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CLASSIFICATION OF CONSTRUCTIBLE COSHEAVES

JUSTIN CURRY AND AMIT PATEL

Abstract. In this paper we prove an equivalence theorem originally observed by
Robert MacPherson. On one side of the equivalence is the category of cosheaves that
are constructible with respect to a locally cone-like stratification. Our constructibility
condition is new and only requires that certain inclusions of open sets are sent to iso-
morphisms. On the other side of the equivalence is the category of functors from the
entrance path category, which has points for objects and certain homotopy classes of
paths for morphisms. When our constructible cosheaves are valued in Set we prove an
additional equivalence with the category of stratified coverings.

1. Introduction

To begin, we consider a motivating question.

“Given a stratified map f : Y //X, how are the path components of f−1(x)
organized, over all x ∈ X?”

Informally speaking, a map is stratified if it is proper and there is a partition S of X into
manifolds so that over each manifold S ∈ S the map f−1(S) // S is a fiber bundle.

One perspective on this question uses the open sets of X to define a functor F :
Open(X) // Set that assigns to each open U the set π0(f−1(U)) of path components.
This functor satisfies a gluing axiom reminiscent of the usual van Kampen theorem, which
makes it the prototypical example of a cosheaf of sets. The assumption that f is stratified
endows F with a strong property called constructibility.

Robert MacPherson observed that paths in X can be used to organize π0(f−1(x)).
A path from x to x′ lying entirely in a single stratum S ∈ S induces an isomorphism
π0(f−1(x)) //π0(f−1(x′)). Suppose x′ lies in a stratum on the frontier of S. MacPherson
noticed that a path from x to x′ that leaves one stratum only by entering into a lower-
dimensional stratum defines a map π0(f−1(x)) // π0(f−1(x′)). Such paths are called
entrance paths and this map between components is invariant under certain homotopic
perturbations. One then thinks of this data as a functor F : Ent(X, S) // Set from the
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entrance path category Ent(X, S) whose objects are points of X and whose morphisms
are certain homotopy classes of entrance paths.

One of the results of this paper is a proof that these two perspectives are equivalent.
This equivalence is a consequence of a more general result, which we call the Classifi-
cation Theorem for Constructible Cosheaves (Theorem 6.1). This theorem proves that
constructible cosheaves valued in a bi-complete category Ω are equivalent to representa-
tions of the entrance path category valued in Ω. The purpose of this paper is to provide
a concise and self-contained proof of this theorem. This requires two novel definitions:

� A constructible cosheaf over a stratified space (X, S) is usually defined as a functor
F : Open(X) //Ω that satisfies a gluing axiom and that restricts to a locally constant
cosheaf over each stratum. Our version of the constructibility condition (Definition
3.8) simply asks that for certain pairs of open sets U ⊆ V , the associated map
F(U) // F(V ) is an isomorphism. Our definition of a constructible cosheaf implies
the usual definition.

� As originally described by MacPherson, two entrance paths should be regarded as
equivalent if they are related by a homotopy through entrance paths. Following an
idea of Treumann [27], we declare two entrance paths to be equivalent if they are
related by a finite number of elementary operations (Definition 4.5), which shortcuts
an entrance path by skipping past at most one stratum. This definition is necessary
for proving our van Kampen theorem (Theorem 5.2) for the entrance path category.
This is in turn necessary for proving the cosheaf axiom in Theorem 6.1.

In addition to our main theorem (Theorem 6.1), we also define (Definition 7.1) and classify
stratified coverings (Theorem 7.6).

We now review prior related work. Kashiwara classified sheaves that are constructible
with respect to a triangulation in his work on the Riemann-Hilbert Correspondence [11].
Shepard’s thesis [24] has a similar result to Kashiwara’s, but in the setting of cell com-
plexes. Treumann explored a 2-categorical analog of our theorem in his thesis [27].
Woolf [29] classified constructible sheaves and cosheaves valued in Set in terms of func-
tors from the fundamental category of a homotopically stratified space with locally 0
and 1-connected strata. His equivalence uses an intermediary equivalence with branched
covers, which prevents that proof technique from generalizing to cosheaves valued in cat-
egories other than Set. Curry’s thesis [4] provides a classification result for constructible
(co)sheaves of finite-dimensional vector spaces over spaces belonging to a geometric-
analytic category. Curry and Lipsky developed an algorithmic proof of the Van Kam-
pen theorem in the setting of homotopies with compatible smooth triangulations, but
this proof spans over five pages [4, §11.2.2]. Finally, we note that Lurie [16] and Ay-
ala/Francis/Tanaka [1] provide similar equivalences in the ∞-category setting, but it is
unclear if their results can be used to deduce our own. Regardless, our definitions of the
involved structures are unique and our treatment should be understandable by anyone
with a basic knowledge of point-set topology and category theory.
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2. Stratified Spaces

The core philosophy of stratification theory is to develop a good theory of spaces that
are built using manifold pieces. However, making precise how a space is “built out of
manifolds” requires considerable work and there is no unique way of doing so. For example,
we note that in [22, Rmk. 4.1.9] Schürmann reviews 14 different notions of a stratified
space, many of which overlap or imply the other. Generally speaking, spaces defined using
polynomial inequalities are considered to be stratified spaces, whereas the Cantor set is
not.

We have chosen to work with the class of conically stratified spaces. The definition
we use is similar to the definition of CS sets used by Siebenmann [25], but we drop the
assumption that the link is compact. Our definition then agrees with Lurie’s definition
of a conically stratified space [16, Def. A.5.5] when the totally ordered set {0, 1, . . . , n} is
used to encode the stratification, so our definition is a special case of his. The starting
point for this definition, like so many other definitions of a stratified space, is the notion
of a filtration.

2.1. Definition. [Filtered Spaces and Homeomorphisms] An n-step filtration of a
topological space X is a nested sequence of closed subspaces of the form

∅ = X−1 ⊆ · · · ⊆ Xn = X.

A filtered space is a space equipped with an n-step filtration for some value of n. We
will often refer to X i is the ith degree or step in a filtration of X. Additionally, we say
the formal dimension of a filtered space is sup {n | Xn \Xn−1 6= ∅}.

If X and Y are two filtered spaces, then we say that a map f : X // Y is filtration-
preserving if f(X i) ⊆ Y i for every i. Such a map is a filtration-preserving homeo-
morphism if it restricts to a homeomorphism in each degree.

2.2. Example.X = Rn has an n-step filtration where X i = ∅ for all i < n and Xn = Rn.
For this filtration the formal dimension and the Hausdorff dimension of Rn agree. Unless
otherwise stated, this is the assumed filtration of Rn.

2.3. Definition. [Product of Filtered Spaces] If X has an n-step filtration and Y has
an m-step filtration, then the product filtration of X × Y is an (n+m)-step filtration
where (X × Y )k =

⋃
i+j=kX

i × Y j.

The next ingredient in the definition of a conically stratified space is, unsurprisingly,
the notion of a cone. The following definition of the cone is non-standard, but we find
that it offers certain advantages over the usual definition. The authors learned of this
definition from Lurie [16, Def. A.5.3].

2.4. Definition. [Cone] Given a topological space L, the cone on L is the topological
space

C(L) =
(
L× R>0

)
∪ {?},
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where U ⊆ C(L) is open if and only if U ∩
(
L×R>0

)
is open. We further require that if

? ∈ U , then there is an ε > 0 such that L× (0, ε) ⊆ U .

As the reader is probably aware, the usual definition of the cone starts with L× R≥0

and then collapses the subspace L× {0} to a point. We compare and contrast these two
definitions in the following remarks.

2.5. Remark. [Agreement when L is compact] Let ∼ be the equivalence relation on
L × R≥0 that identifies two distinct points x ∼ x′ if x, x′ ∈ L × {0}, otherwise no two
distinct points are identified. Let C1(L) be the quotient space defined by this equivalence
relation. Let C2(L) be the cone on L given by Definition 2.4. If we identify the equivalence
class containing L × {0} with {?}, then C1(L) and C2(L) are identical set-theoretically,
but they have slightly different topologies as we will now see.

Notice there is a map q : L × R≥0
// C1(L) that sends L × {0} to the distinguished

cone point ?. Let V ⊆ C1(L) be an open set in the traditional cone that contains the
cone point. This is open if and only if q−1(V ) is open in L× R≥0. We know that q−1(V )
contains a union of open sets of the form Wi × [0, εi) for {Wi} forming a cover of L. If L
is compact then we can select a finite subcover of the {Wi} and set ε to be the minimum
of the εi used in the finite subcover. This shows that when L is compact the two notions
of a cone agree. However, if L = R, for example, it is possible to have an open set in
C1(L) that is not open in C2(L). This implies that the identity map C1(L) // C2(L) is
continuous, but not always a homeomorphism.

2.6. Remark. [Cone of the Empty Set] Recall that the product of any space with the
empty space is empty. One of the advantages that Definition 2.4 offers is that the cone
is defined via a union with the one-point space {?}, so even when L = ∅, we have that
C(L) = {?}. In the usual definition described above, one has to introduce a special case
that specifies that the cone of the empty set is the one-point set.

2.7. Remark. [Filtration of the Cone] Let L be a space with an n-step filtration. Now
consider R>0 with the 1-step filtration, which is empty in degrees −1 and 0, but R>0 in
degree 1. The product filtration of L×R>0 is then simply (L×R>0)i+1 = Li×R>0. Since
L0 is promoted to degree one in L × R>0, we simply place the cone point {?} in degree
zero, which yields the (n+ 1)-step filtration of C(L) where

C(L)0 = {?} and C(L)i+1 =
(
Li × R>0

)
∪ {?}.

We now have all the ingredients necessary for defining a conically stratified space.

2.8. Definition. [Conically Stratified Spaces] An n-dimensional conically stratified
space is a Hausdorff space X equipped with an n-step filtration

∅ = X−1 ⊆ · · · ⊆ Xn = X

where for each integer d ≥ 0 and each point x ∈ Xd −Xd−1 there exists a distinguished
open set Ux ⊆ X containing x, a filtered space Lx of formal dimension (n− d− 1), and a
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filtration-preserving homeomorphism

hx : Rd × C(Lx) // Ux

taking (0, ?) to x. We call the space Lx the link about x and the open set Ux a basic
open. A connected component of Xd − Xd−1 for any d ≥ 0 is called a d-dimensional
stratum. We will denote the set of all strata by S and will refer to X along with its
stratification using the pair (X, S). When there is no risk of confusion, we will call a
conically stratified space simply a stratified space.

