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TRANSFER OF A GENERALISED GROUPOID ACTION
ALONG A MORITA EQUIVALENCE

GIORGI ARABIDZE

Abstract. Buss and Meyer define fibrations of topological groupoids and interpret a
groupoid fibration L → H with fibre G as a generalised action of H on G by groupoid
equivalences. My result shows that a generalised action of H on G may be transported
along a Morita equivalence G ∼ K to a generalised action of H on K, which is given
from a fibration R → H with fibre K. Furthermore, topological groupoids R and L are
Morita equivalent.

1. Introduction
Buss and Meyer explain the classical topological groupoid action by isomorphisms in [1].
A classical action of H on G consists of H-actions on G0 and G1 such that the source,
range (r, s : G1 ⇒ G0) and multiplication (m: G1×s,G0,rG1 → G1) maps are H-equivariant.
Then they build a transformation groupoid L := GoH for this classical action. Also, they
construct a special kind of continuous functor L → H, which is briefly called groupoid
fibration (Definition 2.1. [1]) such that G is the fibre of this fibration. They interpret any
groupoid fibration L→ H with fibre G as an action of H on G by groupoid equivalences.
Examples of groupoid fibrations also appear in [3]. Also, examples without a topological
structure you can find in [4] and [5].

My result answers the following question. Is it possible to transfer a generalised
groupoid action along a Morita equivalence? The answer is yes. If the groupoid that acts
is étale, this result is already done by Buss and Meyer in [2], using inverse semigroup
language. The construction in this paper works for any topological groupoid. If I have
two Morita equivalent topological groupoids G and K and a third topological groupoid H
which acts on G, then I can build an action of H on K. Here I mean generalised action in
the previous sentence. So it must be understood as follows: If I have a groupoid fibration
L→ H with fibre G and G and K are Morita equivalent, then I can construct a topological
groupoid R and a groupoid fibration R → H with fibre K such that L and R are Morita
equivalent.
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2. Construction of R
There are some equivalent ways to define Morita equivalence between topological group-
oids. One of them is used in this paper: Two topological groupoids G and K are equivalent
if and only if there exist a left G-action and a right K-action on the same topological space
and these actions are compatible. In more details:

2.1. Definition. Two topological groupoids G and K are Morita equivalent if and only
if there are a topological space X, anchor maps rX : X → G0 and sX : X → K0 and left
and right action maps mG : G1 ×s,G0,rX X→ X, (g, x) 7→ g · x, and mK : X×sX,K0,r K1 →
X, (x, k) 7→ x · k, such that the following properties are satisfied:

1. rX(g · x) = r(g), sX(g · x) = sX(x), ∀x ∈ X, ∀g ∈ G1 with s(g) = rX(x) and
sX(x · k) = s(k), rX(x · k) = rX(x), ∀x ∈ X, ∀k ∈ K1 with r(k) = sX(x);

2. mG and mK are associative:
g1 · (g2 · x) = (g1 · g2) · x, ∀x ∈ X, ∀g1, g2 ∈ G1 with

s(g2) = rX(x), s(g1) = r(g2);

(x · k1) · k2 = x · (k1 · k2), ∀x ∈ X, ∀k1, k2 ∈ K1 with

sX(x) = r(k1), s(k1) = r(k2);

g · (x · k) = (g · x) · k, ∀x ∈ X, ∀g ∈ G1, ∀k ∈ K1 with

s(g) = rX(x), r(k) = sX(x);

3. The following two maps are homeomorphisms:

ψG : G1 ×s,G0,rX X→ X×sX,K0,sX X, (g, x) 7→ (x, g · x);

ψK : X×sX,K0,r K1 → X×rX,G0,rX X, (x, k) 7→ (x, x · k);

4. sX and rX are open surjections.

2.2. Remark. Propositions A.2 and A.5 in [2] say that mG and mK are open surjections
and, also, x · 1s(x) = x and x · 1r(x) = x,∀x ∈ X.

2.3. Definition. Let L and H be topological groupoids. A groupoid fibration is a con-
tinuous functor F: L→ H (continuous maps Fi : Li → Hi for i = 0, 1 that intertwine r, s
and the multiplication maps), such that the map

(F1, s) : L1 → H1 ×s,H0,F0 L0 := {(h, x) ∈ H1 × L0 | s(h) = F0(x)} (1)

is an open surjection. Its fibre is the subgroupoid G of L defined by G0 = L0 and

G1 = {g ∈ L1 | F1(g) = 1F0(s(g))},

equipped with the subspace topology on G1 ⊆ L1. A generalised groupoid action of H on
G means a groupoid fibration F: L→ H with fibre G.
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2.4. Remark. Lemma 2.5 in [1] says that the fibre of a groupoid fibration is a topological
groupoid.

