum.

2.8. Example. [Hypergraphs] Let a hypergraph on a set V be a set of nonempty
subsets of V , called hyperedges. There is a network model HG: S → Mon such that
HG(n) is the set of hypergraphs on n. The monoid operation HG(n) is union.

2.9. Example. [Graphs with colored edges] Fix a set B of edge colors and let
SG: S → Mon be the network model of simple graphs as in Ex. 2.4. Then there is a
network model H : S→ Mon with

H(n) = SG(n)B

making the product of B copies of the monoid SG(n) into a monoid in the usual way. In
this model, a network is a B-tuple of simple graphs, which we may view as a graph with
at most one edge of each color between any pair of distinct vertices. We describe this
construction in more detail in Ex. 5.5.

There are also examples of network models not involving graphs:
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2.10. Example. [Partitions] A poset is a lattice if every finite subset has both an
infimum and a supremum. If L is a lattice, then (L,∨) and (L,∧) are both monoids,
where x ∨ y is the supremum of {x, y} ⊆ L and x ∧ y is the infimum.

Let P (n) be the set of partitions of the set n. This is a lattice where π ≤ π′ if the
partition π is finer than π′. Thus, P (n) can be made a monoid in either of the two ways
mentioned above. Denote these monoids as P∨(n) and P∧(n). These monoids extend to
give two network models P∨, P∧ : S→ Mon.

3. One-colored network models from monoids

There is a systematic procedure that gives many of the network models we have seen so
far. To do this, we take networks to be ways of labelling the edges of a complete graph by
elements of some monoid M . The operation of overlaying two of these networks is then
described using the monoid operation.

For example, consider the Boolean monoid B: that is, the set {F, T} with ‘inclusive
or’ as its monoid operation. A complete graph with edges labelled by elements of B can
be seen as a simple graph if we let T indicate the presence of an edge between two vertices
and F the absence of an edge. To overlay two simple graphs g1, g2 with the same set of
vertices we simply take the ‘or’ of their edge labels. This gives our first example of a
network model, Ex. 2.4.

To formalize this we need some definitions. Given n ∈ N, let E(n) be the set of
2-element subsets of n = {1, . . . , n}. We call the members of E(n) edges, since they
correspond to edges of the complete graph on the set n. We call the elements of an edge
e ∈ E(n) its vertices.

Let M be a monoid. For n ∈ N, let ΓM(n) be the set of functions g : E(n)→M . Define
the operation ∪ : ΓM(n)×ΓM(n)→ ΓM(n) by (g1∪g2)(e) = g1(e)g2(e) for e ∈ E(n). Define
the map t : ΓM(m)× ΓM(n)→ ΓM(m+ n) by

(g1 t g2)(e) =


g1(e) if both vertices of e are ≤ m
g2(e) if both vertices of e are > m

the identity of M otherwise

The symmetric group Sn acts on ΓM(n) by σ(g)(e) = g(σ−1(e)).

3.1. Theorem. For each monoid M the data above gives a one-colored network model
ΓM : S→ Mon.

Proof. We can define ΓM as the composite of two functors, E : S → Inj and M− : Inj →
Mon, where Inj is the category of sets and injections.

The functor E : S→ Inj sends each object n ∈ S to E(n), and it sends each morphism
σ : n → n to the permutation of E(n) that maps any edge e = {x, y} ∈ E(n) to σ(e) =
{σ(x), σ(y)}. The category Inj does not have coproducts, but it is closed under coproducts
in Set. It thus becomes symmetric monoidal with + as its tensor product and the empty
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set as the unit object. For any m,n ∈ S there is an injection

µm,n : E(m) + E(n)→ E(m+ n)

expressing the fact that a 2-element subset of either m or n gives a 2-element subset of
m + n. The functor E : S → Inj becomes lax symmetric monoidal with these maps µm,n
giving the lax preservation of the tensor product.

The functor M− : Inj→ Mon sends each set X to the set MX made into a monoid with
pointwise operations, and it sends each function f : X → Y to the monoid homomorphism
M f : MX →MY given by

(M fg)(y) =

{
g(f−1(y)) if y ∈ im(f)

1 otherwise

for any g ∈ MX . Using the natural isomorphisms MX+Y ∼= MX ×MY and M∅ ∼= 1 this
functor can be made symmetric monoidal.

As the composite of the lax symmetric monoidal functor E : S→ Inj and the symmetric
monoidal functor M− : Inj→ Mon, the functor ΓM : S→ Mon is lax symmetric monoidal,
and thus a network model. With the help of Thm. 2.3, it is easy to check that this
description of ΓM is equivalent to that in the theorem statement.

3.2. Example. [Simple graphs, revisited] Let B = {F, T} be the Boolean monoid. If
we interpret T and F as ‘edge’ and ‘no edge’ respectively, then ΓB is just SG, the network
model of simple graphs discussed in Example 2.4.

Recall from Ex. 2.6 that a multigraph on the set n is a multisubset of E(n), or in
other words, a function g : E(n) → N. There are many ways to create a network model
F : S → Mon for which F (n) is the set of multigraphs on the set n, since N has many
monoid structures. Two of the most important are these:

3.3. Example. [Multigraphs with addition for overlaying] Let (N,+) be N made
into a monoid with the usual notion of addition as +. In this network model, overlaying
two multigraphs g1, g2 : E(n) → N gives a multigraph g : E(n) → N with g(e) = g1(e) +
g2(e). In fact, this notion of overlay corresponds to forming the multiset sum of edge
multisets and Γ(N,+) is the network model of multigraphs called MG+ in Ex. 2.6.

3.4. Example. [Multigraphs with maximum for overlaying] Let (N,max) be N
made into a monoid with max as the monoid operation. Then Γ(N,max) is a network model
where overlaying two multigraphs g1, g2 : E(n) → N gives a multigraph g : E(n) → N
with g(e) = g1(e) max g2(e). For this monoid structure overlaying two copies of the same
multigraph gives the same multigraph. In other words, every element in each monoid
Γ(N,max)(n) is idempotent and Γ(N,max) is the network model of multigraphs called MG in
Ex. 2.6.
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3.5. Example. [Multigraphs with at most k edges between vertices] For any
k ∈ N, let Bk be the set {0, . . . , k} made into a monoid with the monoid operation ⊕
given by

x⊕ y = (x+ y) min k

and 0 as its unit element. For example, B0 is the trivial monoid and B1 is isomorphic
to the Boolean monoid. There is a network model ΓBk

such that ΓBk
(n) is the set of

multigraphs on n with at most k edges between any two distinct vertices.

4. Network models

The network models described so far allow us to handle graphs with colored edges, but
not with colored vertices. Colored vertices are extremely important for applications in
which we have a network of agents of different types. Thus, network models will involve
a set C of vertex colors in general. This requires that we replace S by the free strict
symmetric monoidal category generated by the color set C. Thus, we begin by recalling
this category.

For any set C, there is a category S(C) for which:

� Objects are formal expressions of the form

c1 ⊗ · · · ⊗ cn

for n ∈ N and c1, . . . , cn ∈ C. We denote the unique object with n = 0 as I.

� There exist morphisms from c1⊗ · · ·⊗ cm to c′1⊗ · · ·⊗ c′n only if m = n, and in that
case a morphism is a permutation σ ∈ Sn such that c′σ(i) = ci for all i.

� Composition is the usual composition of permutations.

Note that elements of C can be identified with certain objects of S(C), namely the
one-fold tensor products. We do this in what follows.

4.1. Proposition. S(C) can be given the structure of a strict symmetric monoidal cat-
egory making it into the free strict symmetric monoidal category on the set C. Thus, if
A is any strict symmetric monoidal category and f : C → Ob(A) is any function from C
to objects of the A, there exists a unique strict symmetric monoidal functor F : S(C)→ A
with F (c) = f(c) for all c ∈ C.

Proof. This is well-known; see for example Sassone [21, Sec. 3] or Gambino and Joyal
[8, Sec. 3.1]. The tensor product of objects is ⊗, the unit for the tensor product is I, and
the braiding

(c1 ⊗ · · · ⊗ cm)⊗ (c′1 ⊗ · · · ⊗ c′n)→ (c′1 ⊗ · · · ⊗ c′n)⊗ (c1 ⊗ · · · ⊗ cm)



NETWORK MODELS 713

is the block permutation Bm,n. Given f : C → Ob(A), we define F : S(C)→ A on objects
by

F (c1 ⊗ · · · ⊗ cn) = f(c1)⊗ · · · ⊗ f(cn),

and it is easy to check that F is strict symmmetric monoidal, and the unique functor with
the required properties.

4.2. Definition. Let C be a set, called the set of vertex colors. A C-colored network
model is a lax symmetric monoidal functor

F : S(C)→ Cat.

