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FILTERED COCATEGORIES

VOLODYMYR LYUBASHENKO

Abstract. We recall the notions of a graded cocategory, conilpotent cocategory, mor-
phisms of such (cofunctors), coderivations and define their analogs in L-filtered set-
ting. The difference with the existing approaches: we do not impose any restriction on
Λ-modules of morphisms (unlike Fukaya and collaborators), we consider a wider class
of filtrations than De Deken and Lowen (including directed groups L). Results for com-
pleted filtered conilpotent cocategories include: cofunctors and coderivations with value
in completed tensor cocategory are described, a partial internal hom is constructed as
the tensor cocategory of certain coderivation quiver, when the second argument is a
completed tensor cocategory.

Introduction. The subject of usual (non-filtered) A∞-categories is absorbed to some
extent by the subject of dg-categories since any non-filtered A∞-category is equivalent to
a dg-category. On the other hand, A∞-categories arising in symplectic geometry (Fukaya
categories) are naturally R-filtered. Hence the necessity to study filtered A∞-categories
per se. Such a study began in works of Fukaya (e.g. [Fukaya, 2002]) continued in his works
with Oh, Ohta and Ono (e.g. [Fukaya, Oh, Ohta, Ono, 2009]). The restriction imposed in
these works (dictated by the geometric origin of Fukaya categories) is that the modules of
morphisms are torsion free over a graded commutative filtered ring Λ, the Novikov ring.
The various freeness requirements are removed in the approach of [De Deken, Lowen,
2018]. However, they work with L-filtered modules, where the commutative monoid L
has partial ordering such that the neutral element 0 is the smallest element of L. For
instance, such is L = R>0, but not L = R.

Here we relax the conditions on partially ordered commutative monoid L, whose ele-
ments index the filtration, thereby including directed groups. And we keep the feature of
not necessarily torsion free modules of morphisms. Thus we combine the features of works
of Fukaya, Oh, Ohta and Ono on the one hand and of works of De Deken and Lowen on
the other. I hope that this combination will be useful for articles on Homological Mirror
Conjecture of [Kontsevich, 1995].

In the present article we deal mostly with a predecessor of A∞-categories – L-filtered
Z-graded cocategories A over a graded commutative complete L-filtered ring Λ. Among
A we distinguish conilpotent cocategories a, especially, tensor quivers Tb with cut co-
multiplication, and their completions â and T̂b, respectively. The completions are taken
with respect to the uniform structure coming from the filtration. The uniform structure
is one of the tools we use in the study of filtered cocategories. Our results include a
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description of morphisms (cofunctors) from a completed conilpotent cocategory â to T̂b.
Furthermore, we describe coderivations between such cofunctors. We define a partial in-
ternal hom between completed conilpotent cocategories. Partial because the considered
second arguments are only of the form T̂b. This internal hom is the tensor cocategory
of a coderivation quiver. The latter has cofunctors as objects and coderivations as mor-
phisms. We define also the evaluation cofunctor and prove its property which justifies
the name of evaluation. Composition of cofunctors T̂a → T̂b → T̂ c extends to composi-

tion (cofunctor) of internal homs. When the source T̂ sA and the target T̂ sB are filtered
A∞-categories (equipped with a differential of degree 1 preserving the filtration), so is the
coderivation quiver (up to a shift).
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2 Filtered cocategories 1738
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Plan of the article. In the first section we deal with non-filtered graded cocategories.
To some extent this is a recollection of [Lyubashenko, 2003] and serves as an introduction
to the filtered case. The new exposition differs from [Lyubashenko, 2003] in the use of
conilpotent cocategories as a source instead of tensor categories. Also the proofs of the
main results (Proposition 1.14) are new.

The second section is devoted to the main subject – L-filtered Z-graded cocategories,
especially, to completed conilpotent cocategories. We begin with conditions on a com-
mutative partially ordered monoid L. We study (complete) L-filtered Z-graded abelian
groups and later (complete) L-filtered Λ-modules (Section 2.8), where Λ is a graded
commutative complete L-filtered ring, for instance, the universal Novikov ring. In Sec-
tion 2.11 we define completed conilpotent cocategories and their morphisms (cofunctors).
We describe cofunctors with values in a completed tensor cocategory in Theorem 2.23.
In Section 2.30 we study coderivations, in particular, in Proposition 2.32 we describe
coderivations with values in a completed tensor cocategory. In Section 2.37 we define the
evaluation cofunctor and prove in Theorem 2.38 its property, which justifies the name of
evaluation.

In the third section we apply these results to differential graded completed tensor
cocategories also known as filtered A∞-categories. We prove in Proposition 3.2 that the
coderivation quiver for two filtered A∞-categories is a filtered A∞-category itself (up to a
shift). Examples are given.

Conventions. We work in Tarski–Grothendieck set theory originated in [Tarski, 1939].
In this theory everything is a set (or an element of a set) and any set is an element of
some Grothendieck universe. In particular, any universe is an element of some (bigger)
universe.
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Let V be a symmetric monoidal category. By a lax plain/symmetric/braided monoidal
V-category C we mean a V-category equipped with ⊗I , λf , ρL with the properties listed
in [Bespalov, Lyubashenko, Manzyuk, 2008, Definition 2.10] (the one with natural trans-
formations λf : ⊗i∈IMi → ⊗j∈J ⊗i∈f

−1j Mi for non-decreasing/arbitrary/arbitrary map
of finite ordered sets f : I → J). The same notion bears the name ’oplax‘ in the works of
Day, Street, Leinster, Schwede, Shipley and many other authors. Any finite ordered set
I is isomorphic to n = {1 < 2 < · · · < n} for a unique n > 0. In order to reduce the data

we assume that ⊗I =
(
CI ∼= Cn

⊗n→ C); λf identifies with λg, where f : I → J is a map
of finite ordered sets and g : n→m comes from the commutative square

I
∼= → n

J

f
↓ ∼= →m

g

↓

ρL for 1-element set L reduces to ρ1 : ⊗1 → Id. This reduction is used only for easier
writing and one can get rid off it whenever needed. Similarly, in the definition of a
(V)-multicategory C we assume that C((Mi)i∈I ;N) = C(Mφ(1), . . . ,Mφ(n);N) for the only
non-decreasing bijection φ : n→ I, with the corresponding requirement on compositions
for C. Summing up, the notion reduces to I ∈ {n | n ∈ Z>0} and we may simply write
C(M1, . . . ,Mn;N). The results of the article extend obviously to the picture indexed by
arbitrary finite ordered sets, which is anyway isomorphic to the picture in which only n
are used as indexing sets.

Composition of two morphisms of certain degrees f : X → Y and g : Y → Z is mostly
denoted fg = f · g. When the sign issues are irrelevant the composition may be denoted
gf = g ◦ f . Applying a mapping f of certain degree to an element x of certain degree
we typically write xf = (x)f . When there are no sign issues the same may be written as
fx = f(x).

Acknowledgement. I am really grateful to Kaoru Ono for explaining the geometric
side of Fukaya categories.

1. Conilpotent cocategories

Let V be the complete additive symmetric monoidal category with small coproducts and
directed colimits V = gr = grΛ = Λ-mod, where Λ is a Z-graded commutative ring,
Λ-mod means the category of Z-graded abelian groups which are also Λ-modules (and
the action Λ ⊗M → M has degree 0). Besides these properties sometimes we use also
that V is closed symmetric monoidal. Examples of Λ are the universal Novikov ring
Λ0,nov(R) and its localization Λnov(R), see [Fukaya, Oh, Ohta, Ono, 2009, §1.7 (Conv. 4)].
Left Λ-modules are viewed as commutative Λ-bimodules, ±mλ ≡ µτ(λ ⊗m) = λm. In
general, commutativity is considered with respect to the symmetry τ(x⊗y) = (−)xyy⊗x =
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(−1)deg x·deg yy⊗ x. Thus, (V,⊗,1, τ,V) means (grΛ,⊗Λ,Λ, τ,gr), where the inner hom is

gr(M,N)d = {f ∈
∏
n∈Z

Ab(Mn, Nn+d) | ∀n ∈ Z ∀p ∈ Z ∀λ ∈ Λp λf = fλ : Mn → Nn+d+p}.

1.1. Definition. A V-quiver a is a set of objects Ob a and an object a(X, Y ) ∈ ObV

given for each pair of objects X, Y ∈ Ob a. The category of V-quivers V-Quiv has as
morphisms f : a → b collections consisting of a map f = Ob f : Ob a → Ob b and
morphisms f : a(X, Y )→ b(fX, fY ) for each pair of objects X, Y ∈ Ob a.

1.2. Example. Let S be a set. One forms a V-quiver 1S with Ob1S = S,

1S(X, Y ) =

{
1, if X = Y,

0, if X 6= Y.

A mapping f : S → Q induces a quiver morphism 1f : 1S → 1Q with Ob1f = f and
1f = id1 : 1S(X,X)→ 1Q(fX, fX) for any X ∈ S.

The category V-Quiv is symmetric monoidal with the tensor product �

Ob a� b = Ob a×Ob b,

(a� b)((A,B), (A′, B′)) = a(A,A′)⊗ b(B,B′).

The unit object quiver 1 has one-element set Ob1 = {∗} and 1(∗, ∗) = 1. The sym-
metry comes from that of V. Since the symmetric monoidal category V is closed, so is
V-Quiv with inner hom object V-Quiv(a, b), which is the V-quiver with ObV-Quiv(a, b) =
Set(Ob a,Ob b), and for any pair of maps f, g : Ob a→ Ob b

V-Quiv(a, b)(f, g) =
∏

X,Y ∈Ob a

V(a(X, Y ), b(fX, gY )).

The evaluation morphism ev : a�V-Quiv(a, b)→ b (the adjunct of 1V-Quiv(a,b)) is given by

(X, f) 7→ fX,

a(X, Y )⊗
∏

X′,Y ′∈Ob a

V(a(X ′, Y ′), b(fX ′, gY ′))
1⊗prX,Y→

a(X, Y )⊗ V(a(X, Y ), b(fX, gY ))
ev→ b(fX, gY ).

By definition there is a functor Ob : V-Quiv → Set, a 7→ Ob a. Consider the fiber
V-QuivS of this functor over a set S, that is,

ObV-QuivS = {a ∈ V-Quiv | Ob a = S},
MorV-QuivS = {f ∈ MorV-Quiv | Ob f = idS}.

Since V is abelian, so is V-QuivS being isomorphic to VS×S.
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1.3. Definition. The category V-QuivS is monoidal with the tensor product ⊗

(a⊗ b)(X,Z) =
∐
Y ∈S

a(X, Y )⊗ b(Y, Z),

and the unit object 1S.

For an arbitrary V-quiver a we denote T na = a⊗n ∈ V-QuivOb a, n > 0, T 0a = 1Ob a =
1a. We use 1a as a shorthand for 1Ob a and 1f as a shorthand for 1Ob f , where f is a
morphism of quivers.

Let a1, . . . , an, b1, . . . , bn be V-quivers with Ob a1 = · · · = Ob an = S, Ob b1 =
· · · = Ob bn = Q. Let fi : ai → bi, 1 6 i 6 n, be morphisms of quivers such that
Ob fi = f : S → Q. Then the following morphism is well-defined

f1 ⊗ · · · ⊗ fn : a1 ⊗ · · · ⊗ an → b1 ⊗ · · · ⊗ bn,

Ob f1 ⊗ · · · ⊗ fn = f,

f1 ⊗ · · · ⊗ fn =
[ ∐
X1,...,Xn−1∈S

a1(X0, X1)⊗ · · · ⊗ an(Xn−1, Xn)
f1⊗···⊗fn→∐

X1,...,Xn−1∈S

b1(fX0, fX1)⊗ · · · ⊗ bn(fXn−1, fXn)
(infX1,...,fXn−1

)X1,...,Xn−1∈S→∐
Y1,...,Yn−1∈Q

b1(fX0, Y1)⊗ · · · ⊗ bn(Yn−1, fXn)
]
. (1.1)

In the case n = 0 (when a map f : S → Q is given) f1 ⊗ · · · ⊗ fn is the morphism
1f : 1S → 1Q.

1.4. Definition. A cocategory c is a coalgebra in the monoidal category V-QuivS. Of
course, S = Ob c. In other words, c is a V-quiver equipped with a coassociative comul-
tiplication ∆ : c → c ⊗ c and the counit ε : c → 1c which satisfies the usual counitality
equations. Morphisms of cocategories (cofunctors) f : b→ c are morphisms of V-quivers
compatible with the comultiplication and the counit in the sense that

b
f → c

=

b⊗ b

∆
↓

f⊗f→ c⊗ c

∆

↓
,

b
f → c

=

1b

ε
↓

1f → 1c

ε
↓

. (1.2)

The category of cocategories is denoted coCat.

1.5. Example. For any set S the V-quiver 1S is a cocategory with the identity morphism
id1S as ε and the isomorphism ∆ : 1S → 1S⊗1S, coming from the canonical isomorphism
1 ∼= 1⊗ 1.
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1.6. Definition. An augmented cocategory c is a coalgebra morphism η : 1c → c in
V-QuivOb c. Morphisms of augmented cocategories f : b→ c are morphisms of cocategories
compatible with the augmentation, that is,

1b
1f → 1c

=

b

η
↓

f → c

η

↓
(1.3)

The category of augmented cocategories is denoted acCat.

Notice that Ob η = idOb c for an augmented cocategory c. It follows from (1.2) that
η · ε = 1c.

Recall that the category V = gr is idempotent complete. An augmented cocategory c
splits into a direct sum c = 1c⊕ c̄ in V-QuivOb c so that ε becomes pr1 and η becomes in1.
A non-counital comultiplication, induced on c̄,

∆̄ = ∆− η ⊗ 1− 1⊗ η : c̄→ c̄⊗ c̄ ∈ V-QuivOb c (1.4)

is coassociative. In fact, pr2 : c → c̄ identifies with the canonical projection π : c →
Coker η = c/ Im η and ∆̄ can be found from

c
∆ → c⊗ c

=

c̄

π
↓

∆̄ → c̄⊗ c̄

π⊗π
↓

(1.5)

1.7. Definition. An augmented cocategory c is called conilpotent when (c̄, ∆̄) is conilpo-
tent, that is, ⋃

n>1

Ker(∆̄(n) : c̄→ c̄⊗n) = c̄.

The full subcategory of acCat whose objects are conilpotent cocategories is denoted ncCat.

1.8. Example. For an arbitrary V-quiver a there is the tensor quiver Ta =
∐

n>0 T
na =∐

n>0 a
⊗n ≡ ⊕n>0a

⊗n. Define comultiplication ∆ : Ta→ Ta⊗Ta as the sum of canonical

isomorphisms a⊗n → a⊗k ⊗ a⊗l, k + l = n, k, l > 0. On elements

∆(h1 ⊗ h2 ⊗ · · · ⊗ hn) =
n∑
k=0

h1 ⊗ · · · ⊗ hk
⊗

hk+1 ⊗ · · · ⊗ hn

is the cut comultiplication. The counit is ε = pr0 : Ta → T 0a = 1a, the augmentation
is η = in0 : T 0a → Ta. The direct summand Ta = T>0a = ⊕n>0T

na is equipped with
the reduced comultiplication ∆̄ : T>0a → T>0a ⊗ T>0a which is the sum of canonical
isomorphisms a⊗n → a⊗k ⊗ a⊗l, k + l = n, k, l > 0. On elements

∆̄(h1 ⊗ h2 ⊗ · · · ⊗ hn) =
n−1∑
k=1

h1 ⊗ · · · ⊗ hk
⊗

hk+1 ⊗ · · · ⊗ hn.
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Since it is conilpotent, the augmented cocategory Ta is conilpotent. It is called the cofree
conilpotent cocategory. The reasons are clear from the following

1.9. Proposition. The tensor cocategory construction extends to a functor T : V-Quiv→
ncCat, representing the left hand side of a natural bijection

{φ : a→ b ∈ V-Quiv | η · φ = 0} ∼= ncCat(a, Tb).

Proof. For any g : a→ b ∈ V-Quiv the morphisms T ng = g⊗n constructed in (1.1) form
Tg and extend T to a functor. Any morphism f : a→ Tb ∈ ncCat is uniquely determined
by the composition f̌ = f · pr1 : a → b ∈ V-Quiv such that η · f̌ = 0, as the following
commutative diagram shows

Tb

a

f
→

(Tb)⊗k

∆(k)

↓
pr⊗k1 → b⊗k

prk

→

a⊗k

f⊗k
↑

f̌⊗k

→

∆(k) →

Namely, the following expression makes sense in notation x(1) ⊗ · · · ⊗ x(k) ≡ ∆(k)(x)

f(x) =
∑
k>0

f̌(x(1))⊗ · · · ⊗ f̌(x(k)) = (x)ε · (1f) · in0 +
∑
k>1

f̌(x(1))⊗ · · · ⊗ f̌(x(k)),

since ∆̄(k)(x) = 0 for large k and η · f̌ = 0.