2.5. Example. Let H be any topological groupoid and let X be any topological space
equipped with a right H-action. Lemma 2.12 in [1] says that there is a groupoid fibration
from a transformation groupoid of this action X o H to H with fibre X,

X ↪→ X o H→ H.

The object space of this transformation groupoid is X and for all x1 and x2 belongs to
X we have HomXoH(x1, x2) = {h ∈ H1 | x1 · h = x2}. The composition in X o H is the
composition in H. The functor from a transformation groupoid to H is defined obviously,
and it is shown that this functor is a groupoid fibration between topological groupoids
and its fibre is a topological groupoid X without arrows.

2.6. Example. Let L be a topological groupoid and let α : L1×s,L0,rX X→ H be an open
and star surjective cocycle with values in the topological group H. Let us call such cocycle
an exact. The star surjective morphism between groupoids is defined in [4]. It is easy to
check that the exact cocycle is a groupoid fibration from the transformation groupoid to
the group of values. So we have a generalised groupoid action of the topological group on
the kernel of the exact cocycle.

Now we have all information that is needed to construct a topological groupoid R and
a groupoid fibration E: R → H with fibre K such that R and L are Morita equivalent.
Suppose that we have all data from Definitions 2.1 and 2.3.

We already know that the object space of the fibre and of the source of the fibration
are equal. So R0 = K0.

For finding an arrow space R1 we take the quotient of the topological space

X×rX,L0,s L1 ×r,L0,rX X = {(x, l, y)|rX(x) = s(l), rX(y) = r(l)}

by the following equivalence relation “∼”: The elements (x1, l1, y1) and (x2, l2, y2) of
X ×rX,L0,s L1 ×r,L0,rX X are equivalent if and only if there exist g1, g2 ∈ G1 such that
x2 = g1 ·x1, y2 = g2 ·y1 and l2 = g2 ·l1 ·g−1

1 . In this case I write: (x1, l1, y1) ∼g1,g2 (x2, l2, y2).

2.7. Proposition. The relation “∼”defined above is an equivalence relation.

Proof. Reflexivity holds: (x, l, y) ∼1s(l),1r(l) (x, l, y) because x = 1s(l) ·x, y = 1r(l) ·y and l =
1r(l) · l ·1−1

s(l). It is symmetric because if (x1, l1, y1) ∼g1,g2 (x2, l2, y2) then (x2, l2, y2) ∼g−1
1 ,g−1

2
(x1, l1, y1), and it is transitive because if (x1, l1, y1) ∼g1,g2 (x2, l2, y2) and (x2, l2, y2) ∼g′1,g′2
(x3, l3, y3) then (x1, l1, y1) ∼g′1·g1,g′2·g2 (x3, l3, y3).
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Because of this lemma, I can consider the quotient of X ×rX,L0,s L1 ×r,L0,rX X by “∼”.
The quotient space with the quotient topology will be the arrow space for the topological
groupoid R:

R1 = (X×rX,L0,s L1 ×r,L0,rX X)/∼.
Firstly, I have to define a groupoid structure on R1. Let us start by defining source

and range maps.
The source map: s : R1 → R0, [x, l, y] 7→ sX(x).
The range map: r : R1 → R0, [x, l, y] 7→ sX(y).
These maps are well-defined because if (x1, l1, y1) ∼g1,g2 (x2, l2, y2) then x2 = g1 ·x1 and

therefore sX(x1) = sX(x2) because of Definition 2.1. So the source map and analogously
the range map are well-defined.

I have to define the multiplication map from composable pairs of arrows to the arrow
space. If the arrows [x1, l1, y1] and [x2, l2, y2] are composable, then sX(y2) = sX(x1).
This means that (y2;x1) ∈ X ×sX,K0,sX X, so there is exactly one g ∈ G1 such that
ψG(g, y2) = (y2;x1), where ψG is the homeomorphism from Definition 2.1. Therefore, I
can define the composition of arrows in R1 in the following way:

m: R1 ×s,R0,r R1 → R1, ([x1, l1, y1]; [x2, l2, y2]) 7→ [x2, l1 · g · l2, y1].