A network model is a C-colored network model for some set C.

If C has just one element, S(C) ∼= S and a C-colored network model is a one-colored
network model in the sense of Def. 2.2. Here are some more interesting examples:

4.3. Example. [Simple graphs with colored vertices] There is a network model of
simple graphs with C-colored vertices. To construct this, we start with the network model
of simple graphs SG: S → Mon given in Ex. 2.4. There is a unique function from C to
the one-element set. By Prop. 4.1, this function extends uniquely to a strict symmetric
monoidal functor

F : S(C)→ S.

An object in S(C) is formal tensor product of n colors in C; applying F to this object
we forget the colors and obtain the object n ∈ S. Composing F and SG, we obtain a lax
symmetric monoidal functor

S(C)
F−→ S

SG−→ Mon

which is the desired network model. We can use the same idea to ‘color’ any of the
network models in Section 2.

Alternatively, suppose we want a network model of simple graphs with C-colored
vertices where an edge can only connect two vertices of the same color. For this we take
a cartesian product of C copies of the functor SG, obtaining a lax symmetric monoidal
functor

SGC : SC → MonC .

There is a function h : C → Ob(SC) sending each c ∈ C to the object of SC that equals
1 ∈ S in the cth place and 0 ∈ S elsewhere. Thus, by Prop. 4.1, h extends uniquely to a
strict symmetric monoidal functor

HC : S(C)→ SC .

Furthermore, the product in Mon gives a symmetric monoidal functor

Π: MonC → Mon.
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Composing all these, we obtain a lax symmetric monoidal functor

S(C)
HC−→ SC

SGC

−→ MonC
Π−→ Mon

which is the desired network model.
More generally, if we have a network model Fc : S→ Mon for each color c ∈ C, we can

use the same idea to create a network model:

S(C)
HC

// SC
∏

c∈C Fc
//MonC Π

//Mon

in which the vertices of color c ∈ C partake in a network of type Fc.

4.4. Example. [Petri nets] Petri nets are a kind of network widely used in computer
science, chemistry and other disciplines [1]. A Petri net (S, T, i, o) is a pair of finite sets
and a pair of functions i, o : S × T → N. Let P (m,n) be the set of Petri nets (m,n, i, o).
This becomes a monoid with product

(m,n, i, o) ∪ (m,n, i′, o′) = (m,n, i+ i′, o+ o′)

The groups Sm × Sn naturally act on these monoids, so we have a functor

P : S2 → Mon.

There are also ‘disjoint union’ operations

t : P (m,n)× P (m′, n′)→ P (m+m′, n+ n′)

making P into a lax symmetric monoidal functor. In Ex. 4.3 we described a strict sym-
metric monoidal functor HC : S(C) → SC for any set C. In the case of the 2-element set
this gives

H2 : S(2)→ S2.

We define the network model of Petri nets to be the composite

S(2)
H2−→ S2 P−→ Mon.

5. Categories of network models

For each choice of the set C of vertex colors, we can define a category NetModC of
C-colored network models. However, it is useful to create a larger category NetMod
containing all these as subcategories, since there are important maps between network
models that involve changing the vertex colors.
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5.1. Definition. For any set C, let NetModC be the category for which:

� an object is a C-colored network model, that is, a lax symmetric monoidal functor
F : S(C)→ Cat,

� a morphism is a monoidal natural transformation between such functors:

S(C) Cat

F

F ′

g

and composition is the usual composition of monoidal natural transformations.

In particular, NetMod1 is the category of one-colored network models. For an example
involving this category, consider the network models built from monoids in Sec. 3. Any
monoid M gives a one-colored network model ΓM for which an element of ΓM(n) is a way
of labelling the edges of the complete graph on n by elements of M . Thus, we should
expect any homomorphism of monoids f : M →M ′ to give a morphism of network models
Γf : ΓM → ΓM ′ for which

Γf (n) : ΓM(n)→ ΓM ′(n)

applies f to each edge label.
Indeed, this is the case. As explained in the proof of Thm. 3.1, the network model ΓM

is the composite

S
E−→ Inj

M−−→ Mon.

The homomorphism f gives a natural transformation

f− : M− ⇒M ′−

that assigns to any finite set X the monoid homomorphism

fX : MX → M ′X

g 7→ f ◦ g.

It is easy to check that this natural transformation is monoidal. Thus, we can whisker it
with the lax symmetric monoidal functor E to get a morphism of network models:

S Inj MonE

M−

M ′−

f−

and we call this Γf : ΓM → ΓM ′ .
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5.2. Theorem. There is a functor

Γ: Mon→ NetMod1

sending any monoid M to the network model ΓM and any homomorphism of monoids
f : M →M ′ to the morphism of network models Γf : ΓM → ΓM ′.

Proof. To check that Γ preserves composition, note that

S Inj MonE

M−

M ′−

f−

M ′′−

f ′−

equals

S Inj MonE

M−

M ′′−

(f ′f)−

since f ′−f− = (f ′f)−. Similarly Γ preserves identities.

It has been said that category theory is the subject in which even the examples need
examples. So, we give an example of the above result:

5.3. Example. [Imposing a cutoff on the number of edges] In Ex. 3.3 we described
the network model of multigraphs MG+ as Γ(N,+). In Ex. 3.5 we described a network model
ΓBk

of multigraphs with at most k edges between any two distinct vertices. There is a
homomorphism of monoids

f : (N,+) → Bk
n 7→ nmin k

and this induces a morphism of network models

Γf : Γ(N,+) → ΓBk
.

This morphism imposes a cutoff on the number of edges between any two distinct vertices:
if there are more than k, this morphism keeps only k of them. In particular, if k = 1, Bk
is the Boolean monoid, and

Γf : MG+ → SG

sends any multigraph to the corresponding simple graph.

One useful way to combine C-colored networks is by ‘tensoring’ them. This makes
NetModC into a symmetric monoidal category:
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5.4. Theorem. For any set C, the category NetModC can be made into a symmetric
monoidal category with the tensor product defined pointwise, so that for objects F, F ′ ∈
NetModC we have

(F ⊗ F ′)(x) = F (x)× F ′(x)

for any object or morphism x in S(C), and for morphisms φ, φ′ in NetModC we have

(φ⊗ φ′)x = φx × φ′x

for any object x ∈ S(C).

Proof. More generally, for any symmetric monoidal categories A and B, there is a sym-
metric monoidal category homsmCat(A,B) whose objects are lax symmetric monoidal func-
tors from A to B and whose morphisms are monoidal natural transformations, with the
tensor product defined pointwise. The proof in the ‘weak’ case was given by Hyland and
Power [11], and the lax case works the same way.

If F, F ′ : S(C)→ Mon then their tensor product again takes values in Mon. There are
many interesting examples of this kind:

5.5. Example. [Graphs with colored edges, revisited] In Ex. 2.9 we described net-
work models of simple graphs with colored edges. The above result lets us build these
network models starting from more basic data. To do this we start with the network
model for simple graphs, SG: S → Mon, discussed in Ex. 2.4. Fixing a set B of ‘edge
colors’, we then take a tensor product of copies of SG, one for each b ∈ B. The result is
a network model SG⊗B : S→ Mon with

SG⊗B(n) = SG(n)B

for each n ∈ N.

5.6. Example. [Combined networks] We can also combine networks of different kinds.
For example, if DG: S → Mon is the network model of directed graphs given in Ex. 2.5
and MG: S→ Mon is the network model of multigraphs given in Ex. 2.6, then

DG⊗MG: S→ Mon

is another network model, and we can think of an element of (DG⊗MG)(n) as a directed
graph with red edges together with a multigraph with blue edges on the set n.

Next we describe a category NetMod of network models with arbitrary color sets,
which includes all the categories NetModC as subcategories. To do this, first we introduce
‘color-changing’ functors. Recall that elements of C can be seen as certain objects of
S(C), namely the 1-fold tensor products. If f : C → C ′ is a function, there exists a unique
strict symmetric monoidal functor f∗ : S(C)→ S(C ′) that equals f on objects of the form
c ∈ C. This follows from Prop. 4.1.
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Next, we define an indexed category NetMod− : Setop → CAT that sends any set C to
NetModC and any function f : C → D to the functor that sends any D-colored network
model F : S(D)→ Cat to the C-colored network model given by the composite

S(C)
f∗−→ S(D)

F−→ Cat.

Applying the Grothendieck construction to this indexed category, we define the category
of network models to be

NetMod =

∫
NetMod−.

In elementary terms, NetMod has:

� pairs (C,F ) for objects, where C is a set and F : S(C)→ Cat is a C-colored network
model.

� pairs (f, g) : (C,F ) → (D,G) for morphisms, where f : C → D is a function and
g : F ⇒ G ◦ f∗ is a morphism of network models.