The category coCat is symmetric monoidal with the tensor product � given by(
a� b,∆ =

(
a� b

∆�∆→ (a⊗ a)� (b⊗ b)
⊕1⊗c⊗1→ (a� b)⊗ (a� b)

)
,

ε =
(
a� b

ε�ε→ 1a� 1b ∼= 1(Ob a×Ob b) = 1(a� b)
))
.

The isomorphism τ(23) = ⊕1⊗ τ ⊗ 1 : (a⊗ a)� (b⊗ b) → (a� b)⊗ (a� b) (the middle
four interchange) is the direct sum of isomorphisms

1⊗τ⊗1 : a(X, Y )⊗a(Y, Z)⊗b(U, V )⊗b(V,W )→ a(X, Y )⊗b(U, V )⊗a(Y, Z)⊗b(V,W ).

Hence the category acCat is symmetric monoidal. The augmentation for the tensor pro-
duct a� b of augmented cocategories a, b is

η =
(
1(a� b) = 1(Ob a×Ob b) ∼= 1a� 1b

η�η→ a� b
)
.

1.10. Proposition. The category ncCat is a full monoidal subcategory of acCat.
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Proof. Given two conilpotent cocategories c and d, let us prove that c�d is conilpotent.
The canonical projections π : c→ c̄ and π : d→ d̄ allow to write π : c� d→ c� d as

(π � π, π � ε, ε� π) : c� d→ c̄� d̄⊕ c̄� 1d⊕ 1c� d̄.

Diagram (1.5) implies

c
∆(l)

→ c⊗l

=

c̄

π
↓

∆̄(l)

→ c̄⊗l

π⊗l↓

and similarly for d and c� d. Hence,

∆(l)�∆(l)

=

c� d
∆(l)

→ (c� d)⊗l
unshuffle

∼=
→ c⊗l � d⊗l

↓

= =
c̄� d̄
⊕

c̄� 1d
⊕

1c� d̄

(
π�π
π�ε
ε�π

)
↓

∆̄(l)

→


c̄� d̄
⊕

c̄� 1d
⊕

1c� d̄


⊗l

(
π�π
π�ε
ε�π

)⊗l
↓

unshuffle

∼=
→

ik,jk∈{0,1}⊕
ik+jk>0

c̄⊗i1 ⊗ · · · ⊗ c̄⊗il � d̄⊗j1 ⊗ · · · ⊗ d̄⊗jl

(ν(i1)⊗···⊗ν(il)�ν(j1)⊗···⊗ν(jl))i,j

↓

where ν(0) = ε and ν(1) = π. Denote by p = #{k | ik = 1} and q = #{k | jk = 1}
certain cardinalities. The canonical isomorphism of the summand in the bottom right
corner with c̄⊗p � d̄⊗q satisfies

∆(l) · (ν(i1)⊗ · · · ⊗ ν(il)) · iso = ∆(p) · π⊗p = π · ∆̄(p) : c→ c̄⊗p,

∆(l) · (ν(j1)⊗ · · · ⊗ ν(jl)) · iso = ∆(q) · π⊗q = π · ∆̄(q) : d→ d̄⊗q.

Clearly, p + q > l. Therefore, if c ∈ c̄, ∆̄(n)c = 0 and d ∈ d̄, ∆̄(m)d = 0, then the lower
row applied to c � d vanishes for l = n + m − 1. If c ∈ c̄, ∆̄(n)c = 0 and U ∈ Ob d, then
the lower row applied to c � ηU ends up only in the summand with i1 = · · · = il = 1,
j1 = · · · = jl = 0. Hence, ∆̄(l)(c � ηU) = 0 for l = n. Similarly, if X ∈ Ob c and d ∈ d̄,
∆̄(m)d = 0, then ∆̄(m)(ηX � d) = 0.

Being a full monoidal subcategory of acCat the category ncCat is symmetric.

1.11. Definition. Let f, g : a→ b ∈ coCat. An (f, g)-coderivation r : f → g : a→ b of
degree d is a collection of morphisms r : a(X, Y )→ b(fX, gY ) of degree d, which satisfies
the equation r ·∆ = ∆ · (f ⊗ r + r ⊗ g).

The maps f ⊗ r, r ⊗ g : a⊗ a→ b⊗ b are defined similarly to (1.1).



1734 VOLODYMYR LYUBASHENKO

1.12. Proposition. Let f, g : a→ Tb ∈ ncCat. (f, g)-coderivations r : f → g : a→ Tb
of degree d are in bijection with the collections of morphisms ř = r · pr1 : a(X, Y ) →
b(fX, gY ) of degree d.

Proof. The commutative diagram

Tb

a

r
→

(Tb)⊗k

∆(k)

↓
pr⊗k1 → b⊗k

prk

→

a⊗k

∑
q+1+t=k f

⊗q⊗r⊗g⊗t
↑

∑
q+1+t=k f̌

⊗q⊗ř⊗ǧ⊗t

→

∆(k)

→

shows that r is given by the formula

r =
∑
k>1

∆(k) ·
∑

q+1+t=k

f̌⊗q ⊗ ř ⊗ ǧ⊗t = ∆(3) · (f ⊗ ř ⊗ g). (1.6)

The first expression makes sense, since in each term of decomposition of ∆(k) there are
factors of ∆̄(n) and k − n unit morphisms (elements η(1)). The maps f̌ and ǧ vanish on
the latter, hence, if ∆̄(k−1)(x) = 0, then k-th term of (1.6) vanishes on x. The second
expression obviously makes sense.

Let a, b ∈ acCat. The coderivation quiver Coder(a, b) has augmentation preser-
ving cofunctors f : a → b as objects and the d-th component of the graded Λ-mod-
ule Coder(a, b)(f, g) consists of coderivations r : f → g : a → b of degree d. No-
tice that in [Lyubashenko, 2003] the notation Coder(A,B) was used as a shorthand for
Coder(TA, TB) for V-quivers A and B.

Let φ : a � c → b be a cocategory homomorphism of degree 0. By definition the
homomorphism φ satisfies the equation

a� c
φ → b

∆ → b⊗ b

=

(a⊗ a)� (c⊗ c)

∆�∆↓
1⊗c⊗1 → (a� c)⊗ (a� c)

φ⊗φ
↑

Let c ∈ cn (in the next several paragraphs c does not mean the symmetry). Introduce
cχ : a → b ∈ V-Quivn by the formula a(cχ) = (a � c)φ. Then the above equation is
equivalent to

a(cχ)∆ = a∆(c(1)χ⊗ c(2)χ). (1.7)

Another equation satisfied by φ is counitality: (a� c)φε ≡ a(cχ)ε = (aε)(cε).
Assume that a, b ∈ coCat and c ∈ acCat. Given a cofunctor φ : a�c→ b and an object

C ∈ c there is a cofunctor ( � C)φ : a → b, which acts on objects as ( � C)φ : Ob a →
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Ob b, A 7→ (A�C)φ and on morphisms as ( �1Cη)φ : a(A′, A′′)→ b((A′�C)φ, (A′′�C)φ),
a 7→ (a� 1Cη)φ, where (1C)η ∈ c(C,C), 1C = 1 ∈ (1c)(C,C) = Λ. If, furthermore, a and
b are augmented and φ preserves augmentation, so does ( � C)φ for any C ∈ Ob c.

Assume that c ∈ C(f, g)d satisfies c∆ = 1fη ⊗ c + c ⊗ 1gη. Then the collection
ξ : a(A′, A′′)→ b((A′�f)φ, (A′′�g)φ), a 7→ (a� c)φ, is a (( �f)φ, ( �g)φ)-coderivation
of degree d.

1.13. Evaluation. Let a be a conilpotent cocategory and let b be a V-quiver. Define the
evaluation cofunctor φ = ev : a�T Coder(a, Tb)→ Tb on objects as ev(A�f) = fA, and
on morphisms by the corresponding χ. Let f 0, f 1, . . . , fn : a→ Tb be cofunctors, and let

r1, . . . , rn be coderivations of certain degrees as in f 0 r1−→ f 1 r2−→ . . . fn−1 rn−→ fn : a→ Tb,
n > 0. Then c = r1 ⊗ · · · ⊗ rn ∈ T n Coder(a, Tb)(f 0, fn). Define (a� c) ev = a.(cχ) as

(a� (r1⊗· · ·⊗rn)) ev = (a∆(2n+1))(f 0⊗ ř1⊗f 1⊗ ř2⊗· · ·⊗fn−1⊗ řn⊗fn)µ
(2n+1)
Tb . (1.8)

The right hand side belongs to (Tb)⊗(2n+1)µ
(2n+1)
Tb and is mapped by multiplication µ

(2n+1)
Tb

into Tb. In particular, for n = 1 we have (a� r1) ev = (a)r1 due to (1.6). In order to see
that ev is a cofunctor we verify (1.7):

a.(cχ)∆ = a∆(2n+1)(f 0 ⊗ ř1 ⊗ f 1 ⊗ ř2 ⊗ · · · ⊗ fn−1 ⊗ řn ⊗ fn)µ
(2n+1)
Tb ∆

= a∆(2n+1)

n∑
m=0

(f 0 ⊗ ř1 ⊗ · · · ⊗ fm−1 ⊗ řm ⊗ fm∆⊗ řm+1 ⊗ fm+1 ⊗ · · · ⊗ řn ⊗ fn)

(µ
(2m+1)
Tb

⊗
µ

(2n−2m+1)
Tb )

= a∆(2n+1)

n∑
m=0

(
f 0 ⊗ ř1 ⊗ · · · ⊗ fm−1 ⊗ řm ⊗∆(fm

⊗
fm)

⊗ řm+1 ⊗ fm+1 ⊗ · · · ⊗ řn ⊗ fn
)
(µ

(2m+1)
Tb

⊗
µ

(2n−2m+1)
Tb )

= a∆
n∑

m=0

(∆(2m+1)
⊗

∆(2n−2m+1))
[
(f 0 ⊗ ř1 ⊗ · · · ⊗ fm−1 ⊗ řm ⊗ fm)µ

(2m+1)
Tb⊗

(fm ⊗ řm+1 ⊗ fm+1 ⊗ · · · ⊗ řn ⊗ fn)µ
(2n−2m+1)
Tb

]
= a∆(c(1)χ

⊗
c(2)χ).

Here we have used ⊗ for the product in the tensor quiver Tb and
⊗

for Tb
⊗

Tb. The
counitality equation for ev has to be proven for n = 0, where it reduces to counitality of
f 0. The cofunctor ev preserves the augmentation, since all f ∈ Ob Coder(a, Tb) do.

The following is a version of Proposition 3.4 of [Lyubashenko, 2003].

1.14. Proposition. For a ∈ ncCat, b, c1, . . . cq ∈ V-Quiv with notation c = T c1�· · ·�T cq
the map

ncCat(c, T Coder(a, Tb)) −→ ncCat(a� c, Tb),

ψ 7−→
(
a� c

a�ψ→ a� T Coder(a, Tb)
ev−→ Tb

)
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is a bijection.

We give a new

Proof. An augmentation preserving cofunctor ψ : c→ T Coder(a, Tb) is described by an
arbitrary quiver map ψ̌ = ψ · pr1 : c→ Coder(a, Tb) ∈ Λ-modc

L-Quiv such that η · ψ̌ = 0.
Let φ : a � c → Tb be an augmentation preserving cofunctor. We have to satisfy the
equation ∑

k>0

(a� c∆(k)ψ̌⊗k) ev = (a� c)φ, a ∈ a•, c ∈ c•.

It suffices to consider two cases. In the first one c = η(1g) for some g ∈ Ob c. Then the
equation takes the form (a)(gψ) = (a�c)φ which defines the cofunctor gψ ∈ ncCat(a, Tb)
in the left hand side.

In the second case c ∈ c̄d, d ∈ Z, the equation takes the form

(a)(c)ψ̌ +
∑
k>2

(a� c∆(k)ψ̌⊗k) ev = (a� c)φ, a ∈ a•, c ∈ c̄•.

Since η · ψ̌ = 0 the comultiplication ∆ can be replaced with ∆̄. The structure of c =
T c1 � · · ·� T cq is such that the component ψi1,...,iq in the left hand side of

(a)(c)ψ̌ = (a� c)φ−
∑
k>2

(a� c∆̄(k)ψ̌⊗k) ev, a ∈ a•, c ∈ c̄•. (1.9)

is expressed via the components ψj1,...,jq with smaller indices (j1, . . . , jq) in the product
poset Nq. For c ∈ c̄(X, Y )d, X = (X1, . . . , Xq), Y = (Y1, . . . , Yq), Xi, Yi ∈ Ob ci, find
n > 0 such that c∆̄(n+1) = 0. Equation (1.9) determines a unique collection of maps

cψ̌ ∈ Λ-mod
(
a(U, V ), T̂b((U,X)φ, (V, Y )φ)

)d
. It remains to verify that it is a coderivation.

We have to prove that

(a)(cψ̌)∆b = (a)∆a[( �X)φ⊗ ( )(cψ̌) + ( )(cψ̌)⊗ ( � Y )φ].

The case n = 0 being obvious, assume that n > 1. The sum in (1.9) goes from k = 2 to
n. Correspondingly,

(a)(cψ̌)∆ = (a∆)[( �c(1))φ⊗( �c(2))φ]−
n∑
k=2

[(a∆)�(c1̄ψ̌⊗· · ·⊗ck̄ψ̌)∆T Coder]τ(23)(ev⊗ ev).

Here according to Sweedler’s notation c(1) ⊗ c(2) = c∆. Similarly, c1̄ ⊗ · · · ⊗ ck̄ = c∆̄(k).
Recall the middle four interchange [(a⊗ b)� (c⊗ d)]τ(23) = (−1)bc(a� c)⊗ (b� d). The
above expression has to be equal to

(a∆)
{

( � 1X)φ⊗
[
( � c)φ−

n∑
k=2

(
� (c1̄ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

)
ev
]}

+ (a∆)
{[

( � c)φ−
n∑
k=2

(
� (c1̄ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

)
ev
]
⊗ ( � 1Y )φ

}
.
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Canceling the above terms we come to identity to be checked

(a∆)[( � c1̄)φ⊗ ( � c2̄)φ] =
n∑
k=2

[
(a∆)� (c1̄ψ̌⊗ · · · ⊗ ck̄ψ̌)∆̄T Coder

]
τ(23)(ev⊗ ev). (1.10)

The right hand side equals

n∑
k=2

k−1∑
i=1

{
(a∆)�

[
(c1̄ψ̌ ⊗ · · · ⊗ cīψ̌)

⊗
(ci+1ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

]}
τ(23)(ev⊗ ev)

=
n∑
k=2

k−1∑
i=1

(a∆)
{[
� (c1̄ψ̌ ⊗ · · · ⊗ cīψ̌)

]
ev⊗

[
� (ci+1ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

]
ev
}

=
n∑
i=1

n∑
j=1

(a∆)
{[
� (c1̄ψ̌ ⊗ · · · ⊗ cīψ̌)

]
ev⊗

[
� (ci+1ψ̌ ⊗ · · · ⊗ ci+jψ̌)

]
ev
}

= (a∆)[( )(c1̄F )⊗ ( )(c2̄F )],

where

(a)(cF ) =
n∑
i=1

[
a� (c1̄ψ̌⊗· · ·⊗ cīψ̌)

]
ev = (a)(cψ̌)+

n∑
i=2

[
a� (c1̄ψ̌⊗· · ·⊗ cīψ̌)

]
ev = (a� c)φ

due to (1.9). Hence the right hand side of (1.10) equals (a∆)[( � c1̄)φ⊗ ( � c2̄)φ], which
is the left hand side of (1.10).

Let a be a conilpotent cocategory and let b, c be quivers. Consider the cofunctor given
by the upper right path in the diagram

a� T Coder(a, Tb)� T Coder(Tb, T c)
ev�1→ Tb� T Coder(Tb, T c)

=

a� T Coder(a, T c)

1�M↓
ev → T c

ev
↓

By Proposition 1.14 there is a unique augmentation preserving cofunctor

M : T Coder(a, Tb)� T Coder(Tb, T c)→ T Coder(a, T c).

Denote by 1 the unit object �0 of the monoidal category of nilpotent cocategories, that
is, Ob1 = {∗}, 1(∗, ∗) = Λ. Denote by r : a�1→ a and l : 1� a→ a the corresponding
natural isomorphisms. By Proposition 1.14 there exists a unique augmentation preserving
cofunctor ηTb : 1→ T Coder(Tb, Tb), such that

r =
(
Tb� 1

1�ηTb→ Tb� T Coder(Tb, Tb)
ev→ Tb

)
.