I have to show that this map is well-defined. Let us consider two composable pair of arrows
([x1, l1, y1]; [x2, l2, y2]) and ([a1, l

′
1, b1]; [a2, l

′
2, b2]) in R1 ×s,R0,r R1 and let (x1, l1, y1) ∼g1,g2

(a1, l
′
1, b1) and (x2, l2, y2) ∼g′1,g′2

(a2, l
′
2, b2). Then it is easy to check that (x2, l1 · g ·

l2, y1) ∼g′1,g2 (a2, l
′
1 · g′ · l′2, b1), where x1 = g · y2 and a1 = g′ · b2. This means that

the multiplication map is well-defined.
The unit map is the following: u: R0 → R1, K 7→ [x, 1rX(x), x], where x is any element

in X which goes to K by sX. If (x; y) ∈ X×sX,K0,sX X then (x, 1rX(x), x) ∼g,g−1 (y, 1rX(y), y)
where y = g · x. So the unit map is well-defined.

The inverse map: i : R1 → R1, [x, l, y] 7→ [y, l−1, x].
If (x1, l1, y1) ∼g1,g2 (x2, l2, y2) then (y1, l

−1
1 , x1) ∼g−1

2 ,g−1
1

(y2, l
−1
2 , x2). So the inverse

map is well-defined.
It is easy to check that R with the maps (s, r,m, u, i) is a groupoid.

2.8. Proposition. The groupoid R with the maps (s, r,m, u, i) is a topological groupoid.

Proof. I have to check that the source and range maps are open surjections and that
the multiplication, unit and inverse maps are continuous.

I use the following well known fact: In a fibre product, a projection which is parallel
to an open surjection is an open surjection too. In our case, for example, the following
projection is an open surjection: pr2 : L1×r,L0,rX X→ X because it is parallel to the range
map of the topological groupoid L. Therefore, the following projection pr2 : (X ×rX,L0,s
L1) ×pr2,L1,pr1 (L1 ×r,L0,rX X) → L1 ×r,L0,rX X is an open surjection too. Also there is the
standard homeomorphism:

X×rX,L0,s L1 ×r,L0,rX X ∼= (X×rX,L0,s L1)×pr2,L1,pr1 (L1 ×r,L0,rX X).
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The composition of this homeomorphism, the two projections above and the anchor
map [(x, l, y) 7→ (x, l, l, y) 7→ (l, y) 7→ y 7→ sX(y)] is an open surjection, and it induces the
range map of the groupoid R after factorization by “∼” . Of course, an open surjection
induces an open surjection after factorization. Therefore, the range map is an open
surjection. Analogously, the source map is an open surjection.

Also, the map ((x1, l1, y1); (x2, l2, y2)) 7→ (x2, l1 · g · l2, y1), where x1 = g · y2, which
induces the multiplication map in the groupoid R after double fuctorization by “∼” ,
is continuous because it is induced by projection maps for some fibre product. So the
multiplication map is continuous too.

Because of almost the same reason the inverse map is continuous. Also, i · i = idR1 .
Therefore, it is an automorphism.

Now I need to show that the unit map is continuous. Let “'”be the relation on X such
that x ' y if and only if there is g ∈ G1 such that y = g · x. It is easy to check that this
is an equivalence relation. So we can consider the qoutient of X by “'”. Let us show that
X/' and R0 are homeomorphic by the map s̃X : [x] 7→ sX(x). It is well-defined because
if x ' y then y = g · x and sX(x) = sX(y) by Definition 2.1. s̃X is injective because if
s̃X([x]) = s̃X([y]) then sX(x) = sX(y), therefore (x, y) ∈ X×sX,K0,sX X, and this means that
there is a g ∈ G1 such that y = g · x because of the homeomorphism ψG from Definition
2.1. s̃X is an open surjection because it is induced by sX, which is an open surjection
by Definition 2.1. So s̃X is a homeomorphism. Therefore, the unit map is continuous if
the map [x] 7→ [x, 1rX(x), x] is continuous, and this is so because this map is induced by
the composition x 7→ (x, 1rX(x), x) 7→ [x, 1rX(x), x], and it is clear that this composition
is continuous. So I proved that the source and range maps are open surjections and the
multiplication, inverse and unit maps are continuous. So the groupoid R is a topological
groupoid.

3. Morita equivalence between R and L
So far, we have a topological groupoid R. Now I need to show that the topological
groupoids R and L are Morita equivalent.