5.7. Example. [Simple graphs with colored vertices, revisited] In Ex. 4.3 we
constructed the network model of simple graphs with colored vertices. We started with
the network model for simple graphs, which is a one-colored network model SG: S→ Mon.
The unique function ! : C → 1 gives a strict symmetric monoidal functor !∗ : S(C) →
S(1) ∼= S. The network model of simple graphs with C-colored vertices is the composite

S(C)
!∗−→ S

SG−→ Mon

and there is a morphism from this to the network model of simple graphs, which has the
effect of forgetting the vertex colors.

In fact, NetMod can be understood as a subcategory of the following category:

5.8. Definition. Let smICat be the category where:

� objects are pairs (C, F ) where C is a small symmetric monoidal category and F : C→
Cat is a lax symmetric monoidal functor, where Cat is considered with its cartesian
monoidal structure.

� morphisms from (C, F ) to (C′, F ′) are pairs (G, g) where G : C → C′ is a lax sym-
metric monoidal functor and g : F ⇒ F ′ ◦G is a symmetric monoidal natural trans-
formation:

C

Cat

C′

F

G

F ′

g
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We shall use this way of thinking in the next two sections to build operads from
network models. For experts, it is worth admitting that smICat is part of a 2-category
where a 2-morphism ξ : (G, g)⇒ (G′, g′) is a natural transformation ξ : G→ G′ such that

C C′

Cat = Cat.

C C′

G G′

F

G

F

F ′

g′
ξ

F ′

g

This lets us define 2-morphisms between network models, extending NetMod to a 2-
category. We do not seem to need these 2-morphisms in our applications, so we suppress
2-categorical considerations in most of what follows. However, we would not be surprised
if the 2-categorical aspects of network models turn out to be important, and we touch on
them in Sec. 6.22.

6. The Grothendieck construction

In this section we describe how to build symmetric monoidal categories using the Grothen-
dieck construction. In the next section we use this to construct operads from network
models, but the material here is self-contained and of independent interest.

In what follows we always give Cat its cartesian symmetric monoidal structure. Given
a small category C and a functor F : C→ Cat, the Grothendieck construction gives a
category

∫
F where:

� the objects are pairs (c, x), where c ∈ C and x is an object in Fc;

� the morphisms are (f, g) : (c, x) → (d, y) where f : c → d is a morphism in C and
g : Ff(x)→ y is a morphism in Fd;

� the composite of
(f ′, g′) : (c, x)→ (d, y)

and
(f, g) : (d, y)→ (e, z)

is given by
(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ F (f)(g′)). (2)

In what follows we prove:

� Thm. 6.7: if C is monoidal and F is lax monoidal, then
∫
F is monoidal category.

� Thm. 6.14: If C is braided monoidal and F is lax braided monoidal, then
∫
F is

braided monoidal.
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� Thm. 6.18: If C is symmetric monoidal and F is lax symmetric monoidal, then∫
F is symmetric monoidal.

Moreover, in each case the Grothendieck construction is functorial. For example, in Def.
5.8 we described a category smICat where an object is a symmetric monoidal category C
equipped with a lax symmetric monoidal functor F : C → Cat. In Thm. 6.18 we show
that the Grothendieck construction gives a functor∫

: smICat → smCat.

In proving these results we take a self-contained and elementary approach which provides
the equations that we need later. We sketch a more high-powered 2-categorical approach
using fibrations and indexed categories in Sec. 6.22.

We use the following lemma implicitly whenever we need to construct an isomorphism
in
∫
F :

6.1. Lemma. If f : c → d and g : F (f)(x) → y are isomorphisms, then (f, g) is an
isomorphism in

∫
F .

Proof. Näıvely one might think that (f−1, g−1) should be the inverse of (f, g). However,
(f−1, g−1) is not even a morphism from (d, y) to (c, x) since g−1 does not go from Ff−1(y)
to x. The inverse of (f, g) is (f−1, Ff−1g−1):

(f, g) ◦ (f−1, Ff−1g−1) = (f ◦ f−1, g ◦ (F (f))(F (f−1)g−1))

= (1c, g ◦ (F (f) ◦ F (f−1))(g−1))

= (1c, g ◦ g−1)

= (1c, 1x)

(f−1, F (f−1)g−1) ◦ (f, g) = (f−1 ◦ f, Ff−1(g−1) ◦ Ff−1(g))

= (1d, Ff
−1(g−1 ◦ g))

= (1d, 1y)

Next we discuss the functoriality of the Grothendieck construction.

6.2. Definition. Let ICat denote the category where

� an object is a pair (C, F ) where C is a small category and F : C→ Cat is a functor

� a morphism (C1, F1)→ (C2, F2) is a pair (G, g) where G : C1 → C2 is a functor and
g : F1 ⇒ F2 ◦G is a natural transformation:

C1

Cat

C2

F1

G

F2

g
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For brevity, we denote the object (C, F ) as simply F , and the morphism (G, g) as simply
G.

Having defined the Grothendieck construction on objects of ICat, we proceed to define
it on morphisms. Suppose we have a morphism in ICat:

C

Cat

C′

F

G

F ′

g

Then we can define a functor Ĝ :
∫
F →

∫
F ′ as follows.

(c, x) (Gc, gcx)

Ĝ : 7→

(d, y) (Gd, gdy)

(f,g) (Gf,gdg)

The following result is well-known [6]:

6.3. Theorem. There exists a unique functor, the Grothendieck construction∫
: ICat → Cat

sending any object F to the category
∫
F and sending any morphism G : F → F ′ to the

functor Ĝ :
∫
F →

∫
F ′.

6.4. The monoidal Grothendieck construction. Next we explain how to use the
Grothendieck construction to build monoidal categories.

6.5. Definition. Let mCat be the category with small monoidal categories as objects and
lax monoidal functors as morphisms.

6.6. Definition. Let mICat be the category of lax monoidal functors into Cat, where:

� objects are pairs (C, F ) where C is a small monoidal category and F : C→ Cat is a
lax monoidal functor.
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� morphisms from (C1, F1) to (C2, G2) are pairs (G, g) where G : C1 → C2 is a lax
monoidal functor and g : F ⇒ F ′ ◦G is a monoidal natural transformation:

C1

Cat

C2

F1

G

F2

g

Our goal in this subsection is to refine the Grothendieck construction to a functor∫
: mICat → mCat.

Given C a monoidal category, and F : C → Cat a lax monoidal functor, we define a
monoidal structure on

∫
F . This construction makes use of every aspect of the monoidal

structure on C: the functor ⊗ : C × C → C, the unit object I ∈ C, and the natural
isomorphisms αc,d,e : (c⊗d)⊗e→ c⊗(d⊗e), λc : I⊗c→ c, and ρc : c⊗I → c. It also uses
the lax monoidal structure of F : the natural transformation Φc,c′ : Fc× Fc′ → F (c⊗ c′)
and the morphism φ : ICat → I.

First, given two objects (c, x) and (c′, x′) of
∫
F , we define their tensor product by

(c, x)⊗F (c′, x′) = (c⊗ c′,Φc,c′(x, x
′)).

Next, consider two morphisms

(f, g) : (c, x)→ (d, y)

(f ′, g′) : (c′, x′)→ (d′, y′)

in
∫
F . We take the first component of (f, g) ⊗ (f ′, g′) : (c ⊗ c′,Φc,c′(x, x

′)) → (d ⊗
d′,Φd,d′(y, y

′)) to be f ⊗ f ′. The second component must then be a morphism from
F (f ⊗ f ′)(Φc,c′(x, x

′)) to Φd,d′(y, y
′). To meet this condition we define the tensor product

of morphisms in
∫
F by

(f, g)⊗F (f ′, g′) = (f ⊗ f ′,Φd,d′(g, g
′)). (3)

Since Φ is a natural transformation, the diagram

Fc× Fc′ F (c⊗ c′)

Fd× Fd′ F (d⊗ d′)

Φc,c′

Ff×Ff ′ F (f⊗f ′)

Φd,d′
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commutes, so Φd,d′(g, g
′) is a morphism from Φd,d′(Ff×Ff ′)(x, x′) = F (f⊗f ′)(Φc,c′(x, x

′))
to Φd,d′(y, y

′) as required.
We define the unit object of

∫
F to be IF = (I, φ). Then IF⊗F (c, x) = (I, φ)⊗F (c, x) =

(I⊗c, µI,c(φ, x)). We take the first component of the left unitor λF(c,x) : (I⊗c, µI,c(φ, x))→
(c, x) to be the map λc : I ⊗ c → c. The second component must then be a morphism
from FλcΦI,c(φ, x) to x. To meet this condition we define the left unitor for

∫
F to be

λF(c,x) = (λc, 1x) (4)