Namely, the object ∗ ∈ Ob1 goes to the identity homomorphism idTb : Tb→ Tb.
The following statement (published as [Lyubashenko, 2003, Proposition 4.1]) follows

from Proposition 1.14.
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1.15. Proposition. The multiplication M is associative and η is its two-sided unit:

TCoder(a, Tb)�TCoder(Tb, T c)�TCoder(T c, Td)
M�1→ TCoder(a, T c)�TCoder(T c, Td)

TCoder(a, Tb)�TCoder(Tb, Td)

1�M↓
M → TCoder(a, Td)

M↓

The multiplication M is computed explicitly in [Lyubashenko, 2003, §4], see, in par-
ticular, Examples 4.2 there.

2. Filtered cocategories

Let L be a partially ordered commutative monoid with the operation + and neutral
element 0. Of course, we assume that a 6 b, c 6 d imply a+ c 6 b+ d. The subsets

L+ = {l ∈ L | l > 0},
L− = {l ∈ L | l 6 0}

are submonoids. Clearly, L+ ∩ L− = {0}. We require that

L++ = {l ∈ L | l > 0} = L+ − 0

were non-empty. We assume that L satisfies the following conditions:

(i) for all a, b ∈ L there is c ∈ L such that a 6 c, b 6 c (that is, (L,6) is directed);

(ii) for all a, b ∈ L there is c ∈ L such that c 6 a, c 6 b (that is, Lop is directed);

(iii) for all a, b ∈ L there is c ∈ L such that a+ c > b.

This generalizes the assumptions of [De Deken, Lowen, 2018]. If L is a directed group
(satisfies (i)), then L satisfies (ii) and (iii) as well for obvious reasons.

The symmetric monoidal category of Z-graded abelian groups (with the usual signed
symmetry) is denoted grAb. An L-filtered graded abelian group is a Z-graded abelian
group M together with, for every l ∈ L, a graded subgroup FlM such that a 6 b ∈ L
implies that FaM ⊃ FbM and ∪l∈LFlM = M . The symmetric multicategory ĝrAbL of
L-filtered graded abelian groups is formed by polylinear maps of certain degree preserving
the filtration:

ĝrAbL(M1, . . . ,Mn;N)d = {(polylinear maps f : Mk1
1 × · · · ×Mkn

n → Nk1+···+kn+d)ki∈Z |
| (Fl1Mk1

1 × · · · × FlnMkn
n )f ⊂ Fl1+···+lnNk1+···+kn+d},

n > 1. The sign for composition is the same as in [Bespalov, Lyubashenko, Manzyuk, 2008,
Example 3.17]. This multicategory is representable [Bespalov, Lyubashenko, Manzyuk,
2008, Definition 3.23] (see also [Hermida, 2000, Definition 8.3]) by a symmetric monoidal
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category which we denote grAbL. This follows from a similar statement for the closed

multicategory Âb of abelian groups. One deduces the tensor product of a family M1,
. . . , Mn, n > 1, as the tensor product of Z-graded abelian groups Mi, equipped with the
filtration [De Deken, Lowen, 2018, (2)]

Fl(⊗ni=1Mi) = Im(⊕l1+···+ln=l ⊗ni=1 F
liMi → ⊗ni=1Mi). (2.1)

Thus, ĝrAbL(M1, . . . ,Mn;N) is naturally isomorphic to grAbL(M1⊗· · ·⊗Mn, N) for n > 1
(more in [Bespalov, Lyubashenko, Manzyuk, 2008, Theorem 3.24]). The unit object is Z,
concentrated in degree 0, equipped with the filtration

FlZ =

{
Z, if l 6 0,

0, otherwise.

We define ĝrAbL(;N) as grAbL(Z, N) in order to keep representability.
The monoidal category grAbL is symmetric with the signed symmetry of Z-graded

abelian groups. Furthermore, it is closed. In fact, let M,N ∈ grAbL. Associate with them
a new graded L-filtered abelian group grAbL(M,N) with

FlgrAbL(M,N)d = {f ∈ grAb(M,N)d | ∀λ ∈ L ∀k ∈ Z (FλMk)f ⊂ Fλ+lNk+d},

the inner hom. The evaluation

ev : M ⊗ grAbL(M,N)→ N, m⊗ f 7→ (m)f,

is a morphism of grAbL, and it turns grAbL into a closed symmetric monoidal category.
Indeed, let φ : M ⊗ P → N ∈ grAbL. To any p ∈ P d, d ∈ Z, assign a degree d map
ψ(p) : M → N , m 7→ φ(m⊗ p). If p ∈ FlP d, then ψ(p) ∈ FlgrAbL(M,N)d. Hence a map
ψ : P → grAbL(M,N) ∈ grAbL such that

M ⊗ P φ → N

=

M ⊗ grAbL(M,N)

1⊗ψ↓ ev

→

.

Vice versa, given ψ one obtains φ as the composition (1⊗ψ) · ev. The two maps φ←→ ψ
are inverse to each other, and grAbL is closed.

According to [Bespalov, Lyubashenko, Manzyuk, 2008, Proposition 4.8] the sym-

metric multicategory ĝrAbL is closed as well. It is easy to describe the inner hom

ĝrAbL(M1, . . . ,Mn;N) ∈ Ob ĝrAbL via

FlĝrAbL(M1, . . . ,Mn;N)d = {(polylinear maps f : Mk1
1 × · · · ×Mkn

n → Nk1+···+kn+d)ki∈Z |
| (Fl1Mk1

1 × · · · × FlnMkn
n )f ⊂ Fl1+···+ln+lNk1+···+kn+d}.
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The corresponding evaluation is

ev : M1, . . . ,Mn, ĝrAbL(M1, . . . ,Mn;N)→ N, (m1, . . . ,mn, f) 7→ (m1, . . . ,mn)f.

A commutative L-filtered graded ring Λ is a commutative monoid (commutative alge-
bra) in grAbL. Modules over Λ in grAbL are called L-filtered Z-graded Λ-modules and are
identified with commutative Λ-bimodules (for short, Λ-modules). In examples of interest
(see Example 2.10) Λ is 2Z-graded, so the commutativity issues for it are the same as in
the non-graded case.

Due to condition (i) a filtration (FλMk)λ∈L on the graded k-th component Mk viewed
as a basis of neighborhoods of the origin defines a uniform structure on Mk with the
entourages {(x, y) ∈M ×M | x− y ∈ FλMk}. Standard properties of uniform structures
are listed in [Bourbaki, 1971, Chap. II, §1, §2].

2.1. Proposition. With the above uniform structure
(a) An element of grAbL(M,N)d is a family of uniformly continuous maps Mk →

Nk+d.
(b) Each f ∈ grAbL(M1, . . . ,Mn;N)d is a family of continuous maps f : Mk1

1 × · · · ×
Mkn

n → Nk1+···+kn+d, where Mki
i , Nk are given the topology, associated with the uniform

structure [Bourbaki, 1971, Chap. II, §1, n. 2, Definition 3].
(c) If L = L+, then each f ∈ grAbL(M1, . . . ,Mn;N)d is a family of uniformly contin-

uous maps f : Mk1
1 × · · · ×Mkn

n → Nk1+···+kn+d.

Proof. (a) Let f ∈ FlgrAbL(M,N)d. For any h ∈ L there exists λ ∈ L such that l+λ > h

by condition (iii). Then for arbitrary points x, y ∈ Mk such that x− y ∈ FλMk we have
f(x)− f(y) = f(x− y) ∈ Fl+λNk+d ⊂ FhNk+d.

(b) Fix a point (y1, . . . , yn) ∈Mk1
1 ×· · ·×Mkn

n . There are ci ∈ L such that yi ∈ FciMki
i .

For an arbitrary λ ∈ L take λi ∈ L such that

λi > ci, λi +
∑
j 6=i

cj > λ.

Consider the neighborhood of yi

{xi ∈Mki
i | xi − yi ∈ FλiMki

i } ⊂ FciMki
i .

For xi from this neighborhood the element f(x1, . . . , xn) is in neighborhood of f(y1, . . . , yn),
namely,

f(x1, . . . , xn)− f(y1, . . . , yn) =f(x1 − y1, x2, . . . , xn) + f(y1, x2 − y2, x3, . . . , xn)

+ · · ·+ f(y1, . . . , yn−1, xn − yn) ∈
∈ Fλ1+c2+···+cnNk + Fc1+λ2+c2+···+cnNk + · · ·+ Fc1+···+cn−1+λnNk ⊂ FλNk, (2.2)

where k = k1 + · · ·+ kn + d.
(c) For any λ ∈ L and any points (x1, . . . , xn), (y1, . . . , yn) ∈ Mk1

1 × · · · × Mkn
n if

xi − yi ∈ FλMki
i , 1 6 i 6 n, then f(x1, . . . , xn)− f(y1, . . . , yn) ∈ FλNk1+···+kn+d similarly

to (2.2).
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2.2. Completion of a filtered graded abelian group. The notion of complete
filtered abelian group is a particular case of a complete uniform space [Bourbaki, 1971,
Chap. II, §3, n.3, Def. 3]. There is the notion of separated completion (from now on
completion) M̂ = (M̂k) of a uniform space M = (Mk) [Bourbaki, 1971, Chap. II, §3, n.7,
Th. 3]. It consists of minimal Cauchy filters on M = (Mk) [Bourbaki, 1971, Chap. II,
§3, n.2]. It is known that any Cauchy filter F contains a unique minimal Cauchy filter F
[Bourbaki, 1971, Chap. II, §3, n.2, Prop. 5]. A base of the filter F can be obtained as a
family {A+ FλM | A ∈ B, λ ∈ L}, where B is a base of the filter F .

Consider now the graded abelian group M̂ = limλ∈Lop(M/FλM) equipped with filtra-
tion

FlM̂ = lim
λ∈Lop

((FlM + FλM)/FλM). (2.3)

We understand the first limit as terminal cone on the functor Lop → grAb, λ 7→M/FλM .
In our assumptions the non-empty subsemigroup L++ is a final subset of poset L. Hence,

limλ∈Lop(M/FλM) = limλ∈Lop
++

(M/FλM). We are going to prove that M̂ coincides with

M̂ . Until done we distinguish the two notations.

2.3. Proposition. When L satisfies condition (i), the filtered graded abelian group M̂
is complete.

Proof (Seems known). It suffices to look at a graded component of M which we still
denote M . The definition of completeness can be given also via Cauchy nets, namely, we
have to prove that any Cauchy net in M̂ converges. A net is a mapping x : D → M̂ =
limλ∈Lop(M/FλM), d 7→ xd = ([xdλ])λ∈L, where D is a preordered directed set. Classes
[xdλ] ∈M/FλM lift to elements xdλ ∈M such that for any d ∈ D and for all a 6 b ∈ L we
have xda− xdb ∈ FaM . The net x is Cauchy iff for every l ∈ L there is N = N(l) ∈ D such

that for all n,m > N ∈ D we have xn − xm ∈ FlM̂ . The last condition reads: for every
λ ∈ L we have xnλ − xmλ ∈ FlM + FλM .

Let x as above be a Cauchy net. Consider the collection y = (yλ)
def
= (x

N(λ)
λ )λ∈L. Let

us show that y ∈ M̂ . Recall that for a 6 b ∈ L there is N ∈ D such that N > N(a),
N > N(b). Then ya ≡ xNa mod FaM , yb ≡ xNb mod FbM , xNa ≡ xNb mod FaM . Hence

ya ≡ yb mod FaM and y ∈ M̂ . It follows from the condition in the first paragraph that
x converges to y, thus M̂ is complete.

2.4. Proposition. When L satisfies condition (i), the separated completion M̂ of a

filtered graded abelian group M coincides with M̂ . The filtration

FlM̂ = {F ∈ M̂ | ∃ 0 ∈ A ∈ F A ⊂ FlM}, l ∈ L,

on M̂ identifies with filtration (2.3) on M̂ .

Proof. The canonical mapping
...
ı : M → M̂ is uniformly continuous since for z ∈ FlM

we have
...
ı (z) ∈ FlM̂ . Moreover, the filtration on M is a preimage of the filtration on M̂

hence preimage of the filtration on its subset
...
ı (M). In fact, the image

...
ı (z) of z ∈M is
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in FlM̂ iff for all λ ∈ L we have z ∈ FlM+FλM . For λ = l we get z ∈ FlM . Furthermore,
M̂ is separated. In fact, if x = ([xλ])λ∈L belongs to all FlM̂ then xλ ∈ FlM + FλM for
all l, λ ∈ L, hence, xλ ∈ FλM for all λ ∈ L, that is, x = 0.

Let us prove that the image
...
ı (M) is everywhere dense in M̂ . For any x = ([xλ]) ∈ M̂

and any l ∈ L we have to provide an element y ∈M such that x− ...
ı (y) ∈ FlM̂ . The last

condition reads: for all λ ∈ L we have xλ−y ∈ FlM +FλM . Take y = xl. By assumption
for all l, λ ∈ L there is c ∈ L such that l 6 c, λ 6 c. Hence, xλ − y = xλ − xc + xc − xl ∈
FλM + FlM as required.

Now we can construct the following commutative diagram

ı̈

M
ı̈
. ı̈(M) ⊂

ı̈ → M̂

↓
∼=→ ı̈(M)̂

...
ı (M)

∼= g↓
⊂

...
ı →

...
ı .

M̂

∼= f↓
∼=
h

←
...
ı ↑

where ı̈ : M → M̂ is the canonical mapping, sending a point to the filter of neighborhoods
of this point. It is denoted by i in [Bourbaki, 1971, Chap. II, §3, n.7, 2)]. The isomor-
phism M̂ → ı̈(M)̂ follows by Propositions 12.1◦ and 13 of [Bourbaki, 1971, Chap. II,
§3, n.7]. The morphism g exists by Proposition 16 and it is invertible by Proposition 17
of [Bourbaki, 1971, Chap. II, §3, n.8]. The isomorphism h exists by [Bourbaki, 1971,
Chap. II, §3, n.7, Prop. 13]. Hence an isomorphism f .

The filter O = ı̈(0) ∈ M̂ of neighborhoods of 0 ∈M is a minimal Cauchy filter. It has
the base {FλM | λ ∈ L}. Filtration on M̂ consists of

FlM̂ = {F ∈ M̂ | ∃A ∈ F ∩ O A− A ⊂ FlM}
= {F ∈ M̂ | ∃A ∈ F ∃λ ∈ L A ⊃ FλM, A− A ⊂ FlM}
= {F ∈ M̂ | ∃ 0 ∈ A ∈ F A ⊂ FlM}

[Bourbaki, 1971, Chap. II, §3, n.7, 1)] (since Cauchy filter F is minimal, its base consists
of sets invariant under addition of FλM for some λ ∈ L, which we may assume > l).

Both FlM̂ and FlM̂ induce on M the same subspace FlM via pull-back with bases
ı̈ : M → M̂ and

...
ı : M → M̂ [Bourbaki, 1971, Chap. II, §3, n.7, 2)]. The images

ı̈(M) ⊂ M̂ ,
...
ı (M) ⊂ M̂ are dense [Bourbaki, 1971, Chap. II, §3, n.7, 3)], hence, filtrations

FlM̂ and FlM̂ are taken to each other under the isomorphism f : M̂ → M̂ and its inverse.

From now on we do not distinguish M̂ and M̂ .
The mapping M 7→ M̂ extends to the completion functor -̂ : grAbL → grAbL [Bourbaki,

1971, Chap. II, §3, n.7, Prop. 15] in a unique way so that the maps
...
ı M : M → M̂ form
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a natural transformation. A filtered graded abelian group M is complete, when the
canonical map

...
ı : M → M̂ is an isomorphism. The grAbL-category cgrAbL of complete

L-filtered graded abelian groups is a reflective subcategory of grAbL. This follows by
the remark that complete topological abelian groups form a reflective subcategory of
the category of topological abelian groups. Thus by [Borceux, 1994, Corollary 4.2.4]
(see enriched version at the end of Chapter 1 of [Kelly, 1982]) the completion functor
is an idempotent monad. In particular, for the unit of this monad

...
ı M : M → M̂ , the

morphisms
...
ı M̂ =

.̂..
ı M : M̂ → ˆ̂

M are inverse to the multiplication µM :
ˆ̂
M → M̂ (cf.

[De Deken, Lowen, 2018, Lemma 2.24]). It follows from Appendix A that the reflective

subcategory cgrAbL is symmetric monoidal with the monoidal product M⊗̂N def
= M̂ ⊗N .