3.1. Proposition. The topological groupoids R and L are Morita equivalent.

Proof. For proving this proposition we need a topological space Y equipped with a left
L-action and a right R-action. Firstly, let us construct the topological space Y. Consider
the topological space L1×s,L0,rX X with the following relation “h” on it: (l, x) and (l1, y)
are equivalent if and only if there is g ∈ G1 such that l = l1 · g−1 and y = g · x. It is
easy to check that “h” is an equivalence relation. So we can consider the quotient of
L1 ×s,L0,rX X by “h” and let Y = (L1 ×s,L0,rX X)/h equipped with the quotient topology.

For defining the left L-action on Y we need an anchor map rY : Y→ L0. Let rY([l, x]) =
r(l). This anchor map is well-defined because if (l, x) h (l1, y) then for some g ∈ G1 we
have l = l1 · g−1 for some g ∈ G1 and by the multiplication rule in the groupoid we have
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that r(l1) = r(l1 · g) = r(l). So rY is well-defined. Now, we need an action map:
mL : L1 ×s,l0,rY Y→ Y : (l1, [l, x]) 7→ [l1 · l, x].

It is well-defined because if (l, x) h (l0, y) by g then g · x = y and l0 · g = l, therefore
l1 · l0 ·g = l1 · l and this means that (l1 · l, x) h (l1 · l0, y) by g. Also, mL must be associative
and it is so because

l2 · (l1 · [l, x]) = l2 · [l1 · l, x]
= [l2 · l1 · l, x]
= (l2 · l1) · [l, x].

We have to check one more property wich is required in the definition of groupoid action.
This is

rY(l1 · [l, x]) = rY[l1 · l, x]
= r(l1 · l)
= r(l1).

The last step for showing that we have a topological groupoid action is making sure that
the action map is continuous. It is clear that this action map mL is continuous because
it is the composition of some quotient maps and maps which are induced by projections
or multiplication maps in some fibre products.

For defining the right R-action on Y we need an anchor map sY : Y → R0. Let
sY([l, x]) = sX(x). This anchor map is well-defined because if (l, x) h (l1, y) then for some
g ∈ G1 we have: y = g · x and by Definition 2.1 we have that sX(y) = sX(g · x) = sX(x).
So sX is well-defined. Now, we need an action map:

mR : Y ×sY,R0,r R1 → Y : ([l1, x1], [x, l, y]) 7→ [l1 · g · l, x],
where g is an element from G1 such that x1 = g · y, such element exists because for
any element ([l1, x1], [x, l, y]) in Y ×sY,R0,r R1 we have sX(x1) = sX(y), therefore (y, x1) ∈
X ×sX,K0,sX X and because of the homeomorphism ψG in Definition 2.1 we have such
g ∈ G1. I have to show that this action map is well-defined. Let (x, l, y) ∼g1,g2 (x̂, l̂, ŷ)
and (l1, x1) h (l̂1, x̂1) by g3, then

x̂ = g1 · x, ŷ = g2 · y, x̂1 = g3 · x1, l̂ = g2 · l · g1
−1, l̂1 = l1 · g3

−1.

The associativity of mG implies

(g3 · g · g2
−1) · ŷ = (g3 · g) · (g2

−1 · ŷ)
= (g3 · g) · y
= g3 · (g · y)
= g3 · x1

= x̂1.
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This means that [l̂1, x̂1] · [x̂, l̂, ŷ] = [l̂1 · g3 · g · g2
−1 · l̂, x̂]. Also, l̂1 · g3 · g · g2

−1 · l̂ · g1 = l1 · g · l.
Therefore, (l1 · g · l, x) h (l̂1 · g3 · g · g2

−1 · l̂, x̂) by g1, so [l1, x1] · [x, l, y] = [l̂1, x̂1] · [x̂, l̂, ŷ].
The action map mR is well-defined. As in case of mL we can say the same. This action
map mR is continuous because it is a composition of some quotient maps and maps which
are induced by projections or multiplication maps in some fibre products.

Also, it must be associative:

[x, l] · ([x1, l1, y1] · [x2, l2, y2]) = [x, l] · [x2, l1 · g1 · l2, y1]
= [l · g · l1 · g1 · l2, x2]
= [l · g · l1, x1] · [x2, l2, y2]
= ([l, x] · [x1, l1, y1]) · [x2, l2, y2],

where x1 = g1 · y2 and x = g · y1. Also we have one more required property:

sY([l, x] · [x1, l1, y1]) = sY(l · g · l1, x1)
= sX(x1)
= s([x1, l1, y1]).