Since F is a lax monoidal functor, the diagram

ICat × Fc F (I)× Fc

Fc F (I ⊗ c)

φ×Fc

λCatICat,Fc ΦI,c

Fλc

commutes, giving the equation
FλcΦI,c(φ, x) = x

as required. Similarly, we define the right unitor to be

ρF(c,x) = (ρc, 1x). (5)

We take the first component of the associator αF(c,x),(d,y),(e,z) to be αc,d,e. The second

component must then be a morphism from Fαc,d,eΦc⊗d,e(Φc,d(x, y), z) to Φc,d⊗e(x,Φd,e(y, z)).
However, these two objects are equal, since the diagram

(Fc× Fd)× Fe F (c⊗ d)× Fe

Fc× (Fd× Fe) F ((c⊗ d)⊗ e)

Fc× F (d⊗ e) F (c⊗ (d⊗ e))

Φc,d×Fe

αCat
Fc,Fd,Fe Φc⊗d,e

Fc×Φd,e Fαc,d,e

Φc,d⊗e

commutes. Thus, we can meet this condition by defining the associator for
∫
F to be

αF(c,x),(d,y),(e,z) = (αc,d,e, 1Φc,d⊗e(x,Φd,e(y,z))). (6)

6.7. Theorem. If F : C → Cat is a lax monoidal functor then
∫
F becomes a monoidal

category when equipped with the above tensor product, unit object, unitors and associator.
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Proof. Since C is a monoidal category, the following diagrams commute.

(c⊗ I)⊗ d

c⊗ (I ⊗ d) c⊗ d

ρc⊗dαc,I,d

c⊗λd

((b⊗ c)⊗ d)⊗ e (b⊗ c)⊗ (d⊗ e)

(b⊗ (c⊗ d))⊗ e

b⊗ ((c⊗ d)⊗ e) b⊗ (c⊗ (d⊗ e))

αb⊗c,d,e

αb,c,d⊗e

αb,c,d⊗e

αb,c⊗d,e

b⊗αc,d,e

It then follows that the corresponding diagrams also commute for
∫
F , αF , λF , and

ρF .

((c, x)⊗F IF )⊗F (d, y)

(c, x)⊗F (IF ⊗F (d, y)) (c, x)⊗F (d, y)

ρF
(c,x)
⊗F (d,y)

αF
(c,x),IF ,(d,y)

(c,x)⊗Fλ
F
(d,y)

(((b, w)⊗F (c, x))⊗F (d, y))⊗F (e, z) ((b, w)⊗F (c, x))⊗F ((d, y)⊗F (e, z))

((b, w)⊗F ((c, x)⊗F (d, y)))⊗F (e, z)

(b, w)⊗F (((c, x)⊗F (d, y))⊗F (e, z)) (b, w)⊗F ((c, x)⊗F ((d, y)⊗F (e, z)))

αF
(b,w)⊗F (c,x),(d,y),(e,z)

αF
(b,w),(c,x),(d,y)

⊗F (e,z)

αF
(b,w),(c,x),(d,y)⊗F (e,z)

αF
(b,w),(c,x)⊗F (d,y),(e,z)

(b,w)⊗Fα
F
(c,x),(d,y),(e,z)

Next we show that a morphism in mICat gives a lax monoidal functor. Recall that
such a morphism is a quadruple (G,Γ, γ, g) : (F,Φ, φ)→ (F ′,Φ′, φ′) where

G : C → C ′

Γc,d : Gc⊗′ Gd→ G(c⊗ d)

γ : IC′ → G(I)

g : F ⇒ F ′G.
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We already know how to get a functor Ĝ :
∫
F →

∫
F ′ from this data. We next define Γ̂

and γ̂ to make Ĝ into a lax monoidal functor:

Γ̂(c,x),(d,x′) = (Γc,d, 1), (7)

γ̂ = (γ, 1). (8)

One can check that these have the required source and target.

6.8. Theorem. There exists a unique functor, the monoidal Grothendieck
construction ∫

: mICat → mCat,

that sends any object F to the monoidal category
∫
F given in Thm. 6.7 and sends any

morphism G : F → F ′ to the lax monoidal functor Ĝ :
∫
F →

∫
F ′ defined above.

Proof. Uniqueness follows because the theorem specifies
∫

on objects and morphisms.

For existence, we need to check that Ĝ is a lax monoidal functor and that
∫

preserves
composition and identities.

We already know that Ĝ is a functor. We start by checking that Γ̂ is a natural
transformation. Let f : c → d, f ′ : c′ → d′ be morphisms in C. Since Γ is a natural
transformation, the following diagram commutes

Gc⊗′ Gc′ G(c⊗ c′)

Gd⊗′ Gd′ G(d⊗ d′)

Γc,c′

Gf⊗′Gf ′ G(f⊗f ′)

Γd,d′

giving the equation G(f ⊗ f ′) ◦ Γc,c′ = Γd,d′ ◦ (Gf ⊗′ Gf ′). Since g is a monoidal natural
transformation, the following diagram commutes

Fd× Fd′ F ′Gd× F ′Gd′

F (d⊗ d′) F ′G(d⊗ d′)

gd×gd′

Φd,d′ F ′Γd,d′Φ
′
Gd,Gd′

gd⊗d′

giving the equation gd⊗d′Φd,d′ = F ′Γd,d′Φ
′
Gd,Gd′(gd × gd′). Then

Ĝ((f, g)⊗F (f ′, g′)) ◦ Γ̂(c,x),(c′,x′) = Ĝ(f ⊗ f ′,Φd,d′(g, g
′)) ◦ (Γc,c′ , 1)

= (G(f ⊗ f ′), gd⊗d′Φd,d′(g, g
′)) ◦ (Γc,c′ , 1)

= (G(f ⊗ f ′) ◦ Γc,c′ , gd⊗d′Φd,d′(g, g
′))

= (Γd,d′ ◦ (Gf ⊗′ Gf ′), F ′Γd,d′Φ′Gd,Gd′(gdg, gd′g′))
= (Γd,d′ , 1) ◦ (Gf ⊗Gf ′,Φ′Gd,Gd′(gdg, gd′g′)
= (Γd,d′ , 1) ◦ (Gf, gdg)⊗F ′ (Gf ′, gd′g′)
= Γ̂(d,y),(d′,y′) ◦ Ĝ(f, g)⊗F ′ Ĝ(f ′, g′)
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which tells us that the following diagram commutes.

Ĝ(c, x)⊗F ′ Ĝ(c′, x′) Ĝ((c, x)⊗F (c′, x′))

Ĝ(d, y)⊗F ′ Ĝ(d′, y′) Ĝ((d, y)⊗F (d′, y′))

Γ̂(c,x),(c′,x′)

Ĝ(f,g)⊗F ′ Ĝ(f ′,g′) Ĝ((f,g)⊗F (f ′,g′))

Γ̂(d,y),(d′,y′)

Next, we check that Γ̂ satisfies the necessary conditions to be a lax structure map.
Since (G,Γ) is a lax monoidal functor, the following diagrams commute.

(Gc⊗′ Gd)⊗′ Ge Gc⊗′ (Gd⊗′ Ge)

G(c⊗ d)⊗′ Ge Gc⊗′ G(d⊗ e)

G((c⊗ d)⊗ e) G(c⊗ (d⊗ e))

α′Gc,Gd,Ge

Γc,d⊗′Ge Gc⊗′Γd,e

Γc⊗d,e Γc,d⊗e

Gαc,d,e

I ′ ⊗′ Gc GI ⊗′ Gc

Gc G(I ⊗ c)

γ⊗′Gc

λ′Gc
ΓI,c

Gλc

Gc⊗′ I ′ Gc⊗′ GI

Gc G(c⊗ I)

Gc⊗′γ

ρ′Gc
Γc,I

Gρc

It then follows that the corresponding diagrams also commute for Ĝ, Γ̂, and γ̂.

(Ĝ(c, x)⊗F ′ Ĝ(d, y))⊗F ′ Ĝ(e, z) Ĝ(c, x)⊗F ′ (Ĝ(d, y)⊗F ′ Ĝ(e, z))

Ĝ((c, x)⊗ (d, y))⊗F ′ Ĝ(e, z) Ĝ(c, x)⊗F ′ Ĝ((d, y)⊗F (e, z))

Ĝ(((c, x)⊗F (d, y))⊗F (e, z)) Ĝ((c, x)⊗F ((d, y)⊗F (e, z)))

αF ′
Ĝ(c,x),Ĝ(d,y),Ĝ(e,z)

Γ̂(c,x),(d,y)⊗F ′ Ĝ(e,z) Ĝ(c,x)⊗F ′ Γ̂(d,y),(e,z)

Γ̂(c,x)⊗F (d,y),(e,z) Γ̂(c,x),(d,y)⊗F (e,z)

ĜαF
(c,x),(d,y),(e,z)
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IF ′ ⊗F ′ Ĝ(c, x) ĜIF ⊗F ′ Ĝ(c, x)

Ĝ(c, x) Ĝ(IF ⊗F (c, x))

γ̂⊗F ′ Ĝ(c,x)

λF
′

Ĝ(c,x)
Γ̂I,(c,x)

ĜλF
(c,x)

Ĝ(c, x)⊗F ′ IF ′ Ĝ(c, x)⊗F ′ ĜI

Ĝ(c, x) Ĝ((c, x)⊗F I)

Ĝ(c,x)⊗F ′ γ̂

ρF
′

Ĝ(c,x)
Γ̂(c,x),I

ĜρF
(c,x)

Finally, we check that composition is preserved.