2.9. Remark. The class of conically stratified spaces includes the class of CS sets in
the sense of Siebenmann [25], but it includes more spaces since we no longer assume the
link is compact. CS sets in turn include topological stratified spaces, as introduced
by Goresky and MacPherson [9]. Indeed, following the presentation of Friedman [7, Def.
2.3.10], topological stratified spaces can be viewed as recursive CS sets, because the link
Lx is assumed to be a CS set as well.

2.10. Example. [A Non-Example] Since the link of a point in a conically stratified space
is only assumed to be filtered, one may wonder what happens when we let the link of a
point be something pathological, like the Cantor set. Let L be the Cantor set, filtered
as L−1 = ∅ and L0 = L. Let X = C(L) be the cone on the Cantor set. At the cone
point ?, X has a conical neighborhood required by Definition 2.8. However, for any point
x 6= ?, there does not exist a neighborhood Ux homeomorphic to R. To see why, consider
the projection π(x) of x to the link. Since every point of the Cantor set is a limit point
any open set containing π(x) will contain infinitely many other points in the Cantor set.
This proves the point x in the product topology L × R>0 will not have a neighborhood
homeomorphic to R.

2.11. Remark. [Basic Opens] We call the distinguished open sets Ux described in Defini-
tion 2.8 basic opens because they form a basis for the topology on X. To verify this, note
that for every r > 0 and s > 0, we can restrict the homeomorphism hx : Rd×C(Lx) //Ux
to those points (v, `, t) ∈ Rd × C(Lx) with ||v|| < r and t < s to obtain another distin-
guished open Ux(r, s) ⊂ X. This implies that the collection of distinguished opens, written
Basic(X, S), forms a basis for the topology on X. Note that we are using the fact that
points in the cone on the link C(Lx) are equivalently indexed by points (`, t) ∈ Lx×R≥0.

2.12. Definition. Given a basic open Ux ∈ Basic(X, S), its associated stratum is the
stratum S containing x. We note that S ∈ S is the unique lowest dimensional stratum
intersecting Ux. We also call Ux an S-basic open when it is convenient to do so. We
denote the collection of S-basic opens by Basic(X,S). Clearly

Basic(X, S) =
⋃
S∈S

Basic(X,S).

In the following remark, we note how a basic open Ux can also be regarded as a basic
open for all nearby points x′ in the same associated stratum as x. This is sometimes
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referred to as local triviality of a stratification. It further implies that the associated
stratum to a basic open is the lowest dimensional stratum it intersects.

2.13. Remark. Given a statum S ⊆ Xd−Xd−1, a point x ∈ S and a basic open Ux about
x, we can regard Ux as a basic open neighborhood of every point x′ ∈ S∩Ux ∼= Rd. Indeed,
for each such x′ the filtration-preserving homeomorphism hx : Rd × C(Lx) // Ux carries
some point (v′, ?) ∈ Rd×C(Lx) to x′. By pre-composing hx with the map Av′ × id where
Av′(v) = v + v′, one obtains a filtration-preserving homeomorphism hx′ sending (0, ?) to
x′, thereby making Ux a basic open for x′. Consequently, we can drop the subscript and
write U ∈ Basic(X, S) when it is convenient.

One of the implications of Definition 2.8 is that a basic open restricts to a coordinate
chart for its associated stratum.

2.14. Remark. [Manifold Strata] We say that a component ofXd−Xd−1 is a d-dimensional
stratum because it is, in fact, a d-dimensional manifold. To see this, consider a point
x ∈ Xd −Xd−1 and a basic open Ux containing x. The filtration of

Rd × C(Lx) =
(
Rd × Lx × R>0

)
∪
(
Rd × {?}

)
,

combined with the assumption that hx is a filtered homeomorphism implies that that we
have a homeomorphism

Rd × {?} // Ux ∩Xd.

2.15. Remark. [Poset of Strata] One of the consequences of the definition of a conically
stratified space (X, S) is that the set of strata S satisfies the axiom of the frontier. The
axiom of the frontier says that if S and S ′ are two strata and if S ∩ S ′ 6= ∅, then S ⊆ S ′.
Lemma 2.3.7 of [7] proves that CS sets satsify the axiom of the frontier, but that proof
goes through without the assumption that the link is compact. Following Proposition
2.2.20 of [7], we can define a partial order on S where S ≤ S ′ if and only if S is contained
in the closure of S ′.

We conclude this section by noting how the collection of stratified spaces form a
category.

2.16. Definition. A stratum-preserving map f : (Y,T ) // (X, S) is a continuous
map f : Y //X such that for every T ∈ T , there exists an S ∈ S where f(T ) ⊆ S.

2.17. Example. Note that any open subset U ⊆ X of a conically stratified space is also
a conically stratified space. If we write (U, SU) for the the restriction of (X, S) to U , then
we have that the inclusion ι : (U, SU) // (X, S) is a stratum preserving map.

2.18. Definition. Let Strat be the category of conically stratified spaces and stratum-
preserving maps.
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3. Constructible Cosheaves

In this section, we introduce the notion of a cosheaf and a constructible cosheaf. The
definition of a cosheaf by open sets only requires the structure of a topological space,
whereas a constructible cosheaf requires the additional structure of a stratification. Both
of these notions dualize to the setting of sheaves and constructible sheaves. It should
be noted that the definition of a constructible cosheaf is not a simple dualization of
the definition of a constructible sheaf that one might find in [12], for example. The key
difference is that we use the collection of basic cone-like open sets associated to a stratified
space in an essential way. This requires that we also consider a different notion of cover,
as we explain below.

3.1. Definition. A pre-cosheaf F assigns to each open set U of a topological space X
an object F(U) in some target category Ω. Moreover, whenever we have a pair of open
sets U ⊆ V a pre-cosheaf assigns a morphism F(U ⊆ V ) : F(U) // F(V ) between the
corresponding objects. Said succinctly, a pre-cosheaf is a functor F : Open(X) // Ω,
where Open(X) denotes the poset of all open sets, partially ordered by inclusion.

3.2. Definition. Let x be a point of a topological space X and let F be a pre-cosheaf.
The costalk at x of F, written F(x), is the (inverse) limit of F restricted to those open
sets U containing x. Note that F(x) is not F applied to an open set. However, for any
open set U containing x, we let F(x ∈ U) : F(x) // F(U) denote the canonical morphism
given by the definition of a limit.

In order to make sure that costalks are well defined, we assume that Ω is a complete
category. Since the cosheaf axiom, described below, uses colimits indexed by a cover, we
henceforth assume that Ω has all small limits and colimits, i.e. we assume that Ω is a
bi-complete category.

3.3. Definition. A cover of an open set U ⊆ X is a collection of open sets U ⊆ Open(X)
so that the union ∪Ui∈UUi = U . A complete cover of an open set U is a cover U of
U with the property that whenever Ui, Uj ∈ U , there exists a subcollection Uij ⊆ U that
covers Ui ∩ Uj.

3.4. Example. [Complete Covers and Bases] Complete covers provide a good notion of
a cover when using a basis B of a topological space X. If U ∈ Open(X) is an open set
and BU is the collection of basic opens inside of U , then BU defines a complete cover of U .
In particular, for a conically stratified space X the collection of all cone-like basic opens
Basic(X, S) is a complete cover of X.

3.5. Remark. [Categorical Remark] Any cover U = {Ui} can be viewed as a poset where
U ≤ U ′ whenever U ⊆ U ′. The inclusion of U ⊆ Open(X) then defines a map of posets,
which is equivalent to saying that the map defines a functor between these two categories.
To say that U covers U is to say that the colimit of U , viewed as a diagram in Open(X),
is U .

We now introduce our definition of a cosheaf.



CLASSIFICATION OF CONSTRUCTIBLE COSHEAVES 1019

3.6. Definition. Let X be a topological space and let F : Open(X) // Ω be a pre-
cosheaf. Given a cover U we use the notation F|U to refer to the pre-composition of F
with the inclusion functor U ⊆ Open(X). Note that F|U is a functor from U //Ω, i.e. F|U
is a diagram in Ω indexed by cover elements and inclusion of cover elements. Let colim F|U
denote the colimit of this diagram, which is an object in Ω. In other words

colim F|U := lim−→
Ui∈U

F(Ui).

We say that F is a cosheaf if for every open set U and every complete cover U of U , the
universal morphism from the colimit colim F|U // F(U) is an isomorphism.

3.7. Remark. [Different Cosheaf Axioms] Traditionally, the sheaf or cosheaf axiom is
phrased using Čech covers instead of complete covers. A Čech cover of an open set U is
a cover U of U with the property that whenever two cover elements U1, U2 ∈ U have a non-
empty intersection, then U1∩U2 is also in U . Note that every Čech cover is automatically
a complete cover so our notion of a cosheaf includes the traditional definition of a cosheaf.

We now introduce the fundamental definition of this section.

3.8. Definition. Let (X, S) be a conically stratified space. A cosheaf F : Open(X) //Ω
is S -constructible if

for each stratum S ∈ S and every pair of S-basic opens U ⊆ V the morphism
F(U) // F(V ) is an isomorphism.

A morphism φ : F // G between two S -constructible cosheaves is simply a natural
transformation of functors. Let CshΩ(X, S) denote the category whose objects are S -
constructible cosheaves valued in Ω and whose morphisms are natural transformations.

We now mention a particularly important special class of constructible cosheaves,
where the assigned objects do not vary among strata.

3.9. Definition. Let (X, S) be a conically stratified space and let F : Open(X) //Ω be
a cosheaf. We say that F is locally constant if

for every pair of basic opens U ⊆ V , regardless of their associated strata, the
morphism F(U) // F(V ) is an isomorphism.

The category of locally constant cosheaves LocΩ(X, S) is a full subcategory of CshΩ(X, S).

3.10. Remark. As observed in Remark 2.14, every basic open restricts to a basic open
on each stratum. Thus our definition implies that a constructible cosheaf restricts to
a locally constant cosheaf over each stratum because every basic open is automatically
associated to a single stratum.

We conclude this section with a remark.
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3.11. Remark. A morphism φ : F // G of S -constructible cosheaves is locally constant
over each stratum. This is because for every S ∈ S and any pair of S-basic opens U ⊆ V
the following diagram commutes:

F(U)
F(U⊆V )

∼=
//

φ(U)

��

F(V )

φ(V )

��
G(U)

G(U⊆V )

∼= // G(V ).