The unit object is still Z. We extend the functor ⊗̂n : cgrAbnL → cgrAbL to ⊗̂n : grAbnL →
cgrAbL via the same recipe ⊗̂ni=1Mi

def
= ⊗̂ni=1Mi.

2.5. Proposition. For n > 1 there is a natural transformation φn : ⊗ni=1M̂i → ⊗̂ni=1Mi :
grAbnL → grAbL.

Proof. Let Mi, 1 6 i 6 n, be filtered abelian groups. Let Fi ∈ M̂i be minimal Cauchy
filters in Mi, 1 6 i 6 n. Denote M = ⊗ni=1Mi. Define a basis B of a filter F in M as

B = {A1 ⊗ A2 ⊗ · · · ⊗ An | ∀i Ai ∈ Fi},

where A1 ⊗ A2 ⊗ · · · ⊗ An = {x1 ⊗ x2 ⊗ · · · ⊗ xn | ∀i xi ∈ Ai}. Let us prove that F is a
Cauchy filter. Given λ ∈ L, take for 1 6 i 6 n arbitrary elements ai ∈ L, take Ai ∈ Fi
such that Ai − Ai ≡ {x − y | x, y ∈ Ai} ⊂ FaiMi, take arbitrary elements yi ∈ Ai. Let
bi ∈ L be such that yi ∈ FbiMi. Let ci ∈ L be such that ci 6 ai and ci 6 bi. Then
Ai ⊂ FciL since any x ∈ Ai can be presented as x = x− yi + yi ∈ FciMi +FbiMi ⊂ FciMi.
Let λi ∈ L, 1 6 i 6 n, be such that

λi +
∑
j 6=i

cj > λ.

Let Bi ∈ Fi satisfy Bi −Bi ⊂ FλiMi. Then the set S = (A1 ∩B1)⊗ · · · ⊗ (An ∩Bn) ∈ F
satisfies S − S ⊂ FλM . In fact, for xi, yi ∈ Ai ∩Bi we have

x1 ⊗ · · · ⊗ xn − y1 ⊗ · · · ⊗ yn = (x1 − y1)⊗ x2 ⊗ · · · ⊗ xn + y1 ⊗ (x2 − y2)⊗ x3 ⊗ · · · ⊗ xn
+ · · ·+ y1 ⊗ · · · ⊗ yn−1 ⊗ (xn − yn) ∈

∈ Fλ1M1 ⊗ Fc2M2 ⊗ · · · ⊗ FcnMn + Fc1M1 ⊗ Fλ2M2 ⊗ Fc3M3 ⊗ · · · ⊗ FcnMn + . . .

+ Fc1M1 ⊗ · · · ⊗ Fcn−1Mn−1 ⊗ FλnMn ⊂ FλM. (2.4)

The Cauchy filter F contains a unique minimal Cauchy filter F [Bourbaki, 1971, Chap. II,
§3, n.2, Prop. 5] and we define φn as a map sending F1 ⊗ · · · ⊗ Fn to F . The outcome
does not depend on the choices made during the construction. In fact, axioms on L and
on filters ensure that two different choices F ′ and F ′′ for F are contained in a third choice
F ′′′ of Cauchy filter F , hence, for minimal Cauchy filters we have F ′ = F ′′′ = F ′′.
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This is a well-defined mapping φ̃n from the free graded abelian group generated by
n-tuples (F1, . . . , Fn) to M̂ . One has

φ̃n(F1, . . . , F
′
i + F ′′i , . . . , Fn) = φ̃n(F1, . . . , F

′
i , . . . , Fn) + φ̃n(F1, . . . , F

′′
i , . . . , Fn)

if F ′i , F
′′
i ∈ M̂k

i , 1 6 i 6 n, k ∈ Z. In fact, sum of Cauchy filters G′, G′′ is defined as the
filter G, generated by A′+A′′, A′ ∈ G′, A′′ ∈ G′′. Clearly, G is a Cauchy filter. Thus, the

map φ̃n factors through a well-defined map φn : ⊗ni=1M̂i → ⊗̂ni=1Mi.
Notice that

φn(⊗ni=1F
λiM̂i) ⊂ Fλ1+···+λn⊗̂ni=1Mi.

In fact, let Fi ∈ FλiM̂i, 1 6 i 6 n. Thus, Fi is a minimal Cauchy filter such that there is
0 ∈ Ai ∈ Fi, Ai ⊂ FλiMi. Then

φn(F1 ⊗ · · · ⊗ Fn) 3 A1 ⊗ · · · ⊗ An + Fν(M1 ⊗ · · · ⊗Mn)

for any ν ∈ L. However, 0 ∈ A1 ⊗ · · · ⊗ An and

A1 ⊗ · · · ⊗ An ⊂ Fλ1M1 ⊗ · · · ⊗ FλnMn ⊂ Fλ1+···+λn(⊗ni=1Mi).

Hence, for ν > λ1 + · · ·+ λn

0 ∈ A1 ⊗ · · · ⊗ An + Fν(M1 ⊗ · · · ⊗Mn) ⊂ Fλ1+···+λn(⊗ni=1Mi).

Therefore, φn(F1 ⊗ · · · ⊗ Fn) ∈ Fλ1+···+λn⊗̂ni=1Mi.
Reasonings, similar to independence of choices show that φn form a natural transfor-

mation.

For n = 0 the version of φn is the isomorphism φ0 =
...
ı : Z→ Ẑ. The filtered abelian

group Z is complete due to non-emptiness of L++. In fact, Ẑ = limλ∈Lop
++

Z = Z.

2.6. Proposition. The pair (̂-, φ•) : grAbL → grAbL is a lax symmetric monoidal func-
tor.

Proof. Naturality (in the ordinary everyday usage sense) of the construction of φn leads
to required condition from [Day, Street, 2003], see also diagram (2.17.2) of [Bespalov,
Lyubashenko, Manzyuk, 2008].

According to [Bespalov, Lyubashenko, Manzyuk, 2008, Proposition 3.28] φ• make

completion -̂ also into a symmetric multifunctor ĝrAbL → ĝrAbL.

2.7. Proposition. The canonical mapping ı̈ : M → M̂ satisfies for n > 0 the equation(
M1 ⊗ · · · ⊗Mn

ı̈1⊗···⊗ı̈n→ M̂1 ⊗ · · · ⊗ M̂n
φn→ ̂M1⊗···⊗Mn

)
= ı̈M1⊗···⊗Mn . (2.5)
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Proof. For n > 1 we may consider a graded component of Mi, a filtered abelian group,
which we denote again by Mi. Take elements yi ∈Mi. For some ci ∈ L we have yi ∈ FciMi.
The filter ı̈(yi) ∈ M̂i has the base formed by yi + FλiMi, λi ∈ L. Thus, the Cauchy filter
F with the basis (y1 + Fλ1M1)⊗ · · · ⊗ (yn + FλnMn) contains the minimal Cauchy filter

φn(̈ı(y1)⊗ · · · ⊗ ı̈(yn)) ∈ ̂M1 ⊗ · · · ⊗Mn. For any λ ∈ L there are λi ∈ L such that

λi > ci, λi +
∑
j 6=i

cj > λ.

Using (2.4) we see that the last set is contained in y1 ⊗ · · · ⊗ yn + Fλ(M1 ⊗ · · · ⊗Mn).
Hence, F contains the minimal Cauchy filter of neighborhoods of y1⊗· · ·⊗yn. Therefore,
φn(̈ı(y1)⊗ · · · ⊗ ı̈(yn)) = ı̈(y1 ⊗ · · · ⊗ yn) by uniqueness of the minimal Cauchy subfilter.

The case of n = 0 is straightforward.

2.8. Complete Λ-modules. From now on, the graded commutative filtered ring Λ will
be complete.

For the moment V = Λ-modL means the category of L-filtered graded Λ-modules for
a graded commutative L-filtered ring Λ. Morphisms are grading and filtration preserving
Λ-module maps. It is symmetric monoidal with the tensor product M⊗ΛN equipped with
filtration (2.1), where, of course, ⊗ has to be interpreted as ⊗Λ, not as ⊗Z. The unit object
1 is Λ with its filtration. The category Λ-modL is closed. In fact, let M,N ∈ Λ-modL.
Associate with them a new graded L-filtered Λ-module Λ-modL(M,N) with

FlΛ-modL(M,N)d = {f ∈ Λ-mod(M,N)d | ∀λ ∈ L ∀k ∈ Z (FλMk)f ⊂ Fλ+lNk+d},

the inner hom. The evaluation

ev : M ⊗Λ Λ-modL(M,N)→ N, m⊗ f 7→ (m)f,

is a morphism of Λ-modL, and it turns this category into a closed symmetric monoidal
one. Proof is the same as in grAbL case. All definitions and notions of Section 1 apply
for this V. Note that the uniform space associated with the product

∏
i∈IMi in Λ-modL

(over an infinite set I) differs from product of uniform spaces Mi.
A Λ-module M is complete, when the canonical map ı̈ : M → M̂ is an isomorphism.

The category of complete Λ-modules Λ-modc
L is a full Λ-modL-subcategory of Λ-modL.

2.9. Remark. Let (c,∆, ε) be a cocategory. Then the completion ĉ equipped with the

comultiplication
(
ĉ

∆̂→ ĉ⊗ c
̂̈ı⊗ı̈→ (ĉ ⊗ ĉ)̂≡ ĉ⊗̂ĉ

)
and the counit ĉ

ε̂→ 1̂c = 1̂ĉ is a
cocategory over Λ with respect to monoidal structure ⊗̂, see Appendix A.5.1.

2.10. Example. The universal Novikov ring

Λnov(R) =

{ ∞∑
i=0

aiT
λieni | ∀i ai ∈ R, λi ∈ R, ni ∈ Z, lim

i→∞
λi =∞

}
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contains a subring, the Novikov ring,

Λ0,nov(R) =

{ ∞∑
i=0

aiT
λieni ∈ Λnov(R) | ∀i λi > 0

}
The grading is determined by degR = 0, deg T = 0, deg e = 2 [Fukaya, Oh, Ohta, Ono,
2009, §1.7 (Conv. 4)]. Λnov(R) is R-filtered according to [Fukaya, Oh, Ohta, Ono, 2009,
§1.7 (Conv. 6)]. The filtration is

FλΛnov(R) = T λΛ0,nov(R), λ ∈ R.

Similarly, Λ0,nov(R) is R>0-filtered by

FλΛ0,nov(R) = T λΛ0,nov(R), λ ∈ R>0.

These rings are complete [ibid ].

2.11. Complete cocategories. The set-up of Appendix A applies well to symmet-
ric monoidal Λ-modL-category D = (Λ-modL-Quiv,�I) and its reflective subcategory
of complete quivers C = Λ-modc

L-Quiv. According to Proposition A.1 the category C

is lax symmetric monoidal with the product �̂
i∈I

ai = �̂i∈Iai. The completion of a
filtered quiver a ∈ ObD is given by the quiver â ∈ ObC with Ob â = Ob a and

â(X, Y ) = ̂a(X, Y ) for X, Y ∈ Ob a. Hence, ı̈ : a → â is given by the morphisms

ı̈ : a(X, Y ) → ̂a(X, Y ), X, Y ∈ Ob a. Proposition 2.5 implies the existence of a natural

transformation φn : �ni=1âi → �̂ni=1ai. According to Proposition 2.7 the equation(
a1 � · · ·� an

ı̈1�···�ı̈n→ â1 � · · ·� ân
φn→ ̂a1�···�an

)
= ı̈a1�···�an

holds. Therefore, the conclusion of Proposition A.2 holds true and by Corollary A.3 we

find that C = (Λ-modc
L-Quiv, �̂

I
) is a symmetric monoidal Λ-modL-category.

Fix a (large) set S. Consider Λ-modL-category D = Λ-modL-QuivS and its reflective
subcategory of complete quivers C = Λ-modc

L-QuivS. We apply the results of Appendix A
to this situation as well. Again, the conclusions of Propositions 2.5 and 2.7 hold for

Mi ∈ Λ-modL-QuivS, hence, D = (Λ-modL-QuivS,⊗I) and C = (Λ-modc
L-QuivS, ⊗̂

I
) are

monoidal Λ-modL-categories. In particular, the construction of Appendix A.5.1 applies.
It will be shown later that the following simple definition is equivalent to Definition 2.40

of [De Deken, Lowen, 2018].

2.12. Definition. Let a be a complete filtered quiver and S a set. A morphism φ : 1S →
a ∈ Λ-modc

L-Quiv is called tensor convergent if for every l ∈ L and every X ∈ S there
exists N ∈ N such that for every n > N

[φ(1X)]⊗̂n ∈ Fl[a(φX, φX)⊗̂n].
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2.13. Lemma. If φ, ψ : 1S → c are tensor convergent and Obφ = Obψ : S → Ob c, then
φ+ ψ is tensor convergent as well.

Proof. Fix an element x ∈ S and an element l ∈ L. Consider λ ∈ L+ such that λ > l.
Denote by Y the Λ-module c(φX, φX). Let K ∈ N (resp. M ∈ N) be such that for every
k ∈ N, k > K (resp. m ∈ N, m > M) we have φ(1X)⊗̂k ∈ Fλ(Y ⊗̂k) (resp. ψ(1X)⊗̂m ∈
Fλ(Y ⊗̂m)). Let φ(1X)⊗̂k ∈ Fck(Y ⊗̂k) for 0 6 k < K and let c ∈ L+ be such that c+ck > 0
for 0 6 k < K. Let ψ(1X)⊗̂m ∈ Fbm(Y ⊗̂m) for 0 6 m < M and let b ∈ L+ be such that
b+bm > 0 for 0 6 m < M . Let N ∈ N (resp. P ∈ N) be such that for every k ∈ N, k > N
(resp. m ∈ N, m > P ) we have φ(1X)⊗̂k ∈ Fλ+b(Y ⊗̂k) (resp. ψ(1X)⊗̂m ∈ Fc+λ(Y ⊗̂m)). Set
Q = 1 + max{K + P,N + M}. For any n > Q the 2n summands of (φ(1X) + ψ(1X))⊗̂n

are identified with one of the summands φ(1X)⊗̂a⊗̂ψ(1X)⊗̂d, a+ d = n, a, d ∈ N, with the
use of symmetry, preserving the filtration. If a < K, then d > P and

φ(1X)⊗̂a⊗̂ψ(1X)⊗̂d ∈ Fca(Y ⊗̂a)⊗̂Fc+λ(Y ⊗̂d) ⊂ Fλ(Y ⊗̂n).

If d < M , then a > N and

φ(1X)⊗̂a⊗̂ψ(1X)⊗̂d ∈ Fλ+b(Y ⊗̂a)⊗̂Fbd(Y ⊗̂d) ⊂ Fλ(Y ⊗̂n).

It remains to consider the case a > K, d >M . Then

φ(1X)⊗̂a⊗̂ψ(1X)⊗̂d ∈ Fλ(Y ⊗̂a)⊗̂Fλ(Y ⊗̂d) ⊂ F2λ(Y ⊗̂n).

Hence, (φ(1X) + ψ(1X))⊗̂n ∈ Fλ(Y ⊗̂n) ⊂ Fl(Y ⊗̂n).

2.14. Remark. For any map f : Q → S and tensor convergent φ : 1S → a the map
1f · φ is tensor convergent as well. For any morphism g : a→ b ∈ Λ-modc

L-Quiv and any
X ∈ S the map g⊗̂n : a(φX, φX)⊗̂n → b(gφX, gφX)⊗̂n is in Λ-modc

L, hence, φ · g is tensor
convergent as well.

2.15. Definition. Inspired by Definitions 1.4, 1.6, 1.7 we say that a completed conilpo-
tent cocategory C = ĉ is a completion (as a filtered quiver) of a conilpotent cocate-
gory c. It is itself a cocategory (with respect to ⊗̂) equipped with the comultiplication

∆ĉ = (ĉ
∆̂c−→ ĉ⊗ c

̂̈ı⊗ı̈→ ̂̂c⊗ ĉ = ĉ⊗̂ĉ), the counit εĉ = ε̂c : ĉ → Λ̂ĉ = Λc and the
augmentation ηĉ = η̂c : Λc = Λ̂ĉ → ĉ, see Appendix A.5.1. Morphisms of completed
conilpotent cocategories ( cofunctors) f : B→ C are morphisms of Λ-modc

L-Quiv compat-
ible with the comultiplication and the counit in the sense of (1.2) (with ⊗ replaced with
⊗̂) such that ηB · f − 1f · ηC : 1B → C is tensor convergent. In their set-up De Deken
and Lowen introduce another notion – qA∞-functors [De Deken, Lowen, 2018] (which
turns out equivalent to cofunctors, cf. Proposition 2.28) in analogy with qdg-functors of
[Polishchuk, Positselski, 2012]. The category of cofunctors between completed conilpotent
cocategories is denoted cncCat. The category with augmentation preserving cofunctors
between completed conilpotent cocategories (ηB ·f = 1f ·ηC, see (1.3)) is denoted acncCat.
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2.16. Remark. The composition of cofunctors f : a → b and g : b → c is a cofunctor
itself. Indeed,

ηa · f · g − 1(f · g) · ηc = ηa · f · g − 1f · ηb · g + 1f · ηb · g − 1f · 1g · ηc
= (ηa · f − 1f · ηb) · g + 1f · (ηb · g − 1g · ηc) : 1a→ c.