((G,Γ, γ, g) ◦ (G′,Γ′, γ′, g′))̂ = (G ◦G′, GΓ′ ◦ ΓG′ , Gγ
′ ◦ γ, gG ◦ g′)̂

= (Ĝ ◦G′, (GΓ′ ◦ ΓG′ , 1), (Gγ′ ◦ γ, 1))

= (Ĝ ◦ Ĝ′, (GΓ′, 1) ◦ (ΓG′ , 1), (Gγ′, 1) ◦ (γ, 1))

= (Ĝ ◦ Ĝ′, Ĝ(Γ′, 1) ◦ (ΓG′ , 1), Ĝ(γ′, 1) ◦ (γ, 1))

= (Ĝ ◦ Ĝ′, ĜΓ̂′ ◦ Γ̂Ĝ′ , Ĝγ̂
′ ◦ γ̂)

= (Ĝ, Γ̂, γ̂) ◦ (Ĝ′, Γ̂′, γ̂′)

= (G,Γ, γ, g)̂ ◦ (G′,Γ′, γ′, g′)̂

Under some conditions the Grothendieck construction gives strict monoidal categories
and functors:

6.9. Proposition. If C is a strict monoidal category and F : C→ Cat is a lax monoidal
functor, then

∫
F as defined in Thm. 6.7 is a strict monoidal category.

Proof. This follows from Eq. 4 for the left unitor, Eq. 5 for the right unitor, and Eq.
6 for the associator in

∫
F . These isomorphisms are all built from the corresponding

isomorphisms in C in such a way that if C is strict monoidal, so is
∫
F .

6.10. Proposition. If

C

Cat

C′

F

G

F ′

g

is a morphism in mICat such that G is a strict monoidal functor, then Ĝ :
∫
F →

∫
F ′ as

defined in Thm. 6.8 is a strict monoidal functor.
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Proof. This follows from Eq. 7 and Eq. 8, which give the morphisms describing how Ĝ
laxly preserves of the tensor product and unit for the tensor product. These morphisms are
built from the corresponding morphisms for G in such a way that if G is strict monoidal,
so is Ĝ.

6.11. The braided Grothendieck construction. Next we consider the braided
case.

6.12. Definition. Let bmCat be the category with small braided monoidal categories as
objects and lax braided monoidal functors as morphisms.

6.13. Definition. Let bmICat be the category where:

� objects are pairs (C, G) where C is a small braided monoidal category and G : C →
Cat is a lax braided monoidal functor.

� morphisms from (C1, G1) to (C2, G2) are pairs (G, g) where G : C1 → C2 is a lax
braided monoidal functor and g : F ⇒ F ′ ◦ G is a braided monoidal natural trans-
formation:

C

Cat

C′

F

G

F ′

g

Let C be a braided monoidal category with braidingBc,d : c⊗d→ d⊗c. Let F : C→ Cat
a lax braided monoidal functor with lax structure map Φ, so that the following diagram
commutes:

Fc× Fd F (c⊗ d)

Fd× Fc F (d⊗ c).

Φc,d

Bc,d FBc,d

Φd,c

We claim that in this situation we can make
∫
F into a braided monoidal category, giving

it a braiding
BF

(c,x),(d,y) : (c⊗ d,Φc,d(x, y))→ (d⊗ c,Φd,c(y, x)).

We take the first component of this morphism to be Bc,d. The second component must
then be a morphism from FBc,d(Φc,d(x, y)) to Φd,c(y, x), but

FBc,d(Φc,d(x, y)) = Φd,c(Bc,d(x, y))

= Φd,c(y, x).
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so if we define the braiding in
∫
F by

BF
(c,x),(d,y) = (Bc,d, 1)

then this condition is met.

6.14. Theorem. If F : C → Cat is a lax braided monoidal functor, then
∫
F made

monoidal as in Thm. 6.7 and given the braiding BF is a braided monoidal category.

Proof. We need to show that BF is a natural transformation and that it obeys the
hexagon identities. Let (f, g) : (c, x)→ (d, y) and (f ′, g′) : (c′, x′)→ (d′, y′) be morphisms
in C. Since C is braided monoidal with the braiding B, the following diagram commutes:

c⊗ c′ c′ ⊗ c

d⊗ d′ d′ ⊗ d

Bc,c′

f⊗f ′ f ′⊗f

Bd,d′

giving the equation (f ′⊗ f) ◦Bc,c′ = Bd,d′ ◦ (f ⊗ f ′). Since F is lax braided monoidal, the
following diagram commutes:

Fd× Fd′ Fd′ × Fd

F (d⊗ d′) F (d′ ⊗ d′)

BFd,Fd′

Φd,d′ Φd′,d

FBd,d′

giving the equation FBd,d′(Φd,d′) = Φd′,d(BFd,Fd′). Thus

BF
(d,y),(d′,y′) ◦ ((f, g)⊗F (f ′, g′)) = (Bd,d′ , 1) ◦ (f ⊗ f ′,Φd,d′(g, g

′))

= (Bd,d′ ◦ f ⊗ f ′, FBd,d′(Φd,d′(g, g
′)))

= (f ′ ⊗ f ◦Bc,c′ ,Φd′,d(BFd,Fd′(g, g
′))

= (f ′ ⊗ f ◦Bc,c′ ,Φd′,d(g
′, g))

= (f ′ ⊗ f,Φd′,d(g
′, g)) ◦ (Bc,c′ , 1)

= ((f ′, g′)⊗F (f, g)) ◦BF
(c,x),(c′,x′).

This tells us that the following diagram commutes, and thus BF is natural.

(c, x)⊗F (c′, x′) (c′, x′)⊗F (c, x)

(d, y)⊗F (d′, y′) (d′, y′)⊗F (d, y)

BF
(c,x),(c′,x′)

(f,g)⊗F (f ′,g′) (f ′,g′)⊗F (f,g)

BF
(d,y),(d′,y′)
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Next we show that the necessary diagrams commute to make BF a braiding for
∫
F .

Notice that the diagrams

c⊗ (d⊗ e) (c⊗ d)⊗ e

(d⊗ e)⊗ c (d⊗ c)⊗ e

d⊗ (e⊗ c) d⊗ (c⊗ e)

α−1
c,d,e

Bc,d⊗e Bc,d⊗e

αd,c,eα−1
d,e,c

d⊗Bc,e

(c⊗ d)⊗ e c⊗ (d⊗ e)

e⊗ (c⊗ d) c⊗ (e⊗ d)

(e⊗ c)⊗ d (c⊗ e)⊗ d

αc,d,e

Bc⊗d,e c⊗Bd,e

α−1
c,e,d

αe,c,d

Bc,e⊗d

commute. Then the corresponding diagrams for αF and BF commute.

(c, x)⊗F ((d, y)⊗F (e, z)) ((c, x)⊗F (d, y))⊗F (e, z)

((d, y)⊗F (e, z))⊗F (c, x) ((d, y)⊗F (c, x))⊗F (e, z)

(d, y)⊗F ((e, z)⊗F (c, x)) (d, y)⊗F ((c, x)⊗F (e, z))

(αF )−1
(c,x),(d,y),(e,z)

BF
(c,x),(d,y)⊗F (e,z) BF

(c,x),(d,y)
⊗(e,z)

αF
(d,y),(c,x),(e,z)(αF )−1

(d,y),(e,z),(c,x)

(d,y)⊗FB
F
(c,x),(e,z)

((c, x)⊗F (d, y))⊗F (e, z) (c, x)⊗F ((d, y)⊗F (e, z))

(e, z)⊗F ((c, x)⊗F (d, y)) (c, x)⊗F ((e, z)⊗F (d, y))

((e, z)⊗F (c, x))⊗F (d, y) ((c, x)⊗F (e, z))⊗F (d, y)

αF
(c,x),(d,y),(e,z)

BF
(c,x)⊗F (d,y),(e,z) (c,x)⊗FB

F
(d,y),(e,z)

(αF )−1
(c,x),(e,z),(d,y)

αF
(e,z),(c,x),(d,y)

BF
(c,x),(e,z)

⊗F (d,y)
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6.15. Theorem. There exists a unique functor, the braided Grothendieck
construction ∫

: bmICat→ bmCat,

that sends any object F to the braided monoidal category
∫
F given in Thm. 6.14 and

sends any morphism G : F → F ′ to the lax braided monoidal functor Ĝ :
∫
F →

∫
F ′

defined above.