So we have a left L-action and a right R-action on the topological space Y. For making
sure that the topological groupoids R and L are Morita equivalent we have to show that
three more required properties are satisfied:

First: The anchor maps sY and rY must be open surjections. From the fibre product
L1×s,L0,rX X both projections are open surjections because they are parallel to the source
map s and the anchor map rX, which are open surjections by definition. Also, the range
map in the topological groupoid L and the anchor map sX are open surjections by defi-
nition. Therefore, sY and rY are both open surjections because they are induced by the
following compositions of open surjections: sX ◦ pr2 and r ◦ pr1, respectively.

Second: The anchor map sY must be L-equivariant, the anchor map rY must be
R-equivariant and we need mixed associativity of the action maps. We have

sY(l1 · [l, x]) = sY([l1 · l, x])
= sX(x)
= sY([l, x])

and

rY([l, x] · [x1, l1, y1]) = rY([l · g · l1, x1])
= r(l · g · l1)
= r(l)
= rY([l, x]),



1556 GIORGI ARABIDZE

where x = g · y1. Also,

l̂ · ([l, x] · [x1, l1, y1]) = l̂ · [l · g · l1, x1]
= [l̂ · l · g · l1, x1]
= [l̂ · l, x] · [x1, l1, y1]
= (l̂ · [l, x]) · [x1, l1, y1].

Third: We need to show that the following two maps are homeomorphisms:

ψL : L1 ×s,L0,rY Y→ Y ×sY,R0,sY Y, (l1, [l, x]) 7→ ([l, x], l1 · [l, x]).

ψR : Y ×sY,R0,r R1 → Y ×rY,L0,rY Y, ([l, x], [x1, l1, y1]) 7→ ([l, x], [l, x] · [x1, l1, y1]).
First of all we, ψL and ψR are continuous because of the same reasons as in many cases

above, they are induced by various continuous maps. Also, we can directly name inverses
of both maps, which are continuous for the same reasons.

ψL
−1 : Y ×sY,R0,sY Y→ L1 ×s,L0,rY Y, ([l, x], [l1, x1]) 7→ (l1 · g · l−1, [l, x]),

where x1 = g · x. Also we have inverse of ψR

ψR
−1 : Y ×rY,L0,rY Y→ Y ×sY,R0,r R1, ([l, x], [l1, x1]) 7→ ([l, x], [x1, l

−1 · l1, x]).

Let us consider the compositions:

ψL(ψL
−1([l, x], [l1, x1])) = ψL(l1 · g · l−1, [l, x])

= ([l, x], l1 · g · l−1 · [l, x])
= ([l, x], [l1 · g · l−1 · l, x])
= ([l, x], [l1 · g, x]).

It is clear that (l1, x1) h (l1 · g, x) by g. Thus ψL ◦ ψL
−1 = id(Y×rY,L0,rY

Y).
Also,

ψL
−1(ψL(l1, [l, x])) = ψL

−1([l, x], l1 · [l, x])
= ψL

−1([l, x], [l1 · l, x])
= (l1 · l · 1rX(x) · l−1, [l, x])
= (l1, [l, x]).

So ψL
−1 ◦ ψL = id(L1×s,L0,rY

Y) and we have that ψL is a homeomorphism.
Now, let us check the same in the case of ψR.

ψR(ψR
−1([l, x], [l1, x1])) = ψR([l, x], [x1, l

−1 · l1, x])
= ([l, x], [l, x] · [x1, l

−1 · l1, x])
= ([l, x], [l · 1rX(x) · l−1 · l1, x1])
= ([l, x], [l1, x1]).



TRANSFER OF A GROUPOID ACTION ALONG A MORITA EQUIVALENCE 1557

So ψR ◦ ψR
−1 = id(Y×rY,L0,rY

Y).
Also,

ψR
−1(ψR([l, x], [x1, l1, y1])) = ψR

−1([l, x], [l, x] · [x1, l1, y1])
= ψR

−1([l, x], [l · g · l1, x1])
= ([l, x], [x1, l

−1 · l · g · l1, x])
= ([l, x], [x1, g · l1, x]).

It is cleare that (x1, l1, y1) ∼1rX(x1),g (x1, g · l1, x). Therefore ψL
−1 ◦ ψL = id(Y×sY,R0,rR1).

So ψL and ψR are homeomorphisms. We proved all required properties and, therefore,
the topological groupoids R and L are Morita equivalent.

4. Construction of fibration from R to H
Our main goal is to transfer a generalised action of H on G to a generalised action of H on
K. We already have the topological groupoid R. The last step is to construct a fibration
E from R to H with fibre K.