Both summands are tensor convergent by Remark 2.14 and induce the mapping Ob f ·Ob g
on objects. By Lemma 2.13 the map ηa ·f ·g−1(f ·g)·ηc is tensor convergent. The identity
morphism is a cofunctor. Thus, there is a category of completed conilpotent cocategories
cncCat with cofunctors as morphisms.

2.17. Lemma. Let φ : 1S → b, ψ : 1Q → d be morphisms in Λ-modc
L-Quiv and let φ be

tensor convergent. Then φ�̂ψ : 1(S ×Q) = 1S�̂1Q→ b�̂d is tensor convergent.

Proof. Let X ∈ S, Y ∈ Q. We have 1Y ∈ F0(1Q(Y, Y )), hence, ψ(1Y ) ∈ F0(d(ψY, ψY )).
Therefore, ψ(1Y )⊗̂n ∈ F0[d(ψY, ψY )⊗̂n]. Thus, for n large enough

(φ�̂ψ)(1X�̂1Y )]⊗̂n = φ(1X)⊗̂n�̂ψ(1Y )⊗̂n ∈ Fl[b(φX, φX)⊗̂n]�̂F0[d(ψY, ψY )⊗̂n]

⊂ Fl{[b(φX, φX)�̂d(ψY, ψY )]⊗̂n},

that is, φ�̂ψ is tensor convergent.

By Proposition 1.10 the category acncCat is monoidal with respect to �̂. Furthermore:

2.18. Proposition. The category cncCat is monoidal with respect to �̂.

Proof. First of all, the �̂-product of morphisms of complete quivers, which preserve the
grading and the filtration, preserves them as well. Secondly, let f : A → B, g : C → D
be morphisms from cncCat. Then

(ηA�̂ηC) · (f�̂g)− (1f�̂1g) · (ηB�̂ηD) = ηAf�̂ηCg − 1fηB�̂1gηD

= (ηAf − 1fηB)�̂ηCg + 1fηB�̂(ηCg − 1gηD) : 1A�̂1C→ B�̂D.

By Lemma 2.17 both summands are tensor convergent. Both include the mapping Ob f×
Ob g on objects. By Lemma 2.13 their sum is tensor convergent, hence, f�̂g is a cofunctor.

If cofunctor f : a→ b ∈ ncCat, then f̂ : â→ b̂ ∈ acncCat. Thus, completion induces
a functor ncCat→ acncCat.

2.19. Example. Consider L = {0,∞} with the neutral element 0 and the rules 0 <∞,
∞ + ∞ = ∞. Any abelian group M is equipped with the L-filtration F0M = M ,
F∞M = 0. Such a filtration is called discrete by [De Deken, Lowen, 2018, Examples 2.4,
2.17, Remark 2.8]. The canonical mapping of L-filtered abelian groups ı̈ : M → M̂ is
an isomorphism. The same for graded abelian groups M . We have Λ-modc

L = Λ-mod
for an arbitrary graded commutative ring Λ. A morphism φ : 1S → a ∈ Λ-mod-Quiv
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is tensor convergent if for every X ∈ S there exists N ∈ N such that [φ(1X)]⊗̂N = 0.
The category cncCat has the same objects as ncCat, but larger sets of morphisms. For
f : a→ b ∈ cncCat the map ηa · f − 1f · ηb is tensor convergent, while for f ∈ ncCat it is
0.

Completion of Λ-modules commutes with direct sums in the following sense. Let M ,

N be filtered Λ-modules. Their direct sum is determined by the diagram M ←
pr1

in1
→M ⊕

N
pr2→←
in2

N with the standard relations between pri and inj. The same relations hold in

the completion M̂ ←̂
pr1

în1

→ M̂ ⊕N
p̂r2→←̂
in2

N̂ . Therefore, M̂ ⊕N ∼= M̂ ⊕ N̂ .

Applying to the conilpotent cocategory Ta from Example 1.8 the completion construc-

tion of Section A.5.1, we get a functor T̂ - : ˜Λ-modL-Quiv→ acncCat→ Coalg ˜Λ-modc
L-Quiv

.

The decomposition Ta = T<na ⊕ T>na, n > 1, implies the decomposition T̂a = T̂<na ⊕
T̂>na.

2.20. Remark. Recall that Ta is also a (free) category with the composition µ, and T>na
is its ideal. This can be expressed as the existence of top arrow µ′ in the commutative
diagram

T>na⊗ Ta µ′ → T>na

Ta⊗ Ta

i⊗1
↓

∩

µ → Ta

i
↓

∩

where i is the split inclusion, and by another similar diagram. Completing this square to
the right square in

T̂>na⊗̂T̂a
̂̈ı⊗ı̈−1

→ ̂T>na⊗ Ta µ̂′ → T̂>na

T̂a⊗̂T̂a

î⊗̂1↓

∩

̂̈ı⊗ı̈−1

→ ̂Ta⊗ Ta

î⊗1↓

∩

µ̂ → T̂a

î↓

∩

we get a commutative diagram. Thus, T̂>na is a two-sided ideal of (T̂a, µT̂a).

2.21. Remark. Consider Λ-modL-category D = Λ-modL-Quiv and its reflective sub-
category of complete quivers C = Λ-modc

L-Quiv. Let A be a completed conilpotent
cocategory and let b be a filtered quiver. The obvious embedding of uniform spaces
(prk)k>0 : Tb ⊂ →

∏
k>0 b

⊗k, where the product is taken in D̃, leads to embedding of

completions T̂b ⊂
∏̂

k>0 b
⊗k =

∏
k>0 b̂

⊗k, see [Bourbaki, 1971, Chap. II, §3, n.9, Cor. 1].
For the last equation just notice that limits commute with limits. Therefore, we have
injections

(- · p̂rk)k>0 : cncCat(A, T̂b) ⊂ → C̃(A, T̂b) ⊂ → C̃(A,
∏
k>0

b̂⊗k) =
∏
k>0

C̃(A, b̂⊗k), (2.6)
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where the first product is in C̃ and the second in Set. The completion T̂b of ⊕k>0b̂⊗k ≡∐
k>0 b̂

⊗k coincides with the closure of this subspace of the complete space
∏

k>0 b̂
⊗k.

Hence, T̂b consists of elements of certain degree x = (x0, x1, x2, . . . ) ∈
∏

k>0 b̂
⊗k such that

for every l ∈ L there is n ∈ N with the property that for all k > n we have xk ∈ Flb̂⊗k.
We may say also that the series

∑∞
k=0 xk converges. This is equivalent to the previous

condition since xk belong to different direct summands.

2.22. Lemma. Let a, b, c, d be complete quivers. Let fk : a→ b, k ∈ N, and gm : c→ d,
m ∈ N, be morphisms of filtered quivers. Assume that series f =

∑
k∈N fk (resp. g =∑

m∈N gm) pointwise converges, that is, for each x ∈ ad, d ∈ Z, (resp. y ∈ cp, p ∈ Z)
and for every l ∈ L we have fk(x) ∈ Flb (resp. gm(y) ∈ Fld) except for finite number

of terms. Then the tensor product f�̂g : a�̂c → b�̂d is the sum of pointwise convergent
series

∑
k,m∈N fk�̂gm, that is, for any x ∈ ad, y ∈ cp, d, p ∈ Z, and any l ∈ L we have

fk(x)�̂gm(y) ∈ Fl(b�̂d) except for finite number of terms.

Proof. For any l ∈ L consider any decomposition l = l′ + l′′, l′, l′′ ∈ L. Let x ∈ ad,
y ∈ cp, d, p ∈ Z. There exists K ∈ N such that fk(x) ∈ Fl

′
(b) for all k > K. Consider

ck ∈ L for k < K, k ∈ N, such that fk(x) ∈ Fck(b). There is λ′′ ∈ L such that λ′′ > l′′

and ck + λ′′ > l for all k < K. There exists M ∈ N such that gm(y) ∈ Fλ
′′
(d) for all

m >M . Consider bm ∈ L for m < M , m ∈ N, such that gm(y) ∈ Fbm(d). There is λ′ ∈ L
such that λ′ > l′ and λ′ + bm > l for all m < M . There exists N ∈ N such that N > K
and fk(x) ∈ Fλ

′
(b) for all k > N . For all pairs (k,m) ∈ N2 except such that k < N and

m < M we deduce from the above that fk(x)�̂gm(y) ∈ Fl(b�̂d).

2.23. Theorem. (i) Let A = â be a completed conilpotent cocategory and let b be a filtered

quiver. Cofunctors to the completed tensor cocategory T̂b are in a natural bijection with
the subset of quiver morphisms

cncCat(A, T̂b)
Φ−→ {φ : A→ b̂ ∈ C̃ | η·φ : Λ ObA→ b̂ is tensor convergent}, f 7→ f ·p̂r1.

(ii) There is a natural bijection

acncCat(A, T̂b) ∼= {φ : A→ b̂ ∈ C̃ | η · φ = 0}, f 7→ f · p̂r1.

Proof. (i) First we remark that the corestriction f · p̂rk of any morphism f : A→ T̂b ∈
cncCat is uniquely determined by the composition f̌ = f · p̂r1 : A→ b̂ ∈ Λ-modc

L-Quiv as
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the following commutative diagram shows

T̂b
p̂rk → b̂⊗k

=

A

f
→

= T̂b
⊗̂k

∆(k)↓
p̂r1
⊗̂k

→ b̂⊗̂k

̂̈ı⊗k
↓

A⊗̂k

f ⊗̂k

↑
=

f̌ ⊗̂k

→

∆(k) →

(2.7)

In fact, the obvious equation

prk =
(
Tb

∆(k)

→ Tb⊗k
pr⊗k1→ b⊗k

)
implies commutativity of the exterior of the diagram

Tb
ı̈ → T̂b

p̂rk → b̂⊗k

=

Tb⊗k

∆(k)

↓
ı̈ → T̂b⊗k

∆̂(k)

↓ ̂̈ı⊗k→ ̂̂
Tb
⊗k ̂̂pr1

⊗k

→

∆(k)

= → ̂̂
b⊗k

̂̈ı⊗k↓

Therefore the trapezium commute which is the upper right square in diagram (2.7).
So given φ : A→ b̂ ∈ C̃ such that η · φ : Λ ObA→ b̂ is tensor convergent, let us prove

that f : A→ T̂b with Ob f = Obφ and for any element x ∈ Ad, d ∈ Z, the value of f(x)
given by the (convergent) series∑

k>0

̂̈ı⊗k−1
φ⊗̂k(∆

(k)
A x) =

∑
k>0

ˆ̈ı−1φ(x(1))⊗̂ · · · ⊗̂ˆ̈ı−1φ(x(k))

= (x)ε · (1φ) · in0 +
∑
k>1

ˆ̈ı−1φ(x(1))⊗̂ · · · ⊗̂ˆ̈ı−1φ(x(k)), (2.8)

is a cofunctor. Here x(1)⊗̂ · · · ⊗̂x(k) ≡ ∆(k)(x). Convergence means that for every l ∈ L
the k-th term except for a finite number of terms belongs to Flb̂⊗k and will be proven
now.

Assume that A = â where the cocategory a is conilpotent and φ : A → b̂ ∈ C̃ is such
that ηA · φ tensor converges. Replacing a with the conilpotent cocategory ı̈(a) we may
assume that ı̈ : a ↪→ â is an embedding. We have to prove that (2.8) converges for all x ∈
Ad. It suffices to assume that x ∈ Ā(X, Y )d. Use the notation x(1̄)⊗̂ · · · ⊗̂x(k̄) ≡ ∆̄

(k)
A (x).

The counital comultiplication ∆ is recovered from the reduced comultiplication ∆̄ via the
formula

∆
(k)
A (x) =

S 6=∅∑
j:S↪→k

⊗̂i∈k(x(j−1i))
χ(i∈jS), (2.9)
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where y0 = ηA(1), y1 = y, and the summation extends over all non-empty subsets S of

k = {1, 2, . . . , k}. By convention, ∆̄
(1)
A x = x.

Assume for a moment that x ∈ ād, hence, for some n > 0 ∆̄
(n)
a (x) = 0. So the

summation in (2.9) goes over S with |S| < n. The list of tuples of objects X =
Z0, Z1, . . . , Zm−1, Zm = Y , which occur in

∆̄(m)
a (x) ∈ ⊕Z1,...,Zm−1a(X,Z1)⊗ a(Z1, Z2)⊗ · · · ⊗ a(Zm−1, Y )

for 1 6 m < n, is finite. Form a single list Z1, . . . , Zq of Zi occurring in all such decom-

positions and denote Yq = b̂(φZq, φZq) ∈ Λ-modc
L. Let P ∈ N such that for every p ∈ N,

p > P , we have φη(1Zq)
⊗p ∈ F0(Y ⊗pq ). Let bp ∈ L be such that φη(1Zq)

⊗p ∈ Fbp(Y ⊗pq ) for
any 1 6 q 6 Q and any p < P . Let b 6 bp for all p < P . Let c ∈ L be such that all
factors x(̄i) of all summands of all ∆(m)(x), 0 6 m < n, belonging to a(Zi−1, Zi), were, in
fact, in Fca(Zi−1, Zi). There is λ ∈ L such that (n − 1)c + nb + λ > l. There is N ∈ N
such that k > N implies φη(1Zq)

⊗k ∈ Fλ(Y ⊗kq ). When k > nN at least one factor of this

type occurs in ∆(k)(x). Hence, for k > nN we have φ⊗k∆(k)(x) ∈ Fλ(b̂(φX, φY )).
Consider now an arbitrary x ∈ Ā(X, Y )d. Given l ∈ L there is an element x′ ∈

ā(X, Y )d such that x − x′ ∈ FlĀ(X, Y )d. Then for all k > 1 we have φ⊗̂k(∆
(k)
A x) −

ı̈[φ⊗k(∆
(k)
a x′)] ∈ Fl(b̂⊗̂k). Since φ⊗k(∆

(k)
a x′) ∈ Fl(b̂⊗k) for large k we deduce that φ⊗̂k(∆

(k)
A x)

∈ Fl(b̂⊗̂k) which proves the convergence of (2.8) and gives a well-defined map of filtered

quivers f : A→ T̂b with Ob f = Obφ.
Let us prove that f is a morphism of cocategories. Due to coassociativity of ∆A we

may write a convergent series

(x)f ·∆ =
∑
k∈N

m,n∈N∑
m+n=k

φ⊗̂m(∆(m)x(1))⊗̂φ⊗̂n(∆(n)x(2)). (2.10)

Variant of Lemma 2.22 for ⊗̂ gives another convergent series

(x)∆ · (f⊗̂f) =
∑
m,n∈N

φ⊗̂m(∆(m)x(1))⊗̂φ⊗̂n(∆(n)x(2))

with the same terms as in (2.10) but with different summation order. Since the sum of a
series convergent in our sense does not depend on the order of summation, we conclude
that f ·∆ = ∆ · (f⊗̂f).

The morphism f preserves the counit due to (2.8):

f · ε = f · p̂r0 = ε · (1φ) = ε · (1f).

The map f is a cofunctor since

(1X)ηA · f − (1X)1f · in0 ·̈ı =
∑
k>1

[φη(1X)]⊗̂k.
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By definition, for any l ∈ L+ there exists N ∈ N such that for every n > N we have

[φη(1X)]⊗̂n ∈ Fl[b̂⊗n]. Clearly, all terms of

[(1X)ηA · f − (1X)1f · in0 ·̈ı]⊗̂n =
[∑
k>1

[φη(1X)]⊗̂k
]⊗̂n

are in Fl[T̂b]. Summing up, a map

Ψ : {φ : A→ b̂ ∈ C̃ | η · φ : Λ ObA→ b̂ is tensor convergent} → cncCat(A, T̂b)

is constructed.
Let us prove that for any cofunctor f : A → T̂b the map η · f̌ = η · f · p̂r1 : 1A → b̂

is tensor convergent. We know that ηA · f − 1f · in0 ·̈ı : 1A → T̂b is tensor convergent.
Therefore, (ηA · f − 1f · in0 ·̈ı) · p̂r1 = η · f̌ is tensor convergent by Remark 2.14. Thus,
the claimed map Φ : f 7→ f̌ is constructed.