Proof. Uniqueness follows because the theorem specifies
∫

on objects and morphisms.

From Thm. 6.8 we already know that Ĝ is lax monoidal for any morphism in mICat and
that

∫
preserves composition and identities. Thus, for existence all we need to show is

that Ĝ is in fact braided.
Since G is braided monoidal, the following diagram commutes:

Gc⊗′ Gd Gd⊗′ Gc

G(c⊗ d) G(d⊗ c)

B′Gc,Gd

Γc,d Γd,c

GBc,d

Thus, the corresponding diagram commutes:

Ĝ(c, x)⊗F ′ Ĝ(d, y) Ĝ(d, y)⊗F ′ Ĝ(c, x)

Ĝ((c, x)⊗F (d, y)) Ĝ((d, y)⊗F (c, x))

BF ′
Ĝ(c,x),Ĝ(d,y)

Γ̂(c,x),(d,y) Γ̂(d,y),(c,x)

ĜBF
(c,x),(d,y)

This shows that Ĝ is braided.

6.16. The symmetric Grothendieck construction. Finally we turn to the sym-
metric monoidal case.

6.17. Definition. Let smCat be the category with small symmetric monoidal categories
as objects and lax symmetric monoidal functors as morphisms.

We defined the category smICat in Def. 5.8. So, we are ready to state our main result:

6.18. Theorem. There exists a unique functor, the symmetric Grothendieck con-
struction ∫

: smICat → smCat

that acts on objects and morphisms as in Thm. 6.15.

Proof. In Thm. 6.15 we obtained a functor
∫

: bmICat → bmCat, so for both existence
and uniqueness we need only check that if an object F : C → Cat of bmICat has C
symmetric then

∫
F is symmetric as well. This is straightforward from the formula for

the braiding in
∫
F .
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We conclude with a strict version of the above result, which we use in the next section.

6.19. Definition. Let ssmCat be the category with small strict symmetric monoidal cat-
egories as objects and strict symmetric monoidal functors as morphisms.

6.20. Definition. Let ssmICat be the category where:

� objects are pairs (C, G) where C is a small strict symmetric monoidal category and
G : C→ Cat is a lax symmetric monoidal functor.

� morphisms from (C1, G1) to (C2, G2) are pairs (G, g) where G : C1 → C2 is a strict
symmetric monoidal functor and g : F ⇒ F ′ ◦ G is a symmetric monoidal natural
transformation:

C

Cat

C′

F

G

F ′

g

6.21. Theorem. There is a unique functor, the strict symmetric Grothendieck con-
struction ∫

: ssmICat → ssmCat,

that acts on objects and morphisms as in Thm. 6.18.

Proof. To prove this it suffices to check these claims:

1. If F : C→ Cat is an object of smICat with C a strict symmetric monoidal category,
then

∫
F is a strict symmetric monoidal category.

2. If
C

Cat

C′

F

G

F ′

g

is a morphism in smICat with G a strict symmetric monoidal functor, then Ĝ :
∫
F →∫

F is a strict symmetric monoidal functor.

The first of these follows from Prop. 6.9, while the second follows from Prop. 6.10.
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6.22. A 2-categorical perspective. We have explained how to use the Grothendieck
construction to build a symmetric monoidal category

∫
F from a lax symmetric monoidal

functor F : C → Cat. In what follows, all we really need are the explicit formulas for
how this works. Still, it seems worthwhile to set this result in a larger context. This
requires a 2-categorical perspective on fibrations and indexed categories. A full review
of the prerequisites would be rather lengthy, so we only recall a few facts. The main
ideas go back to Grothendieck [9], but they have been developed and explained by many
subsequent authors [6, 10, 12, 13, 22], whose works can be consulted for details. To
conform to this literature we now replace C with Cop, which lets us work with fibrations
rather than opfibrations. This makes no real difference for the categories C we are mainly
interested in, which are groupoids.

A functor F : Cop → Cat is sometimes called a ‘split indexed category’. The Grothendieck
construction builds from this a category

∫
F . The objects and morphism of

∫
F are pairs

whose first component belongs to C. Projecting onto this first component gives a functor

p :
∫
F → C.

This functor is equipped with some extra structure that makes it into a ‘split fibration’.
The idea is that an object of

∫
F is an object of C equipped with extra structure, and the

splitting gives a well-behaved way to take this extra structure and pull it back along any
morphism in C. For example, given a bijection of finite sets, and a simple graph on the
domain of this bijection, we can pull it back to the codomain.

Conversely, from a split fibration we can recover a split indexed category. Indeed,
split fibrations are essentially ‘the same’ as split indexed categories. To express this fact
clearly, we need a couple of 2-categories that are nicely explained by Jacobs [12, Sec.
1.7]. First, we need the 2-category ICat of split indexed categories, where an object is a
functor F : Cop → Cat for an arbitrary small category C, a morphism is a pseudonatural
transformation, and a 2-morphism is a modification. Second, we need the 2-category
Fibsplit where an object is a split fibration, a morphism is a morphism of fibrations that
preserves the splitting, and a 2-morphism is a fibered natural transformation. The map
sending any functor F : C → Cat to the split fibration p :

∫
F → C then extends to an

equivalence of 2-categories
G : ICat

∼−→ Fibsplit.

There is also a 2-functor
dom: Fibsplit −→ Cat

that sends a split fibration F : D→ C to its domain category D, and the composite∫
= dom ◦G : ICat −→ Cat

is none other than the Grothendieck construction, now regarded as a 2-functor rather
than a mere functor. For details see Jacobs [12, Thm. 1.10.7].

A ‘pseudomonoid’ is a generalization of a monoidal category which makes sense in any
2-category with finite products (or even more generally). We can also define braided and
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symmetric pseudomonoids, which generalize braided and symmetric monoidal categories
[7]. For any 2-category C with finite products, let:

� mC be the 2-category of pseudomonoids in C, monoidal morphisms, and monoidal
transformations,

� bmC be the 2-category of braided pseudomonoids in C, braided monoidal morphisms,
and braided monoidal transformations,

� smC be the 2-category of symmetric pseudomonoids in C, symmetric monoidal mor-
phisms, and symmetric monoidal transformations.

All these concepts are defined by McCrudden [18]. The notation here is compatible with
that introduced earlier in this section, except that now we are working 2-categorically.
That is, mCat, bmCat and smCat are 2-categories whose underlying categories were already
defined in Defs. 6.5, 6.12 and 6.17. More interesting is that the 2-category Fibsplit has
finite products, so the equivalent 2-category ICat does as well, and one can prove that
the 2-categories mICat, bmICat and smICat are 2-categories whose underlying categories
match those defined in Defs. 6.6, 6.13 and 5.8, at least after replacing C with Cop. We
leave the verification of this as an exercise for the reader.

The equivalence G : ICat → Fibsplit preserves products, and so does the 2-functor
dom: Fibsplit → Cat. Thus, so does the composite 2-functor

∫
= dom◦G. It thus induces

2-functors ∫
: mICat → mCat∫
: bmICat → bmCat∫
: smICat → smCat.

These 2-functors match those given in Thms. 6.8, 6.15, and 6.18, at least after replacing
C with Cop.

The reader conversant with fibrations may wonder why we are restricting attention to
split indexed categories and split fibrations. Only the split case seems relevant to network
models. However, everything we have just done also works for general indexed categories
and fibrations. This is shown by Vasilakopolou and the second author in a paper that
develops the 2-categorical approach sketched here [20].

7. Operads from network models

Next we describe the operad associated to a network model. There is a standard method of
constructing an untyped operad from an object x in a strict symmetric monoidal category
C. Namely, we define the set of n-ary operations to be homC(x⊗n, x), and compose these
operations using composition in C. This gives the so-called endomorphism operad of
x. Here we use the generalization of this idea to the typed case, using all the objects of
C as the types of the operad.
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We assume familiarity with typed operads: these are often called ‘colored’ operads,
with the types called ‘colors’ [23]. In what follows we let Ob(C) be the set of objects of a
small category C.