4. The Entrance Path Category

The fundamental groupoid of a space is a category whose objects are points of the space
and whose morphisms are homotopy classes of paths. In this section, we introduce the
entrance path category of a stratified space which is similar to the fundamental groupoid
with the exception that paths have to be directed in a precise sense: a path can leave one
stratum only by entering a lower-dimensional one. In the case that (X, S) has exactly one
stratum for each component of X, the entrance path category is the fundamental groupoid
of the space. We conclude this section by defining representations of the entrance path
category, which we ultimately prove are equivalent to constructible cosheaves.

4.1. Definition. Let I be the closed interval [0, 1]. An entrance path is a stratification
(I,T ) of the interval and a stratum preserving map α : (I,T ) // (X, S) such that the
dimension of the stratum containing α(t) is non-increasing with increasing t.

By compactness of I, any stratification (I,T ) has a finite number of 0-strata. It will
be convenient to write (I,T ) as

(
I, {0, . . . , 1}

)
where {0, . . . , 1} ⊂ T is the set of 0-strata.

The concatenation of α followed by β, where β(0) = α(1), is a new entrance path β ∗ α
defined as

β ∗ α(t) =

{
α(2t) for 0 ≤ t ≤ 1/2

β(2t− 1) for 1/2 ≤ t ≤ 1.

4.2. Definition. A reparametrization of an entrance path α : (I,T ) // (X, S) is an
entrance path α ◦ φ : (I,T ′) // (X, S) where φ : (I,T ′) // (I,T ) is an isomorphism in
Strat that fixes endpoints, i.e. φ(0) = 0, φ(1) = 1. Note that the number of strata in T
and T ′ is the same.

4.3. Definition. Let ∆ be the 2-simplex [v0v1v2] stratified by its vertices, edges, and
face. An elementary homotopy from an entrance path α :

(
I, {0, 1/2, 1}

)
// (X, S) to

an entrance path β :
(
I, {0, 1}

)
// (X, S), written α⇒ β, is a diagram in Strat
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I, {0, 1/2, 1}

)
α̃

!!
α

��

(
I, {0, 1}

)
β̃

��
β

��

∆

h

��
(X, S),

satisfying the following conditions:

� h|[v0,v1]∪[v1,v2] ◦ α̃ = α and h|[v0,v2] ◦ β̃ = β;

� h|[v0,v1,v2]\[v1,v2] is mapped to a single stratum; and

� there is a basic open neighborhood U ∈ Basic(X, S) of the point h(v2) = α(1) = β(1)
such that the image of h belongs to U .

If α⇒ β, then α(0) = β(0) and α(1) = β(1). The image of the elementary homotopy
h intersects at most three strata in S and so does the entrance path α. The entrance path
β intersects at most two strata in S . We think of an elementary homotopy α ⇒ β as a
shortcutting operation. That is, β may skip one of the strata α goes through.

4.4. Definition. We say two entrance paths α and β are elementarily related, written
α 
 β, if there are reparametrizations α ◦ φα and β ◦ φβ and compositions α ◦ φα =
α3 ∗α2 ∗α1 and β ◦φβ = β3 ∗β2 ∗β1 such that α1 = β1, α2 ⇒ β2 or β2 ⇒ α2, and α3 = β3.

Figure 1: An equivalence of entrance paths is a finite number of elementary relations.

4.5. Definition. We say two entrance paths α and β are equivalent, written α ≈ β, if
there a finite number of elementary relations

α 
 γ1 
 γ2 
 · · ·
 γn 
 β.

See Figure 1. Note ≈ is an equivalence relation on the set of all entrance paths.
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4.6. Example. [Changing the Stratification of the Interval] Note that the data of an
entrance path includes information about the stratification of the interval, but under
certain situations this can be ignored. For example, suppose (X, S) is a stratified space
with only one stratum S and γ : (I,T ) // (X, S) and γ′ : (I,T ′) // (X, S) are two
entrance paths mapping into S that are identical as paths, i.e. γ(t) = γ′(t) for all t ∈ I,
but T and T ′ have a different number of strata in I. We claim that γ and γ′ are equivalent
under our definition.

To see this, consider the simplest situation where we have identical paths γ and γ′

where γ has three zero-dimensional strata {0, t1, 1} in T and γ′ has only the two necessary
zero-dimensional strata {0, 1} in T ′. Again, we assume that γ(t) = γ′(t) for all t ∈ I.
Applying a reparameterization, we can replace γ with α : (I, {0, 1/2, 1}) // (X, S) and
γ′ with β : (I, {0, 1}) // (X, S) so that we still have that α(t) = β(t) for all t ∈ I. Using
barycentric coordinates we can give an explicit elementary homotopy h relating α and β
by using the formula h(t0, t1, t2) = α(1

2
t1 +t2) = β(1

2
t1 +t2). In this setting, an elementary

homotopy allows us to “delete” one stratum in the domain of α without consequence.
In the general setting, where γ : (I,T ) // (X, S) is an entrance path that is contained

in a single stratum S, we can delete zero-dimensional strata in T one-by-one to replace
γ with an equivalent entrance path γ′ : (I, {0, 1}) // (X, S).

4.7. Definition. The entrance path category Ent(X, S) has an object for each point
x ∈ X. A morphism from x ∈ X to y ∈ X is an equivalence class of entrance paths
starting at x and ending at y.

4.8. Example. Suppose the real line R is stratified into n vertices x1 < · · · < xn and n+1
open intervals with e0 = (−∞, x1), ei = (xi, xi+1) for i = 1, · · · , n− 1, and en = (xn,∞).
By picking a point yi ∈ ei for i = 0, · · · , n, we obtain a full subcategory Z of Ent(R, S)
which has 2n+1 objects and a single morphism from each yi to each adjacent xj. That is,
Ent(R, S) is equivalent to the category Z displayed below where each arrow corresponds
to the unique equivalence class of entrance paths starting at yi and ending at xi+1 or xi,
depending on which of the latter exist.

Z : y0 → x1 ← y1 → · · · ← yn−1 → xn ← yn

We refer to Z as the zigzag category associated to Ent(R, S). Since the inclusion functor
Z //Ent(R, S) is fully faithful and essentially surjective, we conclude that Z is equivalent
to Ent(R, S).

4.9. Example. Suppose the complex plane X = C is stratified into two strata S =
C−{0} and S ′ = {0}. Choose a point x ∈ S. Then the entrance path category Ent(X, S)
is equivalent to the finite subcategory C consisting of two objects x and 0, a morphism
σ : x //x that freely generates π1(C−{0}, x) = HomC(x, x) ∼= Z as a group, and a unique
morphism α ∈ HomC(x, 0). In particular, α ∗ σ = α.

We now recall the following classical technical lemma, which will be useful in proving
Propositions 4.11 and 4.12 and Theorem 6.1.
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4.10. Lemma. [19, Theorem 15.4] Let X be a triangulable compact space and O an open
covering. Then there is a triangulation T of X such that every simplex in T lies in an
element of O.

Example 4.9 is an instance of a more general result, which we now introduce.

4.11. Proposition. Let (X, S) be a conically stratified space. Let U be a basic open
associated to a stratum S ∈ S . Any point y ∈ U∩S is terminal in the category Ent(U, SU),
i.e. there is only one equivalence class of entrance paths from any point x ∈ U to y ∈ U∩S.

Proof. Associated to the basic open U is a filtration-preserving homeomorphism f :
Rd × C(L) // (U, SU) where L is a filtered space. For convenience, we forget about the
map f and identify U with Rd×C(L). Define the deformation retraction π : Rd×C(L)×
[0, 1] //Rd×C(L) as follows. For a cone point (u, ?) ∈ Rd×C(L), let π(u, ?, t) := (u, ?)
for all t. Any other point looks like (u, (p, r), t) where p ∈ L and r > 0. In this case, let

π(u, (p, r), t) :=

{(
u, (p, (1− t)r)

)
for 0 ≤ t < 1

(u, ?) for t = 1.

Consider any entrance path α : (I,T ) //Rd×C(L) such that α(0) = x and α(1) = y.
There is a canonical entrance path γ from x to y: start at x, follow the deformation lines
of π down to π(x, 1) ∈ Rd×{?}, and then take the straight line to y ∈ Rd×{?}. In other
words, define γ : (I, {0, 1/2, 1}) // Rd × C(L) as

γ(t) :=

{
π(α(0), 2t) for 0 ≤ t < 1/2

(2− 2t)π(α(0), 1) + (2t− 1)y for 1/2 ≤ t ≤ 1.

To prove our claim, it is enough prove that α is equivalent to γ.
Suppose T = {t0 = 0, t1, · · · , tn = 1} is the stratification of the domain of α. The

projection of α along π(•, 1) to the base stratum is an entrance path β := π(α, 1) lying
entirely in Rd×{?}. Let us use the same domain (I,T ) for β even though T may not be
a minimal stratification. Consider the following diagram, where each arrow corresponds
to an entrance path:

α(t0) α(t1) α(t2) · · · α(tn−2) α(tn−1) α(tn)

β(t0) β(t1) β(t2) · · · β(tn−2) β(tn−1) β(tn).

δ0 δ1 δ2 δn−2 δn−1 δn=y

Each arrow α(ti) //α(ti+1) is the restriction of α from ti to ti+1, possibly reparametrized
to be a path whose domain is [0, 1]. It is easy to see that the composition of the top row
is equivalent to α. Each arrow β(ti) //β(ti+1) is similarly defined to be an entrance path
gotten by restricting β from ti to ti+1 and reparametrizing, if necessary. The composition
of the bottom row is equivalent to β. The deformation lines of π induce a homotopy
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δ : (I,T )× [0, 1] // Rd × C(L) defined as δ(t, s) := π(α(t), s) which takes α to β. If the
point α(t) belongs to a stratum S ′, then π(α(t), s) remains in S ′ for all s ∈ [0, 1). Let
δi : (I, {0, 1}) //Rd×C(L) be the entrance path δi(s) := π(α(ti), s). We now have n− 1
squares and each square maps to Rd×C(L) in a stratum preserving way via δ. Now divide
each square into two triangles by introducing the diagonal entrance path. Each triangle is
now an elementary homotopy. By a finite number of elementary homotopies, α ≈ β ∗ δ0.
The entrance path β ∗ δ0 is almost our canonical entrance path γ. If we write γ = γ2 ∗ γ1

where γ1 is the first half of the path and γ2 the second half, then γ1 ≈ δ0. Both γ2 and
β are entrance paths lying entirely in Rd × {?} between the same pair of points. By the
following Proposition 4.12 or simply because Rd × {?} is contractible, β ≈ γ2. Therefore
α ≈ γ.