Clearly, ΦΨ(φ) = φ. In particular, Φ is surjective. As the reasoning at the beginning
of the proof shows, injection (2.6) factorizes through Φ, namely, (- · p̂rk)k>0 = Φ ·Ξ, where

Ξ : C̃(A, b̂) ⊂ →
∏
k>0

C̃(A, b̂⊗k), φ 7→ (∆
(k)
A · φ

⊗̂k)k>0.

Therefore, Φ is an injection as well. We conclude that Φ is bijective and Ψ = Φ−1.
(ii) follows from (i).

2.24. Corollary. Let a be a conilpotent cocategory and let b be a filtered quiver.
(i) Cofunctors to the completed tensor cocategory T̂b are in a natural bijection with

the subset of quiver morphisms

cncCat(â, T̂b) ∼= {φ : a→ b̂ ∈ C̃ | η · φ : Λ Ob a→ b̂ is tensor convergent}, f 7→ f · p̂r1.

(ii) There is a natural bijection

acncCat(â, T̂b) ∼= {φ : a→ b̂ ∈ C̃ | η · φ = 0}, f 7→ f · p̂r1.

Proof. Follows from Proposition 2.1(i) and Theorem 2.23 by universality property of the
completion.

2.25. Definition. Let a ∈ ncCat, B ∈ cncCat. A cofunctor f : a → B is a morphism
from Λ-modL-Quiv compatible with the comultiplication and the counit in the sense that

a
f →B

=

a⊗ a

∆

↓
f⊗f→B⊗B

ı̈→ B̂⊗B

∆↓ ,

a
f →B

=

Λa

ε
↓

Λf → ΛB

ε
↓

(2.11)

and such that ηa · f − 1f · ηB is tensor convergent.

An explanation of the above is given by
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2.26. Proposition. Let a ∈ ncCat, B ∈ cncCat. The restriction and universality of the
completion give mutually inverse bijections

cncCat(â,B)←→ { cofunctors a→ B}.
Proof. Diagrams (2.11) for f = ı̈ : a→ â take the form of left rectangles below

a
ı̈ → â

g →B

=

a⊗ a

∆

↓
ı̈ → â⊗ a

̂̈ı⊗ı̈→
∆̂

=← ̂̂a⊗ â

∆â↓
ĝ⊗g→ B̂⊗B

∆B↓ ,

a
ı̈ → â

g →B

=

Λa

ε

↓
========

Λı̈

ı̈
Λa

ε̂

↓
Λg → ΛB

ε

↓
.

(2.12)
and they obviously commute, proving that ı̈ : a → â is a cofunctor. The restriction map
is cncCat(â,B)→ { cofunctors a→ B}, g 7→ ı̈ · g.

The inverse map is constructed as follows. Let f : a → B ∈ Λ-modL-Quiv satisfy

(2.11). Then there is a unique g = f̃ : â → B ∈ Λ-modL-Quiv such that f =
(
a

ı̈−→
â

g−→ B
)
. If f is a cofunctor, the exterior rectangles of (2.12) commute. By universality

property of ı̈ : a→ â, the right squares of (2.12) commute as well.

Introduce the notation T̂a = T̂a. We have shown in the above proof that any cofunctor

f : Ta → T̂b factorizes as f =
(
Ta

ı̈−→ T̂a
f̃−→ T̂b

)
for a unique f̃ ∈ cncCat(T̂a, T̂b). The

components of f and f̃ ,

fk =
(
T ka

ink→ Ta
f→ T̂b

p̂r1→ b̂
)
,

f̃k =
(
T̂ ka

înk→ T̂a
f̃→ T̂b

p̂r1→ b̂
)
,

are related by fk = ı̈ · f̃k as well.

2.27. Remark. It follows from Remark 2.21 that the series
∞∑
k=0

p̂rk · înk =
∞∑
k=0

(
T̂b

p̂rk→ T̂ kb
înk→ T̂b

)
converges to IdT̂b.

We use this remark in order to write down components of the composition h =
(
Ta

f−→
T̂b

g̃−→ T̂ c
)
. We have by (2.7)

hl =
∞∑
k=0

(
T la

inl→ Ta
f→ T̂b

p̂rk→ T̂ kb
înk→ T̂b

g̃→ T̂ c
p̂r1→ ĉ

)
=
∞∑
k=0

(
T la

inl→ Ta
∆(k)

→ (Ta)⊗k
f̌⊗k→ b̂⊗k

ı̈→ b̂⊗̂k
̂̈ı⊗k−1

→ b⊗̂k
g̃k→ ĉ

)
=

k>0∑
i1+···+ik=l

(
T la

fi1⊗···⊗fik→ b̂⊗k
ı̈→ b̂⊗̂k

̂̈ı⊗k−1

→ b⊗̂k
g̃k→ ĉ

)
. (2.13)
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2.28. Proposition. Let a, b be filtered quivers and let f : T̂a → T̂b ∈ Λ-modc
L-Quiv

be compatible with the comultiplication and the counit. Then f is a cofunctor iff f0 =
în0 · f · p̂r1 : 1a→ b̂ is tensor convergent.

Proof. Assuming that f0 : 1a → b̂ is tensor convergent, we find due to diagram (2.7)

that ηT̂a · f − 1f · ηT̂b =
∑

n>0 f
⊗̂n
0 : 1a → T̂b and the series in the right hand side is

convergent. Furthermore, the series in the right hand side is tensor convergent. Therefore,
if f0 is tensor convergent, then f is cofunctor.

Assuming that f is a cofunctor, we see that by definition y = ηT̂a · f − 1f · ηT̂b :

1a → T̂>1b is tensor convergent. From (2.8) we obtain that y =
∑

n>0 f
⊗̂n
0 . The series

f ′0 =
∑

m>0(−1)m−1y⊗̂m : 1a→ T̂>1b converges. Let us compute the sum:

f ′0 =
∑
m>0

(−1)m−1
(∑
n>0

f ⊗̂n0

)⊗̂m
=
∑
k>0

f ⊗̂k0

m,ij>0∑
i1+···+im=k

(−1)m−1.

Notice that the coefficient near tk in expansion ( t
1−t)

m = tm
∑∞

a=0(−1)ata
(−m
a

)
equals(

k−1
k−m

)
for k > m and vanishes if k < m. Therefore,

f ′0 =
∑
k>0

f ⊗̂k0

k∑
m=1

(−1)m−1

(
k − 1

k −m

)
= f0 +

∑
k>1

f ⊗̂k0 (1− 1)k−1 = f0.

We conclude that f0 = f ′0 is tensor convergent. By the way, one can show that the both
compositions of the maps f0 7→ y, y 7→ f0 are identities.

This proposition shows that in the set-up of De Deken and Lowen qA∞-functors
[De Deken, Lowen, 2018] are the same as cofunctors.

2.29. Corollary. Let a, b be filtered quivers and let f : Ta → T̂b ∈ Λ-modL-Quiv be
compatible with the comultiplication and the counit in the sense of diagrams (2.11). Then
f is a cofunctor iff f0 = in0 ·f · p̂r1 : 1a→ b̂ is tensor convergent.

2.30. Coderivations.

2.31. Definition. Let f, g : A → B ∈ cncCat. An (f, g)-coderivation r : f → g : A →
B of degree d and of level λ is a collection of elements r ∈ FλΛ-modL(A(X, Y ),B(fX, gY ))d,
which satisfies the equation r ·∆ = ∆ · (f⊗̂r + r⊗̂g).

Let A,B ∈ cncCat. The coderivation quiver Coder(A,B) has cofunctors f : A →
B as objects and the component Fλ Coder(A,B)(f, g)d of the filtered graded Λ-module
Coder(A,B)(f, g) consists of coderivations r : f → g : A→ B of degree d and of level λ.

2.32. Proposition. Let b be a filtered quiver and let f, g : A→ T̂b ∈ cncCat. (f, g)-co-

derivations r : f → g : A → T̂b of degree d and of level λ are in bijection with the
collections of morphisms ř = r · p̂r1 ∈ FλΛ-modL(A(X, Y ), b̂(fX, gY ))d, X, Y ∈ ObA.
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Proof. The commutative diagram

T̂b
p̂rk → b̂⊗k

=

A

r

→

= T̂b
⊗̂k

∆(k)↓
p̂r1
⊗̂k

→ b̂⊗̂k

̂̈ı⊗k
↓

A⊗̂k

∑
q+1+t=k f

⊗̂q⊗̂r⊗̂g⊗̂t
↑

=

∑
q+1+t=k f̌

⊗̂q⊗̂ř⊗̂ǧ⊗̂t

→

∆(k)

→

shows that the composition A
r−→ T̂b ↪→

∏
k>0 b̂

⊗k is given by the family(
∆

(k)
A ·

∑
q+1+t=k

f̌ ⊗̂q⊗̂ř⊗̂ǧ⊗̂t
)∞
k=0

.

Due to coassociativity of ∆A this equals ∆
(3)
A · (f⊗̂ř⊗̂g) · µ(3)

T̂b
, which clearly lies in T̂b.

Thus,
r = ∆

(3)
A · (f⊗̂ř⊗̂g) · µ(3)

T̂b
(2.14)

is unambiguously determined by the collection ř = r · p̂r1 : A(X, Y )→ b̂(fX, gY ).
On the other hand, the right hand side of (2.14) is an (f, g)-coderivation as the fol-

lowing computation shows

x(r ·∆) = (x(1)⊗̂x(2)⊗̂x(3))[(f ·∆)⊗̂ř⊗̂g] + (x(1)⊗̂x(2)⊗̂x(3))[f⊗̂ř⊗̂(g ·∆)]

=
(
x(1)

⊗̂
x(2)⊗̂x(3)⊗̂x(4)

)(
f
⊗̂

f⊗̂ř⊗̂g
)

+
(
x(1)⊗̂x(2)⊗̂x(3)

⊗̂
x(4)

)(
f⊗̂ř⊗̂g

⊗̂
g
)

=
(
x(1)

⊗̂
x(2)

)(
f
⊗̂

r
)

+
(
x(1)

⊗̂
x(2)

)(
r
⊗̂

g
)

= (x∆)(f⊗̂r + r⊗̂g).

It remains to note that f and g preserve the filtration and the grading.

2.33. Corollary. Let a ∈ ncCat, let b be a filtered quiver and let f, g : â → T̂b ∈
cncCat. (f, g)-coderivations r : f → g : â → T̂b of degree d and of level λ are in
bijection with the collections of morphisms ř = r · p̂r1 ∈ FλΛ-modL(a(X, Y ), b̂(fX, gY ))d,
X, Y ∈ Ob a.

Proof. Follows from Propositions 2.1(i) and 2.32 by universality property of the com-
pletion.

2.34. Definition. Let a ∈ ncCat, B ∈ cncCat, and let f, g : a → B be cofunctors in
the sense of Definition 2.25. An (f, g)-coderivation r : f → g : a→ B of degree d and of
level λ is a collection of elements r ∈ FλΛ-modL(a(X, Y ),B(fX, gY ))d, which satisfies
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the equation

a
r →B

=

a⊗ a

∆

↓
f⊗r+r⊗g→B⊗B

ı̈→ B̂⊗B

∆↓ (2.15)

The filtered Λ-module of (f, g)-coderivations is denoted Coder(a,B)(f, g).

The reason for introducing this definition is given by the following

2.35. Proposition. Let a ∈ ncCat, B ∈ cncCat, and let f, g : a → B be cofunctors.
They can be represented as f = ı̈ · f ′, g = ı̈ · g′ by Proposition 2.26. Then the map

Coder(â,B)(f ′, g′)→ Coder(a,B)(f, g), r′ 7→ ı̈ · r′ = r, (2.16)

is a bijection.

Proof. Take r′ ∈ Coder(â,B)(f ′, g′). Then the rightmost quadrilateral (trapezium) in
the following diagram commutes:

a
ı̈ → â

r′ →B

=

a⊗ a

∆

↓
ı̈ → â⊗ a

∆̂↓ ̂̈ı⊗ı̈→ ̂̂a⊗ â
f̂ ′⊗r′+r̂′⊗g′→

∆â

= →
B̂⊗B

∆↓

=

B⊗B

ı̈

→
f⊗r+r⊗g →

(2.17)

Therefore, the whole diagram commutes and map (2.16) is well-defined.
On the other hand, any map r ∈ FλΛ-modL(M,N)d takes FlMk to Fl+λNk+d. We

are interested in M = a(X, Y ), N = B(fX, gY ). By Proposition 2.1(i) r : Mk → Nk+d

are uniformly continuous for all k ∈ Z. Therefore, these maps factorize as r =
(
Mk ı̈−→

M̂k r′−→ Nk+d
)
. Clearly, r′ ∈ FλΛ-modL(M̂,N)d and r = ı̈ · r′. The exterior of (2.17)

commutes. Thus, the biggest rectangle in (2.17) commutes. Hence, the right rectangle

commutes. Equivalently, the trapezium with vertices â, . . . , B̂⊗B commutes, that is, r′

is an (f ′, g′)-coderivation.

2.36. Corollary. Let a ∈ ncCat, B ∈ cncCat. Then the filtered quivers Coder(â,B)
and Coder(a,B) are isomorphic.

When we write r : f → g : A→ B we mean r ∈ Fλ Coder(TsA, T̂ sB)(f, g)d for some
d ∈ Z and λ ∈ L. Suppose that h̃ : T̂ sB→ T̂ sC is a cofunctor. Then for r as above there
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is a coderivation rh̃ ∈ Fλ Coder(TsA, T̂ sC)(fh̃, gh̃)d, whose components are found as

(rh̃)l =

k,m>0∑
i1+···+ik+t+j1+···+jm=l

(
T lsA

fi1⊗···⊗fik⊗rt⊗gj1⊗···⊗gjm→ (sB̂)⊗(k+1+m)

ı̈→ (sB̂)⊗̂(k+1+m)
̂ı̈⊗k+1+m

−1

→ (sB)⊗̂(k+1+m) h̃k+1+m→ ĉ
)
,

due to Proposition 2.32, Remark 2.27 similarly to (2.13).
Suppose now that besides r̃ ∈ Fλ Coder(T̂ sA, T̂ sB)(f̃ , g̃)d we have a cofunctor e :

TsC → T̂ sA. Then we have also a coderivation er̃ : ef̃ → eg̃ : C → B, er̃ ∈
Fλ Coder(TsC, T̂ sB)(ef̃ , eg̃)d, whose components are given by

(er̃)l =

k>0∑
i1+···+ik=l

(
T lsC

ei1⊗···⊗eik→ (sÂ)⊗k
ı̈→ (sÂ)⊗̂k

̂̈ı⊗k−1

→ (sA)⊗̂k
r̃k→ sB̂

)
due to Theorem 2.23, Remark 2.27 similarly to (2.13).

2.37. Evaluation. Let A be a completed conilpotent cocategory and let b be a V-quiver.
Define the evaluation cofunctor ev : A�T Coder(A, T̂b)→ T̂b on objects as ev(A� f) =

fA, and on morphisms as follows. Let f 0, f 1, . . . , fn : A → T̂b be cofunctors, and

let r1, . . . , rn be coderivations of certain degrees and of some level as in f 0 r1−→ f 1 r2−→
. . . fn−1 rn−→ fn : A → T̂b, n > 0. Then c = r1 ⊗ · · · ⊗ rn ∈ T n Coder(A, T̂b)(f 0, fn).
Define

[a� (r1 ⊗ · · · ⊗ rn)] ev = (a∆(2n+1))(f 0⊗̂ř1⊗̂f 1⊗̂ř2⊗̂ · · · ⊗̂fn−1⊗̂řn⊗̂fn)µ
(2n+1)

T̂b
.

The right hand side belongs to (T̂b)⊗̂(2n+1)µ
(2n+1)

T̂b
and is mapped by multiplication µ

(2n+1)

T̂b

from (A.4) into T̂b. So defined ev is a cofunctor. Indeed, η ·ev−1 ev ·η applied to 1A�1f ,

A ∈ ObA, f ∈ Ob Coder(A, T̂b) = cncCat(A, T̂b), gives a tensor convergent expression

in T̂b
[η(1A)� in0(1f )] ev−(1fA)η = f [η(1A)]− η(1fA),

since f is a cofunctor.
The following statement generalizes Proposition 3.4 of [Lyubashenko, 2003].