7.1. Proposition. If C is a small strict symmetric monoidal category then there is an
Ob(C)-typed operad op(C) for which:

� the set of operations op(C)(c1, . . . , ck; c) is defined to be homC(c1 ⊗ · · · ⊗ ck, c),

� given operations
f ∈ homC(c1 ⊗ · · · ⊗ ck; c)

and
gi ∈ homC(cij1 ⊗ · · · ⊗ ciji , ci)

for 1 ≤ i ≤ k, their composite is defined by

f ◦ (g1, . . . , gk) = f ◦ (g1 ⊗ · · · ⊗ gk). (9)

� identity operations are identity morphisms in C, and

� the action of Sk on k-ary operations is defined using the braiding in C.

Proof. The various axioms of a colored operad can be checked for op(C) using the corre-
sponding laws in the definition of a strict symmetric monoidal category. The associativity
axiom for op(C) follows from associativity of composition and the functoriality of the
tensor product in C. The left and right unit axioms for op(C) follow from the unit laws
for composition and the functoriality of the tensor product in C. The two equivariance
axioms for op(C) follow from the laws governing the braiding in C.

Given a network model F : S(C)→ Cat, we can use the strict symmetric Grothendieck
construction of Thm. 6.21 to define a strict symmetric monoidal category

∫
F . We can

then use Prop. 7.1 to build an operad op(
∫
F ).

7.2. Definition. Given a network model F : S(C) → Cat, define the network operad
OF to be op(

∫
F ).

If F : S(C)→ Mon, the objects of
∫
F correspond to objects of S(C), which are formal

expressions of the form
c1 ⊗ · · · ⊗ ck

with k ∈ N and ci ∈ C. Thus, the network operad OF is a typed operad where the types
are expressions of this form: that is, ordered k-tuples of elements of C.

Now suppose that F is a one-colored network model, so that F : S→ Mon. Then the
objects of S are simply natural numbers, so OF is an N-typed operad. Given n1, . . . , nk, n ∈
N, we have

OF (n1, . . . , nk;n) = hom∫F (n1 + · · ·+ nk, n).
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By the definition of the Grothendieck construction, a morphism in this homset is a pair
consisting of a bijection σ : n1 + · · ·+nk → n and an element of the monoid F (n). So, we
have

OF (n1, . . . , nk;n) =

{
Sn × F (n) if n1 + · · ·nk = n
∅ otherwise.

(10)

Here is the basic example:

7.3. Example. [Simple network operad] If SG: S → Mon is the network model of
simple graphs in Ex. 2.4, we call OSG the simple network operad. By Eq. 10, an
operation in OSG(n1, . . . , nk; k) is an element of Sn together with a simple graph having
n = {1, . . . , n} as its set of vertices.

The operads coming from other one-colored network models work similarly. For ex-
ample, if DG: S → Mon is the network model of directed graphs from Ex. 2.5, then an
operation in OSG(n1, . . . , nk;n) is an element of Sn together with a directed graph having
n as its set of vertices.

In Thm. 2.3 we gave a pedestrian description of one-colored network models. We can
describe the corresponding network operads in the same style:

7.4. Theorem. Suppose F is a one-colored network model. Then the network operad OF

is the N-typed operad for which the following hold:

1. The sets of operations are given by

OF (n1, . . . , nk;n) =

{
Sn × F (n) if n1 + · · ·nk = n
∅ otherwise.

2. Composition of operations is given as follows. Suppose that

(σ, g) ∈ Sn × F (n) = OF (n1, . . . , nk;n)

and for 1 ≤ i ≤ k we have

(τi, hi) ∈ Sni
× F (ni) = OF (ni1, . . . , niji ;ni).

Then

(σ, g) ◦ ((τ1, h1), . . . , (τk, hk)) = (σ(τ1 + · · ·+ τk), g ∪ σ(h1 t · · · t hk))

where + is defined in Eq. 1, while ∪ and t are defined in Thm. 2.3.

3. The identity operation in OF (n;n) is (1, en), where 1 is the identity in Sn and en is
the identity in the monoid F (n).

4. The right action of the symmetric group Sk on OF (n1, . . . , nk;n) is given as follows.
Given (σ, g) ∈ OF (n1, . . . , nk;n) and τ ∈ Sk, we have

(σ, g)τ = (στ, g).
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Proof. To prove these we apply Prop. 7.1, which describes the operad op(C) coming
from a strict symmetric monoidal category C, to the case C =

∫
F . Item 1 is simply Eq.

10. To prove item 2 we first use Eq. 9, which defines composition of operations in op(C)
in terms of composition and tensoring of morphisms in C. Then we use Eq. 2, which says
how to compose morphisms in

∫
F , and Eq. 3, which says how to tensor them. Item 3

comes from how identity operations in op(C) and identity morphisms in
∫
F are defined.

Similarly, item 4 comes from how the symmetric group actions in op(C) and the braiding
in
∫
F are defined.

The construction of operads from symmetric monoidal categories described in Prop.
7.1 is functorial, so the construction of operads from network models is as well. To discuss
this functoriality we need a couple of categories. The first is ssmCat, defined in Def. 6.19.
Second:

7.5. Definition. Let Op be the category with typed operads as objects and with a mor-
phism from the T -typed operad O to the T ′-typed operad O′ being a function F : T → T ′

together with maps

F : O(t1, . . . , tn; t)→ O′(F (t1), . . . , F (tn);F (t))

preserving the composition of operations, identity operations and the symmetric group
actions.

7.6. Proposition. There exists a unique functor op: ssmCat → Op defined on objects
as in Prop. 7.1 and sending any strict symmetric monoidal functor F : C → C′ to the
operad morphism op(F ) : op(C)→ op(C′) that acts by F on types and also on operations:

op(F ) = F : homC(c1 ⊗ · · · ⊗ cn, c)→ homC′(F (c1)⊗ · · · ⊗ F (cn), F (c)).

Proof. This is a straightforward verification.

7.7. Theorem. There exists a unique functor

O: NetMod→ Op

sending any network model F : S(C)→ Cat to the operad OF = op(
∫
G) and any morphism

of network models (G, g) : (C,F )→ (C ′, F ′G′) to the morphism of operads OG = op(Ĝ).

Proof. There is a functor ∫
: NetMod→ ssmCat

given by restricting the strict symmetric monoidal Grothendieck construction of Thm.
6.21 to NetMod. Composing this with the functor

op: ssmCat→ Op

constructed in Prop. 7.6 we obtain a functor O: NetMod→ Op with the properties stated
in the theorem. Since these properties specify how O acts on objects and morphisms, it
is unique.
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8. Algebras of network operads

Our interest in network operads comes from their use in designing and tasking networks of
mobile agents. The operations in a network operad are ways of assembling larger networks
of a given kind from smaller ones. To describe how these operations act in a concrete
situation we need to specify an algebra of the operad. The flexibility of this approach to
system design takes advantage of the fact that a single operad can have many different
algebras, related by homomorphisms. We have already discussed these ideas elsewhere
[2, 3], and plan to write a more detailed treatment, so here we simply describe a few
interesting algebras of network operads.

Recall from the introduction that an algebra A of a typed operad O specifies a set
A(t) for each type t ∈ T such that the operations of O can be applied to act on these
sets. That is, each algebra A specifies:

� for each type t ∈ T , a set A(t), and

� for any types t1, . . . , tn, t ∈ T , a function

α : O(t1, . . . , tn; t)→ hom(A(t1)× · · · × A(tn), A(t))

obeying some rules that generalize those for the action of a monoid on a set [23]. All the
examples in this section are algebras of network operads constructed from one-colored
network models F : S → Mon. This allows us to use Thm. 7.4, which describes OF

explicitly.
The most basic algebra of such a network operad OF is its ‘canonical algebra’, where

it acts on the kind of network described by the network model F :

8.1. Example. [The canonical algebra] Let F : S → Mon be a one-colored network
model. Then the operad OF has a canonical algebra AF with

AF (n) = F (n)

for each n ∈ N , the type set of OF . In this algebra any operation

(σ, g) ∈ OF (n1, . . . , nk;n) = Sn × F (n)

acts on a k-tuple of elements

hi ∈ AF (ni) = F (ni) (1 ≤ i ≤ k)

to give
α(σ, g)(h1, . . . , hk) = g ∪ σ(h1 t · · · t hk) ∈ A(n).

Here we use Thm. 2.3, which gives us the ability to overlay networks using the monoid
structure ∪ : F (n) × F (n) → F (n), take their ‘disjoint union’ using maps t : F (m) ×
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F (m′) → F (m + m′), and act on F (n) by elements of Sn. Using the equations listed in
this theorem one can check that α obeys the axioms of an operad algebra.

When we want to work with networks that have more properties than those captured
by a given network model, we can equip elements of the canonical algebra with extra
attributes. Three typical kinds of network attributes are vertex attributes, edge attributes,
and ‘global network’ attributes. For our present purposes, we focus on vertex attributes.
Vertex attributes can capture internal properties (or states) of agents in a network such
as their locations, capabilities, performance characteristics, etc.