4.12. Proposition. Suppose (X, S) is a conically stratified space with a unique stratum
X. Then the category Ent(X, S) is equivalent to the fundamental groupoid π1(X).

Proof. Recall the fundamental groupoid has points as objects and homotopy classes of
paths as morphisms. Thus any path is an entrance path. Moreover, any two equivalent
entrance paths are homotopic by definition of an equivalence. It remains to be seen that
every homotopy H : I2 // X that is constant on Hs(0) and Hs(1) is an equivalence of
entrance paths. A cover of X by open balls (i.e. basic opens) lifts to an open cover O of
I2. By Lemma 4.10, there is a triangulation of I2 such that each triangle maps to an open
ball in the covering. Thus H0 and H1 are equivalent entrance paths.

4.13. Definition. A representation of the entrance path category is a functor
F : Ent(X, S) // Ω. When Ent(X, S) is equivalent to the fundamental groupoid π1(X),
we call such a representation a local system. A morphism φ : F // G between two
representations is a natural transformation of functors. Let

[
Ent(X, S),Ω

]
be the category

of representations of Ent(X, S).

A morphism φ : F // G between two representations of the entrance path category
restricts to a morphism of local systems over each stratum. This is because for each
stratum S ∈ S , Ent(X, S) restricted to S is the fundamental groupoid of S. Furthermore,
for each pair of points s1, s2 ∈ S and any homotopy class of paths α : s1

// s2, the
following diagram commutes:

F(s1)
F(α)

∼=
//

φ(s1)
��

F(s2)

φ(s2)
��

G(s1)
G(β)

∼= // G(s2).

4.14. Example. [Representations of a Stratified Real Line] Let (R, S) be the real line
stratified into two vertices x0 = 0 and x1 = 1 and three 1-strata e0 = (−∞, 0), e1 =
(0, 1) and e2 = (1,∞). Consider the following two representations. First we define
F : Ent(R, S) // Veck as follows:
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� On objects: For x ∈ [0, 1], we set F(x) := k. For x ∈ R− [0, 1], we set F(x) := 0.

� On morphisms: For any x, y ∈ [0, 1] and any entrance path α : x → y, we put
F(α) := id. For any other entrance path α, we put F(α) := 0.

Our second representation G : Ent(R, S) // Veck is defined as follows:

� On objects: For x ∈ [0, 1), we set G(x) := k. For x ∈ R− [0, 1), we set G(x) := 0.

� On morphisms: For any x, y ∈ [0, 1) and any entrance path α : x → y, we put
G(α) := id. For any other entrance path α, we put G(α) := 0.

Consider the morphism φ : F //G that is defined as φ(x) := idk on x ∈ [0, 1) and φ(x) := 0
otherwise. To check that this is a valid morphism, consider the following commutative
diagram, which illustrates the natural transformation φ over the support of F:

k = F(0) F(x) F(y) F(1) = k

k = G(0) G(x) G(y) G(1) = 0.

idk=φ(0)

idk

idk=φ(x)

idk

idk

idk

φ(y)=idk φ(1)=0

idk

idk

idk

0

Note that we have chosen two points 0 < x < y < 1 arbitrarily in order to emphasize
that there is an uncountable collection of points, i.e. objects in Ent(R, S). However, for
any pair of objects x and y, there is at most one morphism from x to y. Although F
and G may seem like complicated diagrams in Veck, using Example 4.8, both F and G are
equivalent to representations of the equivalent zigzag subcategory Z of Ent(R, S) with 5
objects

y0 → x0 ← y1 → x1 ← y2.

For example, y0 = −1/2, x0 = 0, y1 = 1/2, x1 = 1 and y2 = 3/2 will work.
It is also convenient to summarize F and G via their colimits. The morphism φ : F //G

defined above will also induce a canonical morphism in Veck from colim F to colim G. We
review this construction briefly. First we consider a candidate co-cone to F:

k

k = F(0) F(x) F(y) F(1) = k.

idk

idk

idk

idk

idk
idk

idk idk
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We leave it to the reader to verify that k is, in fact, the object that stands at the end of
the initial co-cone in the category of co-cones, which we denote by colim F. By contrast,
the object colim G that stands at the end of the colimit co-cone is the zero vector space:

0

k = G(0) G(x) G(y) G(1) = 0.

0

idk

0

idk

idk
0

0 0

Note that if we consider any co-cone to G and pre-compose the legs in that co-cone with the
arrows that define φ, then a co-cone to G stands as a co-cone to F. Since the colimit of F is
by definition the initial object in the category of co-cones to F, there is a unique morphism
from colim F to colim G that commutes with all the arrows involved. Finally, we note that
one could simplify the computation of the colimit using the equivalent representation of
Z; see Exercise 3.1.xii in [21].

5. van Kampen

The van Kampen theorem is best thought of as a proof that certain topological construc-
tions are actually cosheaves. In this section, we prove the van Kampen theorem for the
entrance path category. This will be key in proving that constructible cosheaves and rep-
resentations of the entrance path category are equivalent. The fact that representations of
the entrance path category, along with their colimits, satisfy the cosheaf axiom is detailed
in Section 5.3.

Let Cat be the category of small categories. This is the category whose objects are
small categories and whose morphisms are functors. Recall that Cat has all small limits
and colimits, i.e. Cat is a bi-complete category [21, Cor. 4.5.16].

5.1. Definition. Let Ent : Strat // Cat be the functor that assigns to each stratified
space (X, S) the entrance path category Ent(X, S) and to each stratum-preserving map
f : (Y,T ) // (X, S) the induced functor Ent(f) : Ent(Y,T ) // Ent(X, S).

Since every open set in a stratified space inherits the structure of a stratified space, we
have associated to a conically stratified space X a functor Open(X) // Strat that takes
U to (U, SU). By post-composing this functor with Ent : Strat // Cat, we can think of
the entrance path construction on X as a pre-cosheaf of categories. The van Kampen
theorem says that this construction is actually a cosheaf. The following argument proves
the cosheaf axiom for complete covers of X, but it can be repeated verbatim for any open
subset U and any complete cover of U . This proves that the entrance path construction
is actually a cosheaf.
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5.2. Theorem. [van Kampen] For a conically stratified space (X, S) and any complete
cover U of X, the universal functor, i.e. morphism in Cat, colim Ent|U // Ent(X, S) is an
isomorphism.

Proof. Let {Fi : Ent(Ui, Si) //Ent(X, S)} be the set of functors induced by the inclusion
(Ui, Si) ⊆ (X, S), over all Ui ∈ U . For each pair Ui ⊆ Uj, the following diagram commutes
in Cat:

Ent(Ui, Si)

Fi ''

Ent
(

(Ui,Si)⊆(Uj ,Sj)
)
// Ent(Uj, Sj)

Fjww
Ent(X, S).

The set of functors {Fi} is a co-cone from the diagram Ent|U in Cat. We aim to show that
this co-cone is initial and hence satisfies the universal property of the colimit. To this
end, let {Gi : Ent(Ui, Si) // C} be any second co-cone from Ent|U . We need to show there
is a unique functor Q : Ent(X, S) // C such that for each Ui ∈ U , the following diagram
commutes:

Ent(Ui, Si)
Fi

ww

Gi

$$
Ent(X, S)

Q
// C.

If such a functor Q exists, then Q(x) must be Gi(x) for every Ui ∈ U containing
x. If x ∈ Ui ∩ Uj, then there is a Uk ∈ U such that x ∈ Uk ⊆ Ui ∩ Uj. We have
Gi(x) = Gk(x) = Gj(x). For any x ∈ X, let Q(x) := Gi(x) where Ui is any open set in U
containing x.

We now define Q on the morphisms of Ent(X, S). Suppose an entrance path α lies
entirely in an element Ui ∈ U . Then let Q(α) := Gi(α). Now consider an arbitrary
entrance path α. By compactness of I, α can be written as a finite composition α =
αn ∗ · · · ∗ α1, where each αi lies in some element of U . Let Q(α) := Q(αn) ◦ · · · ◦ Q(α1).
This assignment is independent of the refinement of α as any two refinements have a
common refinement.

We now check that Q sends an equivalence class of entrance paths to the same
morphism. It suffices to check that for every elementary homotopy α ⇒ β, we have
Q(α) = Q(β); see Definition 4.3 for a reminder. Let x = α(0) = β(0) and y = α(1) = β(1).
Recall the map h : ∆ // (X, S) in the definition of an elementary homotopy. One of the
requirements on h is that the point y = h(v2) has a basic open neighborhood U that
contains the image of h. Suppose U ⊆ Ui for some Ui ∈ U . Then α = β in Ent(Ui, Si)
implying Q(α) = Q(β). Suppose there is no Ui /∈ U such that U ⊆ Ui. Recall every basic
open is locally cone-like and can be shrunk to fit inside any cover element Ui ∈ U . This
means that there is a complete covering by basic opens B of X such that for all B ∈ B
there exists a Ui ∈ U such that B ⊆ Ui. By Lemma 4.10, we may subdivide ∆ so that
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every triangle is an elementary homotopy. We may now write α⇒ β as a finite sequence
of elementary relations. We have F(α) = F(β).

5.3. Cosheaves of Representations. In this section we show that representations
of the entrance path category, as well as their colimits, form cosheaves in a natural way.
First we introduce the category of representations of a stratified space (X, S).

5.4. Definition. Associated to each stratified space (X, S) is a category of representa-
tions valued in Ω, written RΩ(X, S). The objects and morphisms are as follows:

� An object in RΩ(X, S) consists of a pair (U,F) where U is an open set in X and
F : Ent(U, SU) //Ω is a representation of the restriction of the entrance path category
of X to U .

� A morphism in RΩ(X, S) from (U,F) to (V,G) consists of the inclusion relation
U ⊆ V as well as a natural transformation F⇒ G|Ent(U,SU ).

We write R when Ω and (X, S) are clear from context.

In the following definition and many of the upcoming proofs, we will adopt the conven-
tion that when referring to a representation of an entrance path category G, the notation
G|U will stand as shorthand for G restricted to the subcategory Ent(U, SU), i.e. G|Ent(U,SU ).

5.5. Definition. We say a functor Q : Open(X) //R is a consistent assignment of
representations if whenever U ⊆ V , the induced morphism Q(U ⊆ V ) from Q(U) =
(U,F) to Q(V ) = (V,G) is the identity natural transformation id : F⇒ G|U in the second
slot.