We need a continuous map E1 from R1 to H1. Suppose that we have all data from
Definition 2.3. Define E1 by:

E1 : R1 → H1 [x, l, y] 7→ F1(l).

E1 is well-defined because if (x1, l1, y1) ∼g1,g2 (x2, l2, y2) then

E1([x2, l2, y2]) = F1(l2)
= F1(g2 · l1 · g−1

1 )
= F1(g2) · F1(l1) · F1(g−1

1 )
= F1(l1)
= E1([x1, l1, y1]).

Here I use that the elements g1 and g2 belongs to G1, the arrow space of fibre of fibration F.
Therefore, they go to the identity elements in H1.

E1 is continuous because it is a composition of the continuous map F1 and a map
which is induced by a projection map.

The map E0 : R0 → H0 is defined by the following way: E0 = s ◦E1 ◦ u, where u is the
unit map in R and s is the source map in H. This automatically means that E1 and E0

intertwine the sorce maps of the groupoids R and H. Also, we have to check that they
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intertwine the multiplication maps.

E1([x1, l1, y1] · [x2, l2, y2]) = E1([x2, l1 · g · l2, y1])
= F1(l1 · g · l2)
= F1(l1) · F1(g) · F1(l2)
= F1(l1) · F1(l2)
= E1([x1, l1, y1]) · E1([x2, l2, y2]),

where g is an element from the fibre of F such that x1 = g · y2.
So we have a continuous functor E: R → H.

4.1. Proposition. The continuous functor E: R → H defined above is a fibration be-
tween topological groupoids.

Proof. For proving this lemma we have to show that the map

(E1, s) : R1 → H1 ×s,H0,E0 R0 := {(h, x) ∈ H1 × R0 | s(h) = E0(x)} (2)

is an open surjection.
Firstly, let us show that the map

(F1, idX) : L1 ×s,L0,rX X→ H1 ×s,H0,F0◦rX X, (l, x) 7→ (F1(l), x),

is an open surjection.
It is easy to check that there is a fibre product diagram:

L1 H1 ×s,H0,F0 L0(F1,s) //

L1 ×s,L0,rX X

L1

pr1

��

L1 ×s,L0,rX X H1 ×s,H0,F0◦rX X(F1,idX) // H1 ×s,H0,F0◦rX X

H1 ×s,H0,F0 L0

(idH1 ,rX)

��

Therefore (F1, idX) is an open surjection because it is a pull-back of (F1, s) which is an
open surjection because of Definition 2.3.

Also, we have one more fibre product diagram:

H1 ×s,H0,E0 R0 R0pr2 //

H1 ×s,H0,F0◦rX X

H1 ×s,H0,E0 R0

(idH1 ,sX)

��

H1 ×s,H0,F0◦rX X X
pr2 // X

R0

sX

��

So (idH1 , sX) is an open surjection because it is a pull-back of sX which is an open surjection
because of Definition 2.1.
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Also, the projection pr1 : X ×rX,L0,s L1 ×r,L0,rX X → X ×rX,L0,s L1 is an open surjection
because it is a pull-back of rX, which is an open surjection. There is an obvious homeo-
morphism c : X ×rX,L0,s L1 → L1 ×s,L0,rX X, (x, l) 7→ (l, x), which is an open surjection,
of course. So the composition

α = (idH1 , sX) ◦ (F1, idX) ◦ c ◦ pr1 : X×rX,L0,s L1 ×r,L0,rX X→ H1 ×s,H0,E0 R0

(x, l, y) 7→ (x, l) 7→ (l, x) 7→ (F1(l), x) 7→ (F1(l), sX(x)),
is an open surjection. It is easy to see that the map (E1, s) : R1 → H1×s,H0,E0 R0 is induced
by α. So (E1, s) : R1 → H1 ×s,H0,E0 R0 is an open surjection. Therefore, the continuous
functor E: R → H is a fibration between topological groupoids.

Now, we need to show that the fibre of the groupoid fibration E: R → H is isomorphic
to the topological groupoid K. The element [x, l, y] of R1 goes to F1(l) in H1 by the
fibration E1. This means that the element [x, l, y] of R1 goes to an identity element in
H1 by the fibration E1 if and only if l goes to an identity element in H1 by F1. But the
fibre of F1 is the topological groupoid G. Therefore, the element [x, l, y] of R1 goes to an
identity element in H1 by the fibration E1 if and only if l belongs to G1. So the fibre of
the groupoid fibration E: R → H is the subgroupoid of R with the following arrow space:

(X×rX,L0,s G1 ×r,L0,rX X)/∼,

where the equivalence relation “∼” is the same as in Proposition 2.7. We already know
that this fibre is a topological groupoid.