2.38. Theorem. For a ∈ ncCat, b, c1, . . . cq ∈ Λ-modL-Quiv with notation c = T c1 �
· · ·� T cq the map

ncCat(c, T Coder(a, T̂b)) −→ cncCat(a� c, T̂b),

ψ 7−→
(
a� c

a�ψ→ a� T Coder(a, T̂b)
ev−→ T̂b

)
is a bijection.
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Proof. An augmentation preserving cofunctor ψ : c→ T Coder(â, T̂b) ∼= T Coder(a, T̂b)

(see Corollary 2.36) is described by an arbitrary quiver map ψ̌ = ψ·pr1 : c→ Coder(a, T̂b) ∈
Λ-modL-Quiv such that η · ψ̌ = 0 by Proposition 1.9. Let φ : a� c→ T̂b be a cofunctor.
It equals the cofunctor (a� ψ) · ev : a� c→ T̂b if the equation∑

k>0

(a� c∆(k)ψ̌⊗k) ev = (a� c)φ, a ∈ a•, c ∈ c•,

holds (by Theorem 2.23(i) and Proposition 2.26). It suffices to consider two cases. In the
first one c = η(1g) for some g ∈ Ob c. Then the equation takes the form (a)(gψ) = (a�c)φ
which defines the cofunctor gψ ∈ cncCat(a, T̂b) in the left hand side.

In the second case c ∈ Flc̄d the equation takes the form

(a)(c)ψ̌ +
∑
k>2

(a� c∆(k)ψ̌⊗k) ev = (a� c)φ, a ∈ a•, c ∈ c̄•.

Since η · ψ̌ = 0 the comultiplication ∆ can be replaced with ∆̄. The structure of c =
T c1 � · · ·� T cq is such that the component ψi1,...,iq in the left hand side of

(a)(c)ψ̌ = (a� c)φ−
∑
k>2

(a� c∆̄(k)ψ̌⊗k) ev, a ∈ a•, c ∈ c̄•, (2.18)

is expressed via the components ψj1,...,jq with smaller indices (j1, . . . , jq) in the product
poset Nq. For c ∈ Flc̄(X, Y )d, X = (X1, . . . , Xq), Y = (Y1, . . . , Yq), Xi, Yi ∈ Ob ci,
find n > 0 such that c∆̄(n+1) = 0. Equation (2.18) determines a unique collection of

maps cψ̌ ∈ FlΛ-modL
(
a(U, V ), T̂b((U,X)φ, (V, Y )φ)

)d
. It remains to verify that it is a

coderivation. We have to prove that

(a)(cψ̌)∆b = (a)∆a[( �X)φ⊗ ( )(cψ̌) + ( )(cψ̌)⊗ ( � Y )φ].

The case n = 0 being obvious, assume that n > 1. The sum in (2.18) goes from k = 2 to
n. Correspondingly,

(a)(cψ̌)∆ = (a∆)[( �c(1))φ⊗( �c(2))φ]−
n∑
k=2

[(a∆)�(c1̄ψ̌⊗· · ·⊗ck̄ψ̌)∆T Coder]τ(23)(ev⊗ ev).

Here according to Sweedler’s notation c(1) ⊗ c(2) = c∆. Similarly, c1̄ ⊗ · · · ⊗ ck̄ = c∆̄(k).
Recall the middle four interchange [(a⊗ b)� (c⊗ d)]τ(23) = (−1)bc(a� c)⊗ (b� d). The
above expression has to be equal to

(a∆)
{

( � 1X)φ⊗
[
( � c)φ−

n∑
k=2

(
� (c1̄ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

)
ev
]}

+ (a∆)
{[

( � c)φ−
n∑
k=2

(
� (c1̄ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

)
ev
]
⊗ ( � 1Y )φ

}
.
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Canceling the above terms we come to identity to be checked

(a∆)[( � c1̄)φ⊗ ( � c2̄)φ] =
n∑
k=2

[
(a∆)� (c1̄ψ̌⊗ · · · ⊗ ck̄ψ̌)∆̄T Coder

]
τ(23)(ev⊗ ev). (2.19)

The right hand side equals

n∑
k=2

k−1∑
i=1

{
(a∆)�

[
(c1̄ψ̌ ⊗ · · · ⊗ cīψ̌)

⊗
(ci+1ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

]}
τ(23)(ev⊗ ev)

=
n∑
k=2

k−1∑
i=1

(a∆)
{[
� (c1̄ψ̌ ⊗ · · · ⊗ cīψ̌)

]
ev⊗

[
� (ci+1ψ̌ ⊗ · · · ⊗ ck̄ψ̌)

]
ev
}

=
n∑
i=1

n∑
j=1

(a∆)
{[
� (c1̄ψ̌ ⊗ · · · ⊗ cīψ̌)

]
ev⊗

[
� (ci+1ψ̌ ⊗ · · · ⊗ ci+jψ̌)

]
ev
}

= (a∆)[( )(c1̄F )⊗ ( )(c2̄F )],

where

(a)(cF ) =
n∑
i=1

[
a� (c1̄ψ̌⊗· · ·⊗ cīψ̌)

]
ev = (a)(cψ̌)+

n∑
i=2

[
a� (c1̄ψ̌⊗· · ·⊗ cīψ̌)

]
ev = (a� c)φ

due to (2.18). Hence the right hand side of (2.19) equals (a∆)[( � c1̄)φ⊗ ( � c2̄)φ], which
is the left hand side of (2.19).

Let a be a conilpotent cocategory and let b, c be quivers. Consider the cofunctor given
by the upper right path in the diagram

a� T Coder(a, T̂b)� T Coder(T̂b, T̂ c)
ev�1→ T̂b� T Coder(T̂b, T̂ c)

=

a� T Coder(a, T̂ c)

1�M↓
ev → T̂ c

ev↓

By Theorem 2.38 there is a unique augmentation preserving cofunctor

M : T Coder(a, T̂b)� T Coder(T̂b, T̂ c)→ T Coder(a, T̂ c).

Denote by 1 the unit object �0 of the monoidal category of cocategories, that is,
Ob1 = {∗}, 1(∗, ∗) = Λ. Denote by r : a � 1 → a and l : 1 � a → a the corresponding
natural isomorphisms. By Theorem 2.38 there exists a unique augmentation preserving
cofunctor ηT̂b : 1→ T Coder(T̂b, T̂b), such that

r =
(
T̂b� 1

1�η
T̂b→ T̂b� T Coder(T̂b, T̂b)

ev→ T̂b
)
.

Namely, the object ∗ ∈ Ob1 goes to the identity homomorphism idT̂b : T̂b→ T̂b.
The following statement follows from Theorem 2.38.
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2.39. Proposition. The multiplication M is associative and η is its two-sided unit:

TCoder(a, T̂b)�TCoder(T̂b, T̂ c)�TCoder(T̂ c, T̂d)
M�1→ TCoder(a, T̂ c)�TCoder(T̂ c, T̂d)

TCoder(a, T̂b)�TCoder(T̂b, T̂d)

1�M↓
M → TCoder(a, T̂d)

M↓

The multiplication M is computed explicitly in [Lyubashenko, 2003, §4], see, in par-
ticular, Examples 4.2 there.

3. Filtered A∞-categories

For a filtered graded quiver A denote by sA = A[1] the same quiver with the shifted
grading, A[1]n = An+1. The shift commutes with the completion. By s we denote also
the “identity” map s : A→ A[1], An 3 x 7→ x ∈ A[1]n−1, of degree −1.

3.1. Definition. A filtered A∞-category A is an L-filtered Z-graded quiver A, equipped
with a coderivation b : Id → Id : T̂ sA → T̂ sA of degree 1 and of level 0, such that1

the collection b : T̂ sA(X, Y ) → T̂ sA(X, Y ) satisfies b2 = 0. Another name – curved
A∞-category. De Deken and Lowen use the name of filtered cA∞-category [De Deken,
Lowen, 2018].

The codifferential b is determined in a unique fashion by the collection of morphisms
b̌ = b · p̂r1 ∈ F0Λ-modL(T̂ sA(X, Y ), sÂ(X, Y ))1, X, Y ∈ ObA, equivalently, by the collec-

tion of morphisms b̌ = b · p̂r1 ∈ F0Λ-modL(TsA(X, Y ), sÂ(X, Y ))1, X, Y ∈ ObA, due to

Corollary 2.33, equivalently, by the components bn ∈ F0Λ-modL(T nsA(X, Y ), sÂ(X, Y ))1,

X, Y ∈ ObA, n > 0. The codifferential b is recovered from its components bj : T jsA→ sÂ
due to Propositions 2.32, 2.35:

b =
∑

i+j+k=n

(̈ı1⊗̂i)⊗̂bj⊗̂(̈ı1⊗̂k) : T nsA→ (T6n+1sA) .̂

The square b2 is a (1,1)-coderivation of level 0 and of degree 2:

b2∆ = b∆(1⊗̂b+ b⊗̂1) = ∆(1⊗̂b+ b⊗̂1)2 = ∆(1⊗̂b2 + b2⊗̂1) : TsA→ T̂ sA.

Thus, the equation b2 = 0 is equivalent to the system (b2)n = 0, n > 0. The components
of b2 can be found via Remark 2.27 by insertion of id between b and b. Therefore, the
equation b2 = 0 can be written as∑

i+j+k=n

[(̈ı1⊗̂i)⊗̂bj⊗̂(̈ı1⊗̂k)]bi+1+k = 0 : T nsA→ sÂ.

1I am grateful to Kaoru Ono for explaining the reasons why the differential preserves the grading in
Fukaya categories.
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Let A, B be filtered A∞-categories, let f 0, f 1, . . . , fn : TsA→ T̂ sB be cofunctors (see
Definition 2.25), and let r1, . . . , rn be coderivations of certain degrees and of some level

as in f 0 r1−→ f 1 r2−→ . . . fn−1 rn−→ fn : TsA → T̂ sB, n > 0 (see Definition 2.34). Then
r1 ⊗ · · · ⊗ rn ∈ T n Coder(TsA, T̂ sB)(f 0, fn). Let a ∈ (T •sA)•.

3.2. Proposition. In the above assumptions there is a unique (1,1)-coderivation of de-
gree 1 and level 0 B : T Coder(TsA, T̂ sB)→ T Coder(TsA, T̂ sB), such that

[a�(r1⊗· · ·⊗rn)] ev b = [a�(r1⊗· · ·⊗rn)B] ev +(−)r
1+···+rn [ab�(r1⊗· · ·⊗rn)] ev (3.1)

for all a ∈ TsA, n > 0, r1 ⊗ · · · ⊗ rn ∈ T n Coder(TsA, T̂ sB)(f 0, fn). It satisfies B2 = 0,
thus, it gives an A∞-structure to s−1 Coder(TsA, T̂ sB) ∼= s−1 Coder(T̂ sA, T̂ sB).

Proof.B is determined by its componentsBj : T j Coder(TsA, T̂ sB)→ Coder(TsA, T̂ sB)
of degree 1 and level 0 due to Proposition 1.12:

B =
∑

i+j+k=n

1⊗i ⊗Bj ⊗ 1⊗k : T n Coder(TsA, T̂ sB)→ T6n+1 Coder(TsA, T̂ sB).

For n = 0 the equation reads f 0b = 1f0B+bf 0, where 1f0 = 1 ∈ T 0 Coder(TsA, T̂ sB)(f 0, f 0)
= Λ. Hence, since both f 0b and bf 0 are (f 0, f 0)-coderivations, B0 is found in a unique
way as

1f0B0 = f 0b− bf 0 ∈ Coder(TsA, T̂ sB)(f 0, f 0). (3.2)

Assume that the coderivation components Bj for j < n are already found so that (3.1)
is satisfied up to n − 1 arguments. Let us determine a Λ-linear map (r1 ⊗ · · · ⊗ rn)Bn :
TsA→ T̂ sB from (3.1) rewritten in the form

a.(r1 ⊗ · · · ⊗ rn)Bn = [a� (r1 ⊗ · · · ⊗ rn)] ev b− (−)r
1+···+rn [ab� (r1 ⊗ · · · ⊗ rn)] ev

−
j<n∑

q+j+t=n

[a� {(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗t)}] ev .

Let us show that (r1 ⊗ · · · ⊗ rn)Bn is a (f 0, fn)-coderivation. Indeed,

(r1 ⊗ · · · ⊗ rn)Bn∆ = ∆[f 0⊗̂(r1 ⊗ · · · ⊗ rn)Bn + (r1 ⊗ · · · ⊗ rn)Bn⊗̂fn] (3.3)
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due to computation

a.(r1 ⊗ · · · ⊗ rn)Bn∆ = [a� (r1 ⊗ · · · ⊗ rn)]∆(ev ⊗̂ ev)(1⊗̂b+ b⊗̂1)

− (−)r
1+···+rn [ab� (r1 ⊗ · · · ⊗ rn)]∆(ev ⊗̂ ev)

−
j<n∑

q+j+t=n

[a� {(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗t)}]∆(ev ⊗̂ ev).

=
∑
k+l=n

(a∆){[-� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-� (rk+1 ⊗ · · · ⊗ rn)] ev}(1⊗̂b+ b⊗̂1)

− (−)r
1+···+rn

∑
k+l=n

(a∆)(1⊗ b+ b⊗ 1){[-� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-� (rk+1 ⊗ · · · ⊗ rn)] ev}

−
j<n∑

q+j+t=n

(a∆)
∑
k+v=q

[-� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-� {(rk+1 ⊗ · · · ⊗ rn)(1⊗v ⊗Bj ⊗ 1⊗t)}] ev

−
n∑
k=0

(−)r
k+1+···+rn(a∆)

j<n∑
q+j+w=k

[-� {(r1⊗ ...⊗rk)(1⊗q⊗Bj⊗1⊗w)}]ev⊗̂[-� (rk+1⊗ ...⊗rn)]ev

= (a∆)
〈 ∑
k+l=n

[-� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-� (rk+1 ⊗ · · · ⊗ rn)] ev b

−
∑
k+l=n

(−)r
k+1+···+rn [-� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-b� (rk+1 ⊗ · · · ⊗ rn)] ev

−
j<n∑

k+v+j+t=n

[-� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-� {(rk+1 ⊗ · · · ⊗ rn)(1⊗v ⊗Bj ⊗ 1⊗t)}] ev

+
∑
k+l=n

(−)r
k+1+···+rn [-� (r1 ⊗ · · · ⊗ rk)] ev b⊗̂[-� (rk+1 ⊗ · · · ⊗ rn)] ev

−
∑
k+l=n

(−)r
1+···+rn [-b� (r1 ⊗ · · · ⊗ rk)] ev ⊗̂[-� (rk+1 ⊗ · · · ⊗ rn)] ev

−
n∑
k=0

(−)r
k+1+···+rn

j<n∑
q+j+w=k

[-� {(r1⊗ ...⊗rk)(1⊗q⊗Bj⊗1⊗w)}] ev ⊗̂[-� (rk+1⊗ ...⊗rn)] ev
〉
.

The sum of the first three expressions in angle brackets equals its restriction to k = 0:

f 0⊗̂[-� (r1 ⊗ · · · ⊗ rn)] ev b− (−)r
1+···+rnf 0⊗̂[-b� (r1 ⊗ · · · ⊗ rn)] ev

−
j<n∑

v+j+t=n

f 0⊗̂[-� {(r1 ⊗ · · · ⊗ rn)(1⊗v ⊗Bj ⊗ 1⊗t)}] ev = f 0⊗̂(r1 ⊗ · · · ⊗ rn)Bn.

The sum of the last three expressions in angle brackets equals its restriction to k = n:

[-� (r1 ⊗ · · · ⊗ rn)] ev b⊗̂fn − (−)r
1+···+rn [-b� (r1 ⊗ · · · ⊗ rn)] ev ⊗̂fn
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−
j<n∑

q+j+w=n

[-� {(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗w)}] ev ⊗̂fn = (r1 ⊗ · · · ⊗ rn)Bn⊗̂fn.

This proves (3.3).
Notice that B2 is a (1,1)-coderivation of level 0 and of degree 2:

B2∆ = B∆(1⊗B +B ⊗ 1) = ∆(1⊗B +B ⊗ 1)2 = ∆(1⊗B2 +B2 ⊗ 1).

Since b2 = 0, we have for a ∈ (T •sA)•, n > 0, ri ∈ Coder(TsA, T̂ sB),

[a�(r1⊗· · ·⊗rn)B2] ev = [a�(r1⊗· · ·⊗rn)B] ev b−(−)r
1+···+rn+1[ab�(r1⊗· · ·⊗rn)B] ev

= −(−)r
1+···+rn [ab� (r1 ⊗ · · · ⊗ rn)] ev b− (−)r

1+···+rn+1[ab� (r1 ⊗ · · · ⊗ rn)] ev b = 0.