5.6. Lemma. If Q : Open(X) //R is a consistent assignment of representations, then Q
is a cosheaf valued in R.

Proof. First we note that R has small colimits because it has coequalizers and coprod-
ucts; the existence of coequalizers follows because pointwise the coequalizer of two natural
transformations is a coequalizer in Ω, which is a bi-complete category.

We will check the cosheaf axiom for just one open set, namely X, because we can
always repeat the argument below for an arbitrary open set. Let U be a complete cover of
X. First, note that any co-cone to Q|U defines, by virtue of Theorem 5.2, a representation
of Ent(X, S) in Ω. Given any co-cone G : Ent(X, S) // Ω to Q|U , we must prove there
exists a unique natural transformation of functors η : Q(X)⇒ G. Note that saying G is a
co-cone to Q|U means that for each cover element U ∈ U we have a natural transformation
ηU : Q(U)⇒ G|U . We define a natural transformation η : Q(X) //G pointwise by setting
η(x) = ηU(x) for any U containing x. Notice that if x ∈ V ⊆ U , then the hypothesis that
Q(U)|V = Q(V ) implies that ηV (x) = ηU(x), so this definition is independent of the cover
element chosen.
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To prove that η is actually a natural transformation, we have to prove that the fol-
lowing diagram commutes for all equivalence classes of entrance paths α in Ent(X, S):

Q(X)(α(0)) G(α(0))

Q(X)(α(1)) G(α(1)).

η(α(0))

Q(X)(α) G(α)

η(α(1))

This follows by an argument analogous to one used in the proof of Theorem 5.2. We
replace an entrance path α : x // y with a composition of entrance paths αn ∗ · · · ∗ α1,
where each αi is contained in some element Ui of the cover U . Since each ηUi

is a natural
transformation, each of the subsquares in the following diagram commutes.

Q(X)(x) Q(X)(x1) · · · Q(X)(xn−1) Q(X)(y)

G(x) G(x1) · · · G(xn−1) G(y)

Q(α1)

ηU1
(x) ηU1

(x1)

Q(αn)

ηUn (xn−1) ηUn (y)

G(α1) G(αn)

This proves that η : Q(X) ⇒ G is a natural transformation. Uniqueness follows from
the fact that the natural transformation η was defined using the natural transformations
used in the co-cone from Q|U to G. Any other natural transformation must restrict to this
same collection of natural transformations, which implies uniqueness. This completes the
proof.

We now show that if we have a consistent assignment of representations, then replacing
each representation with its colimit defines a cosheaf valued in Ω. To do this we introduce
some more notation and a preparatory lemma.

We can define a functor L : R //Ω as follows: To each representation F : Ent(U, SU) //Ω,
let L(U,F) := colim F. To define L on morphisms we use functoriality of colimits, which
we review briefly in this special case. Recall that each morphism (U,F) // (V,G) in R
specifies a natural transformation η : F ⇒ G|U . The colimit provides a natural trans-
formation ∆G from G to the constant diagram with value colim G. We can restrict the
domain of definition of the natural transformation ∆G to define a natural transformation
from G|U to colim G. We can then pre-compose this restricted natural transformation
with η to make colim G a co-cone to F. The universal property of colim F then provides a
unique morphism to colim G restricted along η. We define L(U,F) // L(V,G) to be this
unique morphism.

Now consider a functor R : Ω // R in the opposite direction. For each object a in
Ω, let R(a) be the a-constant representation A : Ent(X, S) // Ω. That is, A(x) = a for
all points x and A(α) = id for all entrance paths α. For every morphism a // b in Ω,
let R(a // b) be the induced natural transformation A⇒ B. We now have the following
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diagram of categories and functors:

Ω R
R

L

5.7. Lemma. The functor L is left adjoint to R.

Proof. Recall that for any category C, 1C is the identity functor on C. We construct the
co-unit ε : L◦R⇒ 1Ω of the adjunction as follows. For an object a in Ω, recall that L◦R(a)
is the colimit of the a-constant representation A : Ent(X, S) // Ω, which is canonically
isomorphic to a. Let ε(a) be the universal morphism from the colimit to a. Note that
whenever we have a morphism a // b in Ω, the following square commutes:

L ◦ R(a) L ◦ R(b)

a b.

ε(a) ε(b)

Now we turn to the construction of the unit η : 1R ⇒ R ◦ L. Recall an object of R
is a pair (U,F) where U ⊆ X is an open set and F : Ent(U, SU) // Ω is a functor. The
composition R◦L(U,F) is the b-constant functor B : Ent(U, SU) //Ω where b is the colimit
of F. Define η(U,F) to be the natural transformation from F to the constant diagram B
given by the definition of the colimit. One can easily check the commutativity of the
following diagrams:

L LRL R RLR

L R

Lη

idL

εL

ηR

idR

Rε

5.8. Lemma. Let Q : Open(X) // R be a consistent assignment of representations, as
defined in Definition 5.5. Let L ◦ Q : Open(X) // Ω be the functor that assigns to each
open U the colimit of Q(U) : Ent(U, SU) // Ω. The pre-cosheaf L ◦ Q is a cosheaf.

Proof. Suppose U is a complete cover of an open set U . We need to show that the
universal morphism

colim L ◦ Q|U // L ◦ Q(U)

is an isomorphism. By Lemma 5.7, we know that L is a left adjoint and hence commutes
with colimits so the map

colim L ◦ Q|U // L(colim Q|U)



CLASSIFICATION OF CONSTRUCTIBLE COSHEAVES 1031

is an isomorphism. Moreover, by Lemma 5.6 we know that colim Q|U // Q(U) is an
isomorphism as well. Post-composing this map with L and using the fact that functors
preserve isomorphisms, we have that the desired composition

colim L ◦ Q|U // L(colim Q|U) // L(Q(U)) = L ◦ Q(U)

is an isomorphism as well.

6. Equivalence

In this section we prove the main equivalence of this paper, which was originally observed
by Robert MacPherson. We recall the basic ingredients of this equivalence. Given a
conically stratified space (X, S) we have the notion of an S -constructible cosheaf given in
Definition 3.8 and a representation of the entrance path category given in Definition 4.13.
These are the objects of the categories CshΩ(X, S) and

[
Ent(X, S),Ω

]
. The main theorem

of this paper is that these two categories are equivalent.

6.1. Theorem. [Classification] CshΩ(X, S) is equivalent to
[
Ent(X, S),Ω

]
.

Proof. Recall that the category CshΩ(X, S) is equivalent 1 to the category
[
Ent(X, S),Ω

]
if there are functors

I : CshΩ(X, S) //
[
Ent(X, S),Ω

]
J :
[
Ent(X, S),Ω

]
// CshΩ(X, S)

and natural isomorphisms

ε : J ◦ I⇒ idCshΩ(X,S) η : id[Ent(X,S),Ω] ⇒ I ◦ J.

The natural transformation ε is called the co-unit and the natural transformation η is the
unit. We now construct this equivalence.

Construction of I. We start with I. Fix an S -constructible cosheaf F. Recall that F(x)
is the costalk of F at the point x ∈ X. On objects x ∈ Ent(X, S), let

I(F)(x) := F(x).

To describe how I(F) acts on an entrance path α : x // y, we first describe how it acts
on an entrance path α : (I,T ) // (X, S) that intersects only two strata in the following
way:

∃S0, S1 ∈ S s.t. α([0, 1)) ⊆ S0 and α(1) = y ∈ S1.

1Some authors say two categories are equivalent if there is a single functor between them that is fully
faithful and essentially surjective. The definition of equivalence we use follows the one given in Riehl’s
Category Theory in Context, see [21, Def. 1.5.4]. This notion of equivalence resembles the notion of an
adjoint equivalence, but it does not require the extra triangle identities that an adjoint equivalence needs
to satisfy. However, this is fine because [21, Prop. 4.4.5] proves that every equivalence in our sense can
be promoted to an adjoint equivalence.
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We further require that there is a basic open U whose cone point is α(1) = y that contains
α(0) = x. Note that we allow the possibility that S0 = S1. In either case, the diagram of
costalk maps

F(x) F(U) F(y)∼=

allows us to define I(F)(α) as F−1(y ∈ U) ◦ F(x ∈ U). The morphism I(F)(α) is indepen-
dent of the choice of U . This is because for any other basic open neighborhood V of y
containing x where U ⊆ V , the following diagram commutes:

F(V )

F(x) F(y)

F(U).

∼=

∼=

F(U⊆V ) ∼=

Finally, we note that an arbitrary entrance path is equivalent to a finite composition of
entrance paths with the above properties. The morphism for this arbitrary entrance path
will be a zig-zag of costalk maps, where left-pointing arrows are isomorphisms.

To show that this definition is invariant under our equivalence relation it suffices to
check invariance under an elementary homotopy. This will also show that when the com-
position of entrance paths is related to another entrance path by an elementary homotopy,
then the above construction is well-defined. Consider an elementary homotopy α ⇒ β
and recall the associated map h : ∆ // (X, S) from Definition 4.3. Note that there is a
basic open U2 ∈ Basic(X, S) with cone point z := h(v2) that contains the entire image of
h. Additionally, we can guarantee the existence of a basic open U1 ⊆ U2 with cone point
y := h(v1). Finally, let x = h(v0). In this setting, β : x // z is an entrance path with
the property mentioned above: it only intersects two strata and has a basic open around
its endpoint. Following the construction given above, we define I(F)(β) as the following
composition:

F(β(0))
F(x∈U2) // F(U2)

F−1(z∈U2)

∼=
// F(β(1)).

On the other hand, α can be viewed as the composition of two entrance paths α1 : x // y
and α2 : y // z with the above properties. Our construction above tells us to define
I(F)(α) := I(F)(α2) ◦ I(F)(α1), which is the following composition of morphisms in Ω:

F(α(0))
F(x∈U1) // F(U1)

F−1(y∈U1) // F(α(1/2))
F(y∈U2) // F(U2)

F−1(z∈U2) // F(α(1)).

However since the co-stalk F(α(1/2)) defines a universal cone to F restricted to the col-
lection of open sets containing α(1/2) = y, the middle two arrows cancel to yield

F(α(0))
F(x∈U1) // F(U1)

F(U1⊆U2) // F(U2)
F−1(z∈U2) // F(α(1)).
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This composition further reduces to

F(α(0))
F(x∈U2) // F(U2)

F−1(z∈U2) // F(α(1)),

which is exactly the definition of I(F)(β). Thus we have just shown that I(F)(α) = I(F)(β)
whenever α ⇒ β. Repeating this argument finitely many times shows that for any two
entrance paths α and β such that α ≈ β, we have I(F)(α) = I(F)(β).