4.2. Theorem. The groupoid fibration E: R → H constructed above gives a generalised
groupoid action of H on K. Farthermore, R and L are Morita equivalent.
Proof. we need to show the following lemma:

4.3. Lemma. The fibre of the topological groupoid fibration E: R → H is homeomorphic
to the topological groupoid K.
Proof. Let us consider any element [x, g, y] in the arrow space of the fibre of the groupoid
fibration E: R → H. We know that rX(x) = s(g) and rX(y) = r(g). Therefore rX(g · x) =
rX(y). Thus (g · x, y) belongs to X ×rX,G0,rX X. Let ψK

−1(g · x, y) = (g · x, k), where ψ is
the homeomorphism from Definition 2.1. It is useful to see that ψK

−1(g · x, y) = (g · x, k)
if and only if y = g ·x ·k. We need this element k to construct a homeomorphism between
the arrow space of the fibre of the groupoid fibration E: R → H and the arrow space of
the topological groupoid K. So we have the following composition:

pr2 ◦ ψK
−1 ◦ (mG ◦ (pr2, pr1), pr3) : X×rX,L0,s G1 ×r,L0,rX X→ K1,

(x, g, y) 7→ (g · x, y) 7→ (g · x, k) 7→ k,

we need to show that this composition is an open surjection. ψK
−1 is open surjection

because it is a homeomorphism. pr2 : X×sX,K0,r K1 → K1 is an open surjection because it
is a pull-back of sX : X→ K0, which is an open surjection by Definition 2.1.
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For proving that the following map

(mG ◦ (pr2, pr1), pr3) : X×rX,L0,s G1 ×r,L0,rX X→ X×rX,G0,rX X, (x, g, y) 7→ (g · x, y)

is an open surjection we need to check that the following diagram is a fibre product:

G1 ×s,G0,rX X X
mG //

X×rX,L0,s G1 ×r,L0,rX X

G1 ×s,G0,rX X

(pr2,pr1)

��

X×rX,L0,s G1 ×r,L0,rX X X×rX,K0,rX X(mG◦(pr2,pr1),pr3) // X×rX,K0,rX X

X

pr1

��

and we will make sure that (mG ◦ (pr2, pr1), pr3) is an open surjection because it is a
pull-back of mG : G1 ×s,G0,rX X→ X, which is an open surjection because of Remark 2.2.
So the composition pr2 ◦ ψK

−1 ◦ (mG ◦ (pr2, pr1), pr3) is an open surjection.
This composition induces the map ω between the arrow space of the fibre of the

groupoid fibration E: R → H and the arrow space of the groupoid K. So we have

ω : (X×rX,L0,s G1 ×r,L0,rX X)/∼ → K1 [x, g, y] 7→ k.

We have to show that ω is a homeomorphism. Firstly, let us show that ω is well-defined.
Let (x, g, y) ∼g1,g2 (x̂, ĝ, ŷ) and ω([x, g, y]) = k, therefore, we have the following equalities:

x = g1
−1 · x̂, g2 · y = ŷ, g2 · g · g1

−1 = ĝ, g · x = y · k−1.

Thus

ŷ · k−1 = (g2 · y) · k−1

= g2 · (y · k−1)
= g2 · (g · x)
= (g2 · g) · x
= (g2 · g) · (g1

−1 · x̂)
= (g2 · g · g1

−1) · x̂
= ĝ · x̂.

So ŷ · k−1 = ĝ · x̂, and this means that ω([x̂, ĝ, ŷ]) = k. So ω is well-defined. ω is an open
surjection because it is induced by an open surjection. If we prove that it is an injection,
then it will be a homeomorphism automaticaly.

Let ω([x, g, y]) = ω([x̂, ĝ, ŷ]) = k. So y = g · x · k and ŷ = ĝ · x̂ · k. Thus

sX(x) = r(k)
= sX(x̂)



TRANSFER OF A GROUPOID ACTION ALONG A MORITA EQUIVALENCE 1561

and (x, x̂) ∈ X×sX,K0,sX X. Because of the homeomorphism ψK there is exactly one element
g1 ∈ G1 such that x̂ = g1 · x. Also,

sX(y) = s(k)
= sX(ŷ),

hence (y, ŷ) ∈ X ×sX,K0,sX X. Because of the homeomorphism ψK there is exactly one
element g2 ∈ G1 such that ŷ = g2 · y. So we have

ĝ · x̂ · k = ŷ

= g2 · y
= g2 · (g · x · k)
= (g2 · g) · (x · k)
= (g2 · g) · ((g1

−1 · x̂) · k)
= (g2 · g · g1

−1) · x̂ · k.