8.2. Example. [Independent vertex attributes] For any one-colored network model
F : S→ Mon and any set X, we can form an algebra AX of the operad OF that consists
of networks whose vertices have attributes taking values in X. To do this, we define

AX(n) = F (n)×Xn.

In this algebra, any operation

(σ, g) ∈ OF (n1, . . . , nk;n) = Sn × F (n)

acts on a k-tuple of elements

(hi, xi) ∈ F (ni)×Xni (1 ≤ i ≤ k)

to give
αX(σ, g) = (g ∪ σ(h1 t · · · t hk), σ(x1, . . . , xk)).

Here (x1, . . . , xk) ∈ Xn is defined using the canonical bijection

Xn ∼=
k∏
i=1

Xni

when n1 + · · ·+ nk = n, and σ ∈ Sn acts on Xn by permutation of coordinates. In other
words, αX acts via α on the F (ni) factors while permuting the vertex attributes Xn in
the same way that the vertices of the network h1 t · · · t hk are permuted.

One can easily check that the projections F (n)×Xn → F (n) define a homomorphism
of OF -algebras, which we call

πX : AX → A.

This homomorphism ‘forgets the vertex attributes’ taking values in the set X.

8.3. Example. [Simple networks with a rule obeyed by edges] Let OSG be the
simple network operad as explained in Ex. 7.3. We can form an algebra of the operad
OSG that consists of simple graphs whose vertices have attributes taking values in some
set X, but where an edge is permitted between two vertices only if their attributes obey
some condition. We specify this condition using a symmetric function

p : X ×X → B
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where B = {F, T}. An edge is not permitted between vertices with attributes (x1, x2) ∈
X ×X if this function evaluates to F .

To define this algebra, which we call Ap, we let Ap(n) ⊆ SG(n) × Xn be the set of
pairs (g, x) such that for all edges {i, j} ∈ g the attributes of the vertices i and j make p
true:

p(x(i), x(j)) = T.

There is a function
τp : AX(n)→ Ap(n)

that discards edges {i, j} for which p(x(i), x(j)) = F . Recall that AX(n) = SG(n)×Xn,
and recall from Ex. 3.2 that we can regard SG(n) as the set of functions g : E(n) → B.
Then we define τp by

τp(g, x) = (g, x)

where

g{i, j} =


g{i, j} if p(x(i), x(j)) = T

F if p(x(i), x(j)) = F.

We can define an action αp of OSG on the sets Ap(n) with the help of this function.
Namely, we take αp to be the composite

OSG(n1, . . . , nk;n)× Ap(n1)× · · · × Ap(nk)

OSG(n1, . . . , nk;n)× AX(n1)× · · · × AX(nk)

AX(n)

Ap(n)

αX

τp

where the action αX was defined in Ex. 8.2. One can check that αp makes the sets Ap(n)
into an algebra of OSG, which we call Ap. One can further check that the maps τ define
a homomorphism of OSG-algebras, which we call

τp : AX → Ap.

8.4. Example. [Range-limited networks] We can use the previous examples to model
range-limited communications between entities in a plane. First, let X = R2 and form
the algebra AX of the simple network operad OSG. Elements of AX(n) are simple graphs
with vertices in the plane.

Then, choose a real number L ≥ 0 and let d be the usual Euclidean distance function
on the plane. Define p : X ×X → B by setting p(x, y) = T if d(x, y) ≤ L and p(x, y) = F
otherwise. Elements of Ap(n) are simple graphs with vertices in the plane such that no
edge has length greater than L.
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8.5. Example. [Networks with edge count limits] Recall the network model for
multigraphs MG+, defined in Ex. 2.6 and clarified in Ex. 3.3. An element of MG+(n)
is a multigraph on the set n, namely a function g : E(n) → N where E(n) is the set of
2-element subsets of n. If we fix a set X we obtain an algebra AX of OMG+ as in Ex.
8.2. The set AX(n) consists of multigraphs on n where the vertices have attributes taking
values in X.

Starting from AX we can form another algebra where there is an upper bound on how
many edges are allowed between two vertices, depending on their attributes. We specify
this upper bound using a symmetric function

b : X ×X → N.

To define this algebra, which we call Ab, let Ab(n) ⊆ MG+(n)×Xn be the set of pairs
(g, x) such that for all {i, j} ∈ E(n) we have

g(i, j) ≤ b(x(i), x(j)).

Much as in Ex. 8.3 there is function

π : AX(n)→ Ab(n)

that enforces this upper bound: for each g ∈ AX(n) its image π(g) is obtained by reducing
the number of edges between vertices i and j to the minimum of g(i, j) and β(i, j):

π(g)(i, j) = g(i, j) min β(i, j).

We can define an action αb of OMG on the sets Ab(n) as follows:

OMG(n1, . . . , nk;n)× Ap(n1)× · · · × Ap(nk)

OMG(n1, . . . , nk;n)× AX(n1)× · · · × AX(nk)

AX(n)

Ap(n)

αX

π

One can check that αb indeed makes the sets Ab(n) into an algebra of OMG+ , which we
call Ab, and that the maps πp define a homomorphism of OMG+-algebras, which we call

πp : AX → Ab.
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8.6. Example. [Range-limited networks, revisited] We can use Ex. 8.5 to model
entities in the plane that have two types of communication channel, one of which has
range L1 and another of which has a lesser range L2 < L1. To do this, take X = R2 and
define b : X ×X → N by

b(x, y) =


0 if d(x, y) > L1

1 if L2 < d(x, y) ≤ L1

2 if d(x, y) ≤ L2

Elements of Ab(n) are multigraphs with vertices in the plane having no edges between
vertices whose distance is > L1, at most one edge between vertices whose distance is ≤ L1

but > L2, and at most two edges between vertices whose distance is ≤ L2.
Moreover, the attentive reader may notice that the action αb of OMG+ for this specific

choice of b factors through an action of OΓB2
, where ΓB2 is the network model defined in

Ex. 3.5. That is, operations OΓB2
(n1, . . . , nk;n) = Sn × ΓB2(n) where ΓB2(n) is the set of

multigraphs on n with at most 2 edges between vertices are sufficient to compose these
range-limited networks. This is due to the fact that the values of this b : X ×X → N are
at most 2.

These examples indicate that vertex attributes and constraints can be systematically
added to the canonical algebra to build more interesting algebras, which are related by
homomorphisms. Ex. 8.2 illustrates how adding extra attributes to the networks in some
algebra A can give networks that are elements of an algebra A′ equipped with a homo-
morphism π : A′ → A that forgets these extra attributes. Ex. 8.5 illustrates how imposing
extra constraints on the networks in some algebra A can give an algebra A′ equipped with
a homomorphism τ : A → A′ that imposes these constraints: this works only if there is
a well-behaved systematic procedure, defined by τ , for imposing the constraints on any
element of A to get an element of A′.

The examples given so far scarcely begin to illustrate the rich possibilities of network
operads and their algebras. Their connection to Petri nets is explored in [4], but there is
much more to do.

In particular, it is worth noting that all the specific examples of network models
described here involve commutative monoids. However, noncommutative monoids are
also important. Suppose, for example, that we wish to model entities with a limited
number of point-to-point communication interfaces—e.g., devices with a finite number p
of USB ports. More formally, we wish to act on sets of degree-limited networks Adeg(n) ⊂
SG(n) × Nn made up of pairs (g, p) such that the degree of each vertex i, deg(i), is at
most the degree-limiting attribute of i: deg(i) ≤ p(i). Näıvely, we might attempt to
construct a map τdeg : AN → Adeg as in Ex. 8.5 to obtain an action of the simple network
operad OSG. However, this is turns out to be impossible. For example, if attempt to
build a network from devices with a single USB port, and we attempt to connect multiple
USB cables to one of these devices, the relevant network operad must include a rule
saying which attempts, if any, are successful. Since we cannot prioritize links from some
vertices over others—which would break the symmetry built into any network model—the
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order in which these attempts are made must be relevant. Since the monoids SG(n) are
commutative, they cannot capture this feature of the situation.

The solution is to use a class of noncommutative monoids dubbed ‘graphic monoids’ by
Lawvere [16]: namely, those that obey the identity aba = ab. These allow us to construct
a one-colored network model Γ: S → Mon whose network operad OΓ acts on Adeg. For
our USB device example, the relation aba = ab means that first attempting to connect
some USB cables between some devices (a), second attempting to connect some further
USB cables (b), and third attempting to connect some USB cables precisely as attempted
in the first step (a, again) has the same result as only performing the first two steps (ab).

In fact, one-colored network models constructed from graphic monoids appear to be
sufficient to model a wide array of constraints on the structural design and behavioral
tasking of agents. For more on network models arising from noncommutative monoids,
see [19].
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
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