A cosheaf morphism φ : F //G induces a morphism of representations I(φ) : I(F) //I(G)
by virtue of the fact that a map of cosheaves is a natural transformation indexed by open
sets of X, which in turn induces maps on the level of costalks. To check that that the mor-
phism I(φ) is a natural transformation of representations, we observe that the morphism
associated to an entrance path is determined by a cover of the entrance path by basic
opens, where φ already defines a natural transformation. Because F and G are functors
on Open(X), we can always refine two choices of covers of an entrance path to a common
third one to guarantee that this map of representations is well-defined.

Construction of J. Now we construct J. Fix a representation F : Ent(X, S) // Ω. Fol-
lowing the notation in Section 5.3, we can associate to F a consistent assignment of repre-
sentations Q : Open(X) //R that assigns to each open set U , the object (U,F|Ent(U,SU )).
Recall that L : R // Ω assigns to each representation its corresponding colimit. Define
J(F) = L ◦ Q. This means that to each open U ⊆ X

J(F)(U) := colim F|Ent(U,SU )

and to each pair of open sets U ⊆ V ,

J(F)(U ⊆ V ) : J(F)(U) // J(F)(V )

is the universal morphism between the two colimits. We already proved in Lemma 5.8 that
J(F) = L ◦Q satisfies the cosheaf axiom. To check constructibility, let U ⊆ V be a pair in
Basic(X, S) associated to some common stratum S ∈ S . Choose a point x ∈ U ∩ V ∩ S.
By Proposition 4.11, x is terminal in both Ent(U, SU) and Ent(V, SV ). Since the colimit
of a diagram with a terminal object is just the value given to the terminal object, we get
the following isomorphisms along with a morphism induced by inclusion:

F(x) ∼= colim F|Ent(U,SU ) colim F|Ent(V,SV )
∼= F(x).

∼=

A morphism of representations φ : F // G of Ent(X, S) is a natural transformation of
functors, which is defined pointwise for x ∈ X. Consequently, any morphism φ restricts to
a morphism φ|U : F|Ent(U,SU )

// G|Ent(U,SU ) of representations of Ent(U, SU), which in turn
specifies a morphism between the associated colimits, i.e. J(F)(U) // J(G)(U). Finally,
it is easy to see that for a pair of open sets U ⊆ V the restriction of φ|V to Ent(U, SU)
agrees with φ|U , so we have the following commutative square

J(F)(V ) // J(G)(V )

J(F)(U) //

OO

J(G)(U)

OO
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thereby implying that a morphism of representations is sent to a morphism of cosheaves.

Construction of ε. We now construct the co-unit ε : J ◦ I ⇒ idCshΩ(X,S). Fix a con-
structible cosheaf F. Recall that the associated representation I(F) of the entrance path
category is turned back into a cosheaf by taking the colimit of the restriction of this
representation to each open set. That is to say

J ◦ I(F)(U) := colim I(F)|Ent(U,SU ).

To specify the co-unit ε(F)(U), we note that for each x ∈ U , I(F)(x) is defined as the
co-stalk of F at x, which provides a morphism I(F)(x) // F(U). We claim that these
morphisms collate to form a co-cone χU to the restricted representation I(F)|Ent(U,SU ),
which we write as I(F)|U for short. The fact that the costalk maps form a co-cone χU
follows from the observation that the morphism I(F)(α) associated to any entrance path
α in Ent(U, SU) is defined using a zig-zag of costalk maps involving basic opens, each of
which can be chosen to fit inside of U . Since F(U) forms a co-cone to I(F)|U , we get the
unique morphism from the colimit

J ◦ I(F)(U) := colim I(F)|Ent(U,SU )
// F(U).

This unique morphism defines our co-unit ε(F)(U) for each open set U . In order to show
that this assignment of morphisms to each open set collectively defines a morphism of
cosheaves ε(F) : I ◦ J(F) // F we must show that for any pair of open sets U ⊆ V , the
following diagram commutes:

J ◦ I(F)(U)
J◦I(F)(U⊆V ) //

ε(F)(U)
��

J ◦ I(F)(V )

ε(F)(V )
��

F(U)
F(U⊆V ) // F(V ).

In order to prove that the above square commutes, we introduce some additional notation
and describe the construction of ε in more detail. The high-level structure of the proof is
that since J ◦ I(F)(U) is defined in terms of a colimit, we want to use uniqueness of the
induced morphism to F(V ) to prove commutativity, but this requires showing that the
two ways of going around the square can be used to define the same co-cone to I(F)|U .

Recall that a co-cone is just a natural transformation of functors, where the the
codomain of the transformation is a functor with constant value. Let ∆U : I(F)|U ⇒
J ◦ I(F)(U) := colim I(F)|U denote the co-cone (natural transformation) from the repre-
sentation I(F)|U to the constant representation with value the colimit of I(F)|U . Let
χU : I(F)|U ⇒ F(U) be the co-cone described above, which uses the co-stalk maps
{F(x) // F(U)}x∈U . Define ∆V and χV similarly by replacing every occurrence of U
in the past two sentences with V . By construction, we have that

ε(F)(U) ◦∆U = χU and ε(F)(V ) ◦∆V = χV .
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Recall that the morphism J◦I(F)(U ⊆ V ) is defined by taking the co-cone ∆V : I(F)|V ⇒
colim I(F)|V and restricting the domain of definition to Ent(U, SU) to get a new co-cone
∆V |U : I(F)|U ⇒ colim I(F)|V . The morphism J ◦ I(F)(U ⊆ V ) is the unique morphism
from colim I(F)|U to colim I(F)|V satisfying

(J ◦ I(F)(U ⊆ V )) ◦∆U = ∆V |U .

Finally, we note that post-composing the natural transformation χU with the morphism
F(U ⊆ V ) can be identified with the restricted natural transformation χV |U , i.e.

F(U ⊆ V ) ◦ χU = χV |U .

We now use the above identities to show that

ε(F)(V ) ◦ (J ◦ I(F)(U ⊆ V )) ◦∆U = ε(F)(V ) ◦∆V |U
= χV |U
= F(U ⊆ V ) ◦ χU
= F(U ⊆ V ) ◦ ε(F)(U) ◦∆U

This almost shows what we want, except for the factor ∆U , but the identity above is crucial
because we have two ways of writing the same co-cone from I(F)|U to F(V ). By universal
properties, we have a unique morphism ψU,V : colim I(F)|U =: J ◦ I(F)(U) // F(V )
satisfying

F(U ⊆ V ) ◦ ε(F)(U) ◦∆U = ψU,V ◦∆U = ε(F)(V ) ◦ (J ◦ I(F)(U ⊆ V )) ◦∆U .

Uniqueness of ψU,V implies the final, desired equality:

F(U ⊆ V ) ◦ ε(F)(U) = ψU,V = ε(F)(V ) ◦ (J ◦ I(F)(U ⊆ V )) .

All of the above arguments are natural, meaning that for every cosheaf morphism
φ : F // G, the cosheaf morphisms given by ε make the following diagram commute

J ◦ I(F)

ε(F)
��

J◦I(φ) // J ◦ I(G)

ε(G)
��

F
φ // G.

In other words ε : J◦I⇒ idCshΩ(X,S) is an actual natural transformation between functors
defined on the category of constructible cosheaves.

All that remains to be shown is that for each F, the co-unit ε(F) is an isomorphism of
cosheaves. We first show that for each basic open U , ε(F)(U) is an isomorphism, we then
invoke the cosheaf axiom to show this implies that ε(F)(U) is an isomorphism on arbitrary
open sets. First, if U is a basic open associated to a stratum S, then Proposition 4.11
shows that any x ∈ U ∩S is terminal in Ent(U, S |U). It is an easy exercise to show that if
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an indexing category for a functor has a terminal object, then the colimit of that functor
is just the value of the functor on the terminal object. This implies that for any x ∈ U∩S,
the morphism I(F)(x) // J ◦ I(F)(U) is an isomorphism. Constructibility of F implies we
have the following commutative triangle:

J ◦ I(F)(U)
ε(F)(U) // F(U)

I(F)(x)

∼=

ff

∼=

::

This implies the top horizontal arrow is an isomorphism as well and more generally that
the restricted natural transformation

ε(F)|Basic(U,SU ) : J ◦ I(F)|Basic(U,SU ) ⇒ F|Basic(U,SU )

is a natural isomorphism. Finally, for an arbitrary open set U , the collection of basic opens
inside of U forms a complete cover of U . The cosheaf axiom (Definition 3.6) implies that
the vertical arrows below are isomorphisms.

J ◦ I(F)(U)
ε(F)(U) // F(U)

colim J ◦ I(F)|Basic(U,SU )

∼=

OO

∼=
// colim F|Basic(U,SU )

∼=

OO

Since the restriction of ε(F ) to Basic(U, SU) defines a natural isomorphism, the induced
map on colimits is also an isomorphism, which proves the bottom horizontal arrow is an
isomorphism. This proves that ε(F)(U) is an isomorphism for an arbitrary open set U
and hence that ε(F) : J ◦ I(F) // F is a natural isomorphism.

Construction of η. We now define the unit η on points of X and elementary homotopies.
Fix a functor F : Ent(X, S) //Ω. Recall that J(F) is a constructible cosheaf. I ◦ J(F)(x)
is then defined as the inverse limit of J(F) over all open sets containing x. Note that
the collection of basic opens containing x forms an initial (also called final) subsequence,
so restricting the limit to basic opens yields an isomorphic inverse limit. Let U be any
basic open neighborhood of x. As we saw in the construction of ε above, Proposition 4.11
guarantees that the morphism zU : F(x) // colim F|Ent(U,SU ) =: J(F)(U) used in that
universal co-cone is an isomorphism. This means that the collection of arrows {zU :
F(x) // J(F)(U)} ranging over all basic opens U containing x defines a limit cone to the
restriction of J(F) to basic opens containing x. Define

η(F)(x) : F(x) // I ◦ J(F)(x)

to be the unique map from F(x) to the inverse limit I ◦ J(F)(x) guaranteed by universal
properties. This definition of the unit further guarantees that whenever we have an
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elementary homotopy α⇒ β, the following diagram commutes

F(x)
F(α=β) //

η(F)(x) ∼=
��

F(x′)

η(F)(x′)∼=
��

I ◦ J(F)(x)
I◦J(F)(α=β) // I ◦ J(F)(x′),

thereby showing that
A morphism in ψ : F // G in

[
Ent(X, S),Ω

]
induces the following commutative dia-

gram:

F
ψ //

η(F)
��

G

η(G)
��

I ◦ J(F)
I◦J(ψ) // I ◦ J(G).