So ĝ · x̂ · k = (g2 · g · g1
−1) · x̂ · k. Hence ĝ · x̂ = (g2 · g · g1

−1) · x̂. Therefore

(ĝ, x̂) = ψG
−1(x̂, ĝ · x̂)

= ψG
−1(x̂, (g2 · g · g1

−1) · x̂)
= (g2 · g · g1

−1, x̂).

So ĝ = g2 · g · g1
−1 and therefore (x, g, y) ∼g1,g2 (x̂, ĝ, ŷ), thus [x, g, y] = [x̂, ĝ, ŷ]. So ω is

an injection and, therefore, it is a homeomorphism.
So we have the homeomorphism ω between the arrow space of the fibre of the groupoid

fibration E: R → H and the arrow space of the groupoid K. We need a homeomorphism
which is compatible with the groupoid structures in both groupoids. Such a homeomor-
phism is the composition W = i ◦ ω where i is the inverse map in the groupoid K. It is
clear that this composition is a homeomorphism too. Let us show that it intertwines the
range, source and multiplication maps.

Let W ([x, g, y]) = k. This means that y = g · x · k−1. Therefore,

s(k) = r(k−1)
= sX(x)
= s([x, g, y]).

So W intertwines the source map. Analogously,

r(k) = s(k−1)
= sX(y)
= r([x, g, y])

and the range map is intertwined too.
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Let us check the same for the multiplication map. Let ([x, g, y], [x1, g1, y1]) be any
composable pair of arrows in R and [x, g, y]◦[x1, g1, y1] = [x1, g◦g2◦g1, y] where x = g2 ·y1.
Let W ([x, g, y]) = k and W ([x1, g1, y1]) = k1. So we have the following: y · k = g · x and
y1 ·K1 = g1 · x1. Therefore,

y · (k · k1) = (y · k) · k1

= (g · x) · k1

= (g · (g2 · y1)) · k1

= g · g2 · (y1 · k1)
= g · g2 · (g1 · x1)
= (g · g2 · g1) · x1.

So we have y · (k · k1) = (g · g2 · g1) · x1 and this means that W ([x1, g ◦ g2 ◦ g1, y]) = k · k1.
So the multiplication map is intertwined.

Finally, we have a natural homeomorphism between the arrow space of the fibre of the
groupoid fibration E: R → H and the arrow space of the groupoid K and therefore, these
topological groupoids are homeomorphic.

So because of this lemma we can say that we have a generalised groupoid action of a
topological groupoid H on a topological groupoid K.

The second part of this theorem is proved in Proposition 3.1, which finishes the main
theorem.

5. Examples
There are some interesting examples which show us how we can construct a generalised
groupoid action through a groupoid fibration in some special cases.

5.1. Example. Let H be any topological groupoid and let p : X→ Y be an open surjec-
tion onto a topological space Y equipped with a right H-action. Then we can construct a
generalised groupoid action of H on the Čech groupoid of p in the following way. Example
2.5 shows a groupoid fibration from the transformation groupoid of this action to H with
fibre Y. Also, we know that the topological groupoid Y and the Čech groupoid of p are
Morita equivalent by the topological space X. The main construction in this paper gives
a topological groupoid R which is Morita equivalent to the tranformation groupoid and
a fibration from R to H such that the Čech groupoid of p is the fibre of this fibration. By
construction the object space of R is X and for all x1 and x2 in X we have

HomR(x1, x2) = {h ∈ H1 | h · p(x1) = p(x2)}.

5.2. Example. Let H be any topological group and X be any topological space. Then
we can construct a generalised groupoid action of H on the pair groupoid of X. It is
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easy to check that the identity map id : H → H is a groupoid fibration with fibre {1}.
We know that the pair groupoid of X is Morita equivalent to {1} by the space X. The
main construction in this paper gives a topological groupoid R Morita equivalent to H
with a functor from R to H which is a fibration between topological groupoids with fibre
the pair groupoid of X. The object space of R is X and for all x1 and x2 in X we have
HomR(x1, x2) = H.
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