This completes the proof of our main equivalence theorem.

6.2. Corollary. Suppose (X, S) is a conically stratified space with a unique stratum
X. Then the category of locally constant cosheaves LocΩ(X) is equivalent to

[
π1(X),Ω

]
.

6.3. Example. Suppose X = R is stratified into n vertices and n + 1 open intervals. If
F : Open(R) //Ω is a constructible cosheaf, then Theorem 6.1 implies that F is equivalent
to a functor F̃ : Ent(R, S) //Ω, which by Example 4.8 is equivalent to a functor modeled
on the associated zig-zag category Z:

F̃|Z : F̃(y0)→ F̃(x1)← F̃(y1)→ · · · ← F̃(yn−1)→ F̃(xn)← F̃(yn).

If Ω = Veck, the functor F̃|Z defines a zigzag module, see [3]. Our classification theorem
implies that the category of (R, S)-constructible cosheaves valued in Veck are equivalent
to the category of zigzag modules.

6.4. Remark. We continue Example 6.3 to obtain a finer classification of (R, S)-construct-
ible cosheaves valued in Veck. We refer to any connected full subcategory I of the zig-zag
category Z as an interval category. Here, connected means that any two objects in
I can be reached via a sequence of morphisms in I. A functor Ik : Z // Veck that is
constant with value k on I and 0 outside of I is called an interval module. A theorem
of Gabriel [8] implies that every functor F : Z // Veck can be expressed uniquely as a
direct sum of interval modules, assuming k is algebraically closed. We note that since
each object in the interval category I determines a stratum in (R, S), we can associate
to I a topological interval in R by taking the union of the strata specified by I. For in-
stance, if (R, S) has at least five strata, then the interval category x1 ← y1 determines the
topological interval [x1, x2). Theorem 6.1, Example 4.8, and Gabriel’s Theorem together
imply that every (R, S)-constructible cosheaf valued in Veck can be expressed uniquely
as a direct sum of indecomposable cosheaves supported on intervals of four types: open,
closed, half-open on the left, and half-open on the right.



1038 JUSTIN CURRY AND AMIT PATEL

k2 k2

k3

k

k

1 0 0
0 1 1

1 1 0
0 0 1

1 1 1 1

1
0

0
1

v1
v2
v3

ℝ2

ℝ2

Equivalent	subcategory
Q of	Ent(ℝ2,S)

Stratified	map	f	
specifies	(ℝ2,S)

Representation	of	Q
organizes	H0 of	the	fibers	of	f	

f

Figure 2: Studying a map with a cusp and two folds using the Entrance Path Category

6.5. Example. Consider the Whitney cusp

f : R2 // R2 f(x, y) := (xy − x3, y).

The importance of such a map was illustrated by Whitney [28], who showed that cusps
and folds are the only singularities that appear for structurally stable maps from the plane
to the plane. The cusp singularity introduces a zero-dimensional stratum and the two fold
singularities introduce two one-dimensional strata in the codomain of f . The complement
of these strata define the two two-dimensional strata; see the left part of Figure 2. Let
F : Ent(R2, S) // Vec be the functor that assigns to each point x ∈ R2, the homology
group H0

(
f−1(x)

)
, i.e. F(x) := H0

(
f−1(x)

)
. Given an entrance path α in (R2, S) and a

point y ∈ f−1
(
α(0)

)
, lift α along f to a path starting at y. If two entrance paths α and

β are equivalent in (R2, S) and a point y ∈ f−1
(
α(0) = β(0)

)
is given, then both lift to

homotopic paths in the domain of f starting at y. Thus an entrance path α in (R2, S)
induces a well defined map F(α) : F

(
α(0)

)
// F
(
α(1)

)
. By picking a representative point

from each of the five strata described above, we obtain a subcategory Q of Ent(R2, S)
with five objects. Since each stratum is simply connected one can see that Q is equivalent
to Ent(R2, S). This greatly simplifies the description of the cosheaf F.
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7. Stratified Coverings

Now we describe how a constructible cosheaf valued in Ω = Set is equivalent to a stratified
covering. We fix an n-dimensional conically stratified space (X, S). Recall that by virtue
of the axiom of the frontier, the set of strata S is a poset where S ′ < S if S ′ ⊆ S and
S 6= S ′.

7.1. Definition. A stratum-preserving map f : (Y,T ) // (X, S) of conically stratified
spaces is a stratified covering of (X, S) if the following holds:

� For each stratum S ∈ S and for each stratum T ⊆ f−1(S) the restriction f |T : T //S
of f is either a map from the empty set or a covering space. Recall that a covering
space is a continuous map p : S̃ //S for which every point x ∈ S has a neighborhood
V so that the preimage p−1(V ) is the disjoint union of open sets, each of which are
mapped homeomorphically onto V by p. In particular, a covering space is surjective.

� If f takes T ∈ T to S ∈ S and there is an S ′ ∈ S such that S ′ < S, then there is a
T ′ ∈ T such that T ′ < T and f takes T ′ to S ′.

A morphism from a stratified covering f : (Y,T ) // (X, S) to a stratified covering
f ′ : (Y ′,T ′) // (X, S) is a stratum preserving map µ : (Y,T ) // (Y ′,T ′) such that
f = f ′ ◦ µ. Let Cov(X, S) be the category of stratified coverings of (X, S).

7.2. Example. [Reeb Graphs] Let f : M // R be a Morse function on a compact
manifold M . Consider the equivalence relation on M that identifies x, y ∈ M if and
only if f(x) = f(y) = v and if there exists a path γ : [0, 1] // f−1(v) with γ(0) = x
and γ(1) = y. Denote the quotient space of M by this equivalence relation by M̄ . Note
that since f is constant on equivalence classes it factors to define a map f̄ : M̄ // R.
We claim that there exists a natural pair of stratified spaces (M̄, S) and (R,T ) so that
f̄ : (M̄, S) // (R,T ) is a stratified covering.

It is classical result [20, 14] that the quotient space M̄ is a finite graph and that f̄
restricts to a proper submersion over each edge; see [23, pp.390–391] for a more recent
treatment. The map f̄ : M̄ // R is called the Kronrod-Reeb graph construction
associated to f : M // R. To see that f̄ is naturally a stratified covering, we first let T
be the stratification of R into critical values of f as the zero-dimensional strata and the
connected components of the complement as the one-dimensional strata. Let S ′ be the
natural stratification of M̄ into vertices and open edges; which exists by virtue of the fact
that M̄ has the structure of a finite graph. Let S be the coarsest refinement of S ′ where
every point in the pre-image of a critical value is regarded as a zero-dimensional stratum.
It is easy to see that with these stratifications f̄ : (M̄, S) //(R,T ) is a stratified covering.

7.3. Example. Suppose X = C is stratified into two strata S = C− {0} and S ′ = {0}.
The map f(z) = zn defines a stratified covering f : (X, S) // (X, S).
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7.4. Example. The map considered in Example 6.5 is also a stratified covering of the
plane.

The definition of a stratified covering implies the following technical lemma.

7.5. Lemma. Given a stratified covering f : (Y,T ) // (X, S) and a basic open U ∈
Basic(X, S), the pre-image f−1(U) is either empty or a disjoint union of basic opens in
Basic(Y,T ).

Proof. Fix a point x in a d-dimensional stratum S and a basic open neighborhood Ux
of x.

Suppose there is no y such that f(y) = x. The first property of a stratified covering
implies that f−1(Ux ∩ S) is empty and hence there is no T ∈ T such that f(T ) = S.
Consider a stratum S ′ > S that intersects Ux. The pre-image f−1(Ux ∩ S ′) must also
be empty, because otherwise that would contradict the second property of a stratified
covering. This implies that f−1(Ux) is empty.

Suppose there is a y ∈ Y such that f(y) = x. Recall that we have a filtration-
preserving homeomorphism hx : Rd × C(Lx) // Ux. Consider a point of the form x′ =
hx(0, p, 1). This point has a path passing through it by letting γx′(t) = hx(0, p, t) range
over all values t > 0. This path is contained in a unique stratum S ′. The first property
of a stratified covering implies that this path either has empty pre-image or a set of lifts
γ̄y
′

x′(t) indexed by the fiber y′ ∈ f−1(x′). By continuity and the second property of a

stratified covering, the limit of γ̄y
′

x′(t) as t tends to 0 exists. Let

C(L̄yx) =
⋃

x′∈hx
(

0,(Lx,1)
)
{
γ̄y
′

x′(t)
∣∣∣ lim
t // 0

γ̄y
′

x′(t) = y
}
∪ {y}.

Note that the filtration of hx
(
0, (Lx, 1)

) ∼= Lx defines a filtration of C(L̄yx) as well. By
considering similar paths passing through each point of the form x′′ = hx(v, p, 1) where v
ranges over Rd we see that

f−1(Ux) ∼=
⋃

y∈f−1(x)

Rd × C(L̄yx)

is a disjoint union of basic opens in Y .

We now show that the category of stratified coverings and morphisms thereof is equiv-
alent to the category of representations of the entrance path category valued in Set.

7.6. Theorem. Cov(X, S) is equivalent to
[
Ent(X, S), Set

]
.

Proof. We construct two functors

I : Cov(X, S) //
[
Ent(X, S), Set

]
J :
[
Ent(X, S), Set

]
// Cov(X, S)

such that J ◦ I is naturally isomorphic to the identity functor on Cov(X, S) and I ◦ J is
naturally isomorphic to the identity functor on

[
Ent(X, S), Set

]
.
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Construction of I. Fix a stratified covering f : (Y,T ) // (X, S). For each point x ∈ X
we let I(f)(x) := f−1(x). For an entrance path α : x′ //x in (X, S) that starts at x′ and
ends at x we argue that each point y′ ∈ f−1(x′) specifies a lift of α to an entrance path
in (Y,T ) starting at y′ and ending at a point in f−1(x), assuming f−1(x′) 6= ∅. To see
this, we first observe that if an entrance path is contained in a unique stratum in (X, S),
then every point y′ ∈ f−1(x′) specifies a unique lift by virtue of the unique path-lifting
property of covering spaces [26, pp. 66-68]. A general entrance path α that intersects
multiple strata is equivalent to a composition of entrance paths αn ∗ · · · ∗ α1 where each
path αi sends [0, 1) to a unique stratum in (X, S) and enters a different stratum at t = 1.
This allows us to define the lift of α inductively. We can choose a unique lift of αi|[0,1) for
each yi ∈ f−1(αi(0)) because it is contained in a unique stratum. Lemma 7.5 implies that
any basic open Ui about αi(1) has a pre-image that is homeomorphic to a disjoint union
of basic opens, one about each point yi+1 ∈ f−1(αi(1)) = f−1(αi+1(0)). We say that a lift
of αi|[0,1) specializes to a point yi+1 ∈ f−1(αi(0)) if the basic open about yi+1 intersects
the lift of αi|[0,1). The specialization of a lift of αi|[0,1) is also the continuous limit of that
lift. Repeating this procedure for αi+1|[0,1) allows us to inductively lift a general entrance
path α. Consequently, an entrance path α induces a map of sets

I(f)(α : x′ // x) : I(f)(x′) // I(f)(x).

Moreover, the above reasoning shows that an elementary homotopy α ⇒ β lifts to a
collection of elementary homotopies in (Y,T ) thereby making the map I(f)(α) = I(f)(β).

Construction of J. Given a representation F : Ent(X, S) //Set, we construct a stratified
covering f : (Y,T ) // (X, S). As a set, let Y :=

⊔
x∈X F(x) and let f : Y //X be the

natural projection map. Now we topologize Y . Recall from Proposition 4.11 that for any
x ∈ X and any basic open neighborhood Ux of x, any two entrance paths in Ux with
a common starting point x′ that end at x are equivalent. Consequently, for each point
x ∈ X and for each basic open neighborhood Ux of x, and each y ∈ F(x), let

Ūy
x :=

⋃
x′∈Ux

{
y′ ∈ F(x′)

∣∣∣ F(α : x′ // x)(y′) = y
}
.

Here αx : x′ // x is any entrance path in Ux starting at x′ and ending at x. The set{
Ūy
x

}
over all x ∈ X, Ux, and y ∈ F(x) forms the basis for the topology on Y . The

projection f : Y // X is now a continuous map. We now put on Y the structure of a
conically stratified space (Y,T ) so that f : (Y,T ) // (X, S) is a stratified covering. By
setting Y d = f−1(Xd), the n-step filtration of X defines an n-step filtration of Y . We
check that that this filtration satisfies the properties of Definition 2.8. Consider a point
y ∈ Y d − Y d−1 and let

L̄yx =
⋃

x′∈hx
(

0,(Lx,1)
)
{
y′ ∈ F(x′)

∣∣∣ F(α : x′ // x)(y′) = y
}
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where hx : Rd×C(Lx) //Ux is the filtration-preserving homeomorphism that coordinatizes
Ux. Note that L̄yx has an (n− d− 1)-step filtration because Lx does. If S is the stratum
containing x = f(y), then F(αxx′) is an isomorphism for each x′ ∈ S ∩ Ux. This means
that f restricts to a homeomorphism Ūy

x ∩ f−1(S) // S ∩ Ux ∼= Rd making f a covering
space over each stratum in S with fiber F(x). Finally, observe that if x′ = hx(v, p, 1) is in
a stratum S ′, then any point x′′ = hx(v, p, t) is also in S ′ for all t > 0. We have

Ūy
x
∼= Rd × C(L̄yx),

thereby proving that Y is a stratified space. To check the second property of a stratified
covering, suppose that S ′ < S. Let α be any entrance path from a point x ∈ S to a
point x′ ∈ S ′. If f−1(x) := F(x) 6= ∅, then F(x′) =: f−1(x′) 6= ∅ because the set map
F(α) : F (x) //F (x′) cannot be a map to the empty set, because in the category Set there
are no morphisms to the empty set other than the identity morphism.

Construction of ε. We now prove that the co-unit ε : J ◦ I ⇒ idCov is a natural
isomorphism. The co-unit is defined as follows: given a stratified cover f : (Y,T ) //(X, S)
the associated stratified cover J◦I(f) is defined by

⊔
x∈X I(f)(x), where I(f)(x) = f−1(x).

Since for every x ∈ X, we have a map f−1(x) ↪→ Y given by inclusion, the universal
property of the coproduct provides a universal map J ◦ I(f) =

⊔
x∈X I(f)(x) // Y . We

set ε(f) : J ◦ I(f) // Y to be this universal map. Note that by construction, the basic
opens of J◦I(f) are in bijection with basic opens of (Y,T ) so ε(f) is a stratum preserving
homeomorphism.

To check naturality of ε consider a morphism from a stratified covering space f :
(Y,T ) // (X, S) to f ′ : (Y ′,T ′) // (X, S) given by a stratum preserving map µ :
(Y,T ) // (Y ′,T ′) where f = f ′ ◦ µ. Since µ must commute with the map to (X, S), we
have that for every point x ∈ X, µx : f−1(x) // f ′−1(x). This implies that we have an
associated map between the disjoint unions

ε(µ) :
⊔
x∈X

I(f)(x) //
⊔
x∈X

I(f ′)(x).

It is easy to check that this map is a stratum-preserving map assuming that µ is.

Construction of η. We now prove that the unit η : id[Ent(X,S),Set] ⇒ I ◦ J is a natural
isomorphism, and is in fact the identity. Recall that J takes a representation of the
entrance path category F : Ent(X, S) //Set and turns it into a stratified cover, where the
fiber over a point x ∈ X is F(x). Applying I to construct a representation of the entrance
path category valued in Set then assigns the same set F(x) to I◦J(F)(x). Furthermore, an
elementary homotopy α ⇒ β between entrance paths in Ent(X, S) lifts to a collection of
elementary homotopies in J(F). This means that if γ and γ′ are arbitrary and equivalent
entrance paths in (X, S), then I ◦ J(F) send both γ and γ′ to F(γ) = F(γ′). Therefore
I ◦ J(F) = F. For any natural transformation φ : F // G, I ◦ J(φ) is equal to the map
φ(x) : F(x) // G(x) for all x ∈ X, and therefore I ◦ J(φ) = φ. This completes the proof.
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The following Corollary is an immediate consequence of Theorem 6.1 and Theorem
7.6.

7.7. Corollary. Cov(X, S) is equivalent to CshSet(X, S).

7.8. Remark. When S consists of a single stratum, namely all of X, Theorem 7.6 re-
stricts to the classical classification of covering spaces over a manifold.

7.9. Remark. Theorem 7.6 and Corollary 7.7 together generalize the categorification of
Reeb graphs developed in [5], which was concerned with the case X = R, to Reeb spaces
[6].

We conclude this section with two examples and a question.

7.10. Example. Suppose X = C is stratified into two strata S = C−{0} and S ′ = {0}.
Let x ∈ S. In view of Example 4.9, a functor F : Ent(X, S) // Set is determined by two
sets F(x) and F(0), a permutation F(σ) : F(x) // F(x), and a map F(α) : F(x) // F(0),
where F(α) ◦ F(σ) = F(α). The sets F(x) and F(0) define the fibers f−1(x) and f−1(0) of
a stratified cover. The morphism F(α) defines the specialization map from f−1(x) to
f−1(0). The condition that F(α)◦F(σ) = F(α) implies that if two points in the fiber f−1(x)
are related by a deck transformation, then they must specialize to the same element of
f−1(0). In particular, the only connected stratified covers of (X, S) with finite fibers are
those of the form zn.

The following example was suggested by an anonymous referee, which we have decided
to include.

7.11. Example. As a continuation of Example 7.10, consider the representation of the
entrance path category where any point x 6= 0 has a countably infinite set F(x) ∼= Z
assigned to it and F(0) = {?} is the one point set. Suppose further that the deck trans-
formation F(σ) : Z // Z is the map that sends n 7→ n + 1. Necessarily, F(α) : Z // {?}
is the constant map. If we consider the stratified cover J(F) associated to F in the proof
of Theorem 7.6, then we see that any basic open around 0 in C has a pre-image that is
a basic open that is homeomorphic to the cone on the real line. Moreover, this stratified
cover—when restricted to the link— restricts to the universal covering of the circle.

Finally, we note that studying the automorphism group of a stratified covering is a
very interesting problem that must generalize the usual Galois correspondence for covering
spaces. We leave this for future work.

8. Conclusion

The idea that there are nice combinatorial models for certain sheaves and cosheaves is
not new, but it is one that continues to generate useful insights. One of the first accounts
in this vein was Zeeman’s 1954 thesis [30, pp. 626-627], which developed a theory of
local coefficient systems that were modeled on the face-relation poset of a cell complex.
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Zeeman made allusions to Leray’s sheaf theory, but the connection with the sheaf axiom
was not made explicit. Although some of Zeeman’s contributions were forgotten, they
foreshadowed later results by Kashiwara [11] and, separately, Shepard [24], who was a
PhD student of MacPherson’s. Both Kashiwara and Shepard were concerned with a
full treatment of the derived category of sheaves that are constructible with respect to a
simplicial or cellular stratification and thus focused on sheaves valued in abelian categories.

At some point between 1984 and 2007, a parsimonious description of the category of
S -constructible sheaves, for stratifications (X, S) more general than simplicial or cellular,
must have emerged. Indeed, in Treumann’s 2007 thesis, he outlined an unpublished result
of MacPherson’s—that S -constructible sheaves valued in Set were equivalent to functors
from the exit path category into Set. Treumann’s thesis treated a 2-categorical analog
of this result [27] and by 2009, Jacob Lurie had already sketched an ∞-category version
of MacPherson’s result in “Derived Algebraic Geometry: Volume VI” [15]. Since then,
higher-categorical treatments of MacPherson’s insight have gained attention from multiple
authors—we refer to the introductory section of [2] on “exodromy for topological spaces”
for a more complete bibliography of this thread of development.

Despite all of the above work, this paper provides the first self-contained treatment of
MacPherson’s result in a 1-categorical setting, adapted to constructible cosheaves valued
in a bi-complete category. Our motivation to provide such a treatment comes from the
increased use of sheaves and cosheaves in applications outside of mathematics; see [4, 5,
18, 13, 17, 10] for some notable examples. We believe that having a presentation that uses
minimal technical overhead will lead other researchers to more creative uses of this theory.
Additionally, by rephrasing the constructibility hypothesis, our work suggests that an even
more immediate proof of MacPherson’s equivalence should be available: By localizing the
poset of open sets along the “associated to the same stratum” relation, one should be able
to produce the entrance path category directly. Such a proof, if possible, would provide a
conceptually minimal account of an observation that has inspired significant mathematics
over the course of many years.
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Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca

Anders Kock, University of Aarhus: kock@math.au.dk
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