Composing this equality with p̂r1 : T̂ sB→ sB̂ we get 0 = [a�(r1⊗· · ·⊗rn)B2] ev p̂r1. Sub-
stituting into this expression the expansion of B2 into components B2 =

∑
i+j+k=n 1⊗i ⊗

(B2)j ⊗ 1⊗k, we find that all summands (except one), composed with ev, map a� (r1 ⊗
· · · ⊗ rn) into the ideal T̂>2sB, and composed furthermore with p̂r1 vanish. The only
surviving summand satisfies

0 = [a� (r1 ⊗ · · · ⊗ rn)(B2)n] ev p̂r1 = (a)[(r1 ⊗ · · · ⊗ rn)(B2)n]p̂r1.

By Corollary 2.33 the coderivation (r1 ⊗ · · · ⊗ rn)(B2)n ∈ Coder(TsA, T̂ sB)(f 0, fn) van-
ishes. Since this holds for all n > 0, the coderivation B2 vanishes.

3.3. Definition. Let A, B be filtered A∞-categories. A cofunctor f : TsA → T̂ sB is
called a filtered A∞-functor if bf = fb.

Both sides of this equation are (f, f)-coderivations. In components:

(b · f)n =

i,j,k>0∑
i+j+k=n

(1⊗̂i⊗̂bj⊗̂1⊗̂k) · fi+1+k : T nsA→ sB̂,

(f · b)n =

k,ij>0∑
i1+···+ik=n

(fi1⊗̂ · · · ⊗̂fik) · bk : T nsA→ sB̂.

Equality of these expressions for all n > 0 is equivalent to condition bf = fb and, as we
have seen, equivalent to 1fB0 = 0.

Composing (3.1) with p̂r1 : T̂ sB → sB̂ we find the components of coderivation B :
T Coder(TsA, T̂ sB)→ T Coder(TsA, T̂ sB). Recall that B0 is given by (3.2), components
of rB1 for r : f → g : TsA→ T̂ sB are found from

(a)(rB1)p̂r1 = (a)[rb− (−)rbr]p̂r1

=
∑
i,k>0

[a∆(i+1+k)]
[
(f̌⊗i ⊗ ř ⊗ ǧ⊗k)bi+1+k − (−)r(pr⊗i1 ⊗b̌⊗ pr⊗k1 )ri+1+k

]
.



FILTERED COCATEGORIES 1765

Notice that, in general, [r, b] ≡ rb − (−)rbr is not a coderivation, unless the source and
the target of r are A∞-functors (cf. Remark 3.4). In detail, denote by (a)(rB1)∨ the
coderivation value (a)(rB1)p̂r1. Then by Remark 2.27

(rB1)∨0 =
∑
i,k>0

(f⊗i0 ⊗ r0 ⊗ g⊗k0 )bi+1+k − (−)rb0r1,

(rB1)∨1 =
∑
i,k>0

(f⊗i0 ⊗ r1 ⊗ g⊗k0 )bi+1+k +
∑

m,n,k>0

(f⊗m0 ⊗ f1 ⊗ f⊗n0 ⊗ r0 ⊗ g⊗k0 )bm+n+2+k

+
∑

i,m,n>0

(f⊗i0 ⊗ r0 ⊗ g⊗m0 ⊗ g1 ⊗ g⊗n0 )bi+2+m+n − (−)r[b1r1 + (1⊗ b0)r2 + (b0 ⊗ 1)r2],

etc. For n > 2 we have

(a)[(r1 ⊗ · · · ⊗ rn)Bn]p̂r1 = [a� (r1 ⊗ · · · ⊗ rn)] ev b p̂r1 =∑
i0,i1,...,in>0

[a∆(i0+···+in+n)]
(
(f̌ 0)⊗i

0⊗ř1⊗(f̌ 1)⊗i
1⊗ř2⊗· · ·⊗(f̌n−1)⊗i

n−1⊗řn⊗(f̌n)⊗i
n)
bi0+···+in+n.

3.4. Remark. Let f, g : TsA→ T̂ sB be filtered A∞-functors and let r be an (f, g)-coder-
ivation of degree d and of level l. Then [r, b] = rb − (−)rbr is an (f, g)-coderivation of
degree d+ 1 and of level l, in particular, rB1 = [r, b]. Indeed,

(rb− (−)rbr)∆ = r∆(1⊗̂b+ b⊗̂1)− (−)rb∆(f⊗̂r + r⊗̂g)

= ∆[(f⊗̂r + r⊗̂g)(1⊗̂b+ b⊗̂1)− (−)r(1⊗̂b+ b⊗̂1)(f⊗̂r + r⊗̂g)]

= ∆[f⊗̂(rb− (−)rbr) + (−)r(fb− bf)⊗̂r + r⊗̂(gb− bg) + (rb− (−)rbr)⊗̂g].

A. Reflective representable multicategories

Let V be a symmetric monoidal category, for instance, V = grAb. Let D be a lax rep-
resentable plain/symmetric/braided V-multicategory [Bespalov, Lyubashenko, Manzyuk,
2008, Definitions 3.7, 3.23], that is, for all families (Mi)i∈I of objects of D the V-functors
D((Mi)i∈I ;−) : D → V are representable. By [Bespalov, Lyubashenko, Manzyuk, 2008,

Theorem 3.24] the V-multicategory D is isomorphic to V-multicategory D̂ for a lax plain/

symmetric/braided monoidal V-category D = (D,⊗I , λf , ρL). The V-multicategory D̂ has

D̂((Mi)i∈I ;N) = D(⊗I(Mi), N) (see [Bespalov, Lyubashenko, Manzyuk, 2008, Proposi-
tion 3.22] for details). We may and we will take for D the category D, that is, ObD =
ObD, D(M,N) = D(M ;N). Denote by D̃ the plain/symmetric/braided multicategory
with Ob D̃ = ObD, D̃((Mi)i∈I ;N) = V(1V,D((Mi)i∈I ;N)). For instance, when V = grAb
we have D̃ = D0. Instead of morphism f : 1V → D((Mi)i∈I ;N) ∈ V we write f : (Mi)i∈I →
N ∈ D̃. The multicategory D̃ is represented by the lax plain/symmetric/braided monoidal
category D̃ with Ob D̃ = ObD, D̃(M,N) = V(1V,D(M,N)) = D̃(M ;N).

Assume that ObD contains a subset ObC such that the full subcategory C ⊂ D is
reflective. Recall that this is equivalent to giving a morphism ı̈M : M → M̂ ∈ D̃ for every



1766 VOLODYMYR LYUBASHENKO

M ∈ ObD, where M̂ ∈ ObC and for all N ∈ ObC the morphism D(̈ıM , N) : D(M̂,N)→
D(M,N) is invertible. In other words, the inclusion V-functor in : C ↪→ D has a left
adjoint -̂ : D → C. The unit of this adjunction is ı̈ : IdD → in ◦̂-. Denote by C the full
plain/symmetric/braided V-submulticategory of D with ObC = ObC.

A.1. Proposition. The V-multicategory C is lax representable by a lax plain/symmetric/

braided monoidal V-category C = (C, ⊗̂I , λ̂f , ρ̂L) with

⊗̂i∈IMi = ⊗̂i∈IMi, (A.1)

λ̂f =
[
⊗̂i∈IMi

λ̂f→ (⊗j∈J ⊗i∈f−1j Mi)̂ ⊗̂j∈J ı̈→ (⊗j∈J(⊗i∈f−1jMi)̂)̂], (A.2)

ρ̂L =
(
⊗̂LM = ⊗̂LM ρ̂L→ M̂

ı̈−1
M→M

)
. (A.3)

Proof. Without loss of generality we assume that D = D̂, that is, D((Mi)i∈I ;N) =
D(⊗i∈IMi, N). In particular, τ : (Mi)i∈I → ⊗i∈IMi ∈ D̃ corresponds to id⊗i∈IMi

∈ D̃.
Supposing that N,Mi ∈ ObC for i ∈ I we get isomorphisms

C(τ̂ ;N) =
[
C(⊗̂i∈IMi;N)

D(ı̈;N)→ D(⊗i∈IMi;N)
D(τ ;N)→ C((Mi)i∈I ;N)

]
,

where
τ̂ =

[
(Mi)i∈I

τ→ ⊗i∈I Mi
ı̈→ ⊗̂i∈IMi

]
∈ C̃.

Therefore, C is lax representable.
By the proof of Theorem 3.24 of [Bespalov, Lyubashenko, Manzyuk, 2008] the lax

plain/symmetric/braided monoidal V-category (C, ⊗̂I , λ̂f , ρ̂L) has structure elements given
precisely by (A.1)–(A.3). For instance, an expression from [ibid.] is the top-right path in
the following diagram

⊗i∈IMi
λf→⊗j∈J ⊗i∈f−1j Mi

⊗j∈J ı̈→⊗j∈J(⊗i∈f−1jMi)̂
⊗̂i∈IMi

ı̈↓
λ̂f→ (⊗j∈J ⊗i∈f−1j Mi)̂

ı̈↓
⊗̂j∈J ı̈→ (⊗j∈J(⊗i∈f−1jMi)̂)̂

ı̈↓

The same expression has to be equal to ı̈ · λ̂f . Since the diagram commutes, λ̂f is equal

to the bottom composition λ̂f · ⊗̂j∈J ı̈.
Since C ⊂ D is a full reflective subcategory there is an idempotent monad -̂ : D→ D,

M 7→ M̂ , with the unit ı̈ : IdD → -̂, M → M̂ , and multiplication µM :
ˆ̂
M → M̂ inverse

to ı̈M̂ = ˆ̈ıM : M̂ → ˆ̂
M [Borceux, 1994, Corollary 4.2.4] (see enriched version at the end of

Chapter 1 of [Kelly, 1982]).
Assume furthermore that -̂ extends to a lax plain/symmetric/braided monoidal

functor (̂-, φn), φn : ⊗ni=1M̂i → ⊗̂ni=1Mi, and the unit ı̈ satisfies condition (2.5):(
M1 ⊗ · · · ⊗Mn

ı̈1⊗···⊗ı̈n→ M̂1 ⊗ · · · ⊗ M̂n
φn→ ̂M1⊗···⊗Mn

)
= ı̈M1⊗···⊗Mn .
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That is, ı̈ is a monoidal transformation in the sense of [Bespalov, Lyubashenko, Manzyuk,
2008, Definition 2.7]. Therefore, µ : (̂-, φn)2 → (̂-, φn) is a monoidal transformation as
well. Indeed, this follows from the commutative diagram

⊗ni=1
ˆ̂
Mi

φn → ⊗̂ni=1M̂i
φ̂n → ̂̂⊗ni=1Mi

=

⊗ni=1M̂i

⊗µMi↓ ⊗̂̈ıMi↑

φn → ⊗̂ni=1Mi

̂ı̈⊗Mi↑ µ⊗Mi↓
=

⊗̂ı̈Mi

←

Summing up, ((̂-, φn), ı̈, µ) is an idempotent lax plain/symmetric/braided monoidal monad.
Let {1, 2, . . . , n} = S t P . Given Mi ∈ ObD, define

Ni =

{
Mi, if i ∈ S,
M̂i, if i ∈ P.

Let ı̈0 = 1, ı̈1 = ı̈. Define

χ(i ∈ P ) =

{
0, if i ∈ S,
1, if i ∈ P

and χ(i ∈ S) = 1− χ(i ∈ P ). Similarly to [De Deken, Lowen, 2018, Proposition 2.27] we
prove

A.2. Proposition. The morphism ⊗̂ı̈χ(i∈P )
Mi

: ⊗̂ni=1Mi → ⊗̂ni=1Ni is invertible.

Proof. There is a unique morphism ξ : ⊗̂ni=1Ni → ⊗̂ni=1Mi which forces the diagram

⊗̂ni=1Ni

=

⊗ni=1Ni
⊗ı̈χ(i∈S)Ni

→

ı̈⊗Ni

→

⊗ni=1M̂i φn
→ ⊗̂ni=1Mi

ξ↓

=

⊗ni=1N̂i

⊗ı̈χ(i∈P )

M̂i
= ⊗ ̂

ı̈
χ(i∈P )
Mi↓

=

⊗ı̈Ni →

=

ı̈⊗Ni → ⊗̂ni=1Ni

̂⊗ı̈χ(i∈P )
Mi

↓φn →
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to commute. The reflectivity implies that ξ·⊗̂ı̈χ(i∈P )
Mi

= 1. Commutativity of the composite

rectangle in this diagram implies commutativity of square
�� ��1 in the following diagram

ı̈⊗Mi

=

⊗ni=1M̂i
φn → ⊗̂ni=1Mi

↓

�� ��1

⊗ni=1Mi

⊗ı̈χ(i∈P )
Mi →

⊗ı̈Mi
→

⊗ni=1Ni

= ⊗ı̈χ(i∈S)Ni

↑

ı̈⊗Ni → ⊗̂ni=1Ni

̂⊗ı̈χ(i∈P )
Mi↓

=

⊗ni=1M̂i

⊗ı̈χ(i∈S)Ni↓
φn →

=

⊗ı̈Mi →
⊗̂ni=1Mi

ξ↓

=

ı̈⊗Mi

↑

Commutativity of the above together with reflectivity implies that ⊗̂ı̈χ(i∈P )
Mi

· ξ = 1. Thus,

ξ is inverse to ⊗̂ı̈χ(i∈P )
Mi

.

The unit object of (D,⊗n) is 1 = ⊗0(∗), therefore, the unit object of (C, ⊗̂n) is

1̂ = ⊗̂0
(∗).

A.3. Corollary. When D is a plain/symmetric/braided monoidal category (all λf , ρL

are invertible), so is C.

In fact, invertibility of λ̂f and of ⊗̂j∈J ı̈ implies invertibility of their composition λ̂f .

A.4. Algebras and coalgebras. Assume that the category D is monoidal (all λf , ρL

are invertible). Hence, the same for C. The category of algebras (monoids) in D (resp.
C) is denoted AlgD̃ (resp. AlgC̃).

A.5. Proposition. The full and faithful functor in : AlgC̃ → AlgD̃, (B, µB : B⊗̂B →
B, ηB : 1̂→ B) 7→

(
B,B ⊗B ı̈−→ B̂ ⊗B µB−→ B,1

ı̈−→ 1̂
ηB−→ B

)
turns AlgC̃ into a reflective

subcategory of AlgD̃.

Proof. First of all, inB is an algebra in D (the proof is left to the reader). Secondly,
any morphism f : A → B ∈ AlgC̃ induces f : inA → inB ∈ AlgD̃. Clearly, the
functor in is faithful. One can show that it is full. This functor has a left adjoint,
namely, the completion functor -̂ : AlgD̃ → AlgC̃, (A, µA, ηA) 7→

(
Â, µÂ = (Â⊗̂Â =

̂̂A⊗ Â
̂̈ı⊗ı̈

−1

→ Â⊗ A µ̂A−→ Â), ηÂ = η̂A : 1̂→ Â
)
. The natural transformation ı̈ : A → Â =(

Â, Â⊗ Â ı̈−→ ̂̂A⊗ Â
̂̈ı⊗ı̈

−1

→ Â⊗ A µ̂A−→ Â,1
ı̈−→ 1̂

η̂A−→ Â
)

is given precisely by ı̈ : A→ Â.
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The proof of these statement is left to the reader.

Let D̃ contain arbitrary small coproducts. Then for any M ∈ ObD there is the tensor
algebra TM =

∐
n>0M

⊗n ≡ ⊕n>0M
⊗n ∈ D̃. The functor T : D̃ → AlgD̃ is left adjoint

to the underlying functor U : AlgD̃ → D̃. Then for B ∈ AlgC̃, X ∈ C there are natural
bijections

AlgC̃(T̂X,B) ∼= AlgD̃(TX, inB) ∼= D̃(X,U inB) = C̃(X,UB).

Hence, the functor C̃→ AlgC̃, X 7→ T̂X is left adjoint to U : AlgC̃ → C̃. Multiplication in

the algebra Â = T̂X with A = TX

µ
(I)

Â
=
[
(T̂X)⊗̂I =

̂
(T̂X)⊗I

̂̈ı⊗I−1

→ ̂(TX)⊗I
µ̂
(I)
A→ T̂X

]
(A.4)

is denoted also as ⊗̂ (by abuse of notation).

A.5.1. Completion of coalgebras. The category of coalgebras (comonoids) in D

(resp. C) is denoted CoalgD̃ (resp. CoalgC̃). The completion functor extends to a functor

-̂ : CoalgD̃ → CoalgC̃, (C,∆C , εC) 7→
(
Ĉ,∆Ĉ = (Ĉ

∆̂C−−→ Ĉ ⊗ C
̂̈ı⊗ı̈→ ̂̂C ⊗ Ĉ = Ĉ⊗̂Ĉ), εĈ =

ε̂C : Ĉ → 1̂
)
. The proof is left to the reader. Notice that

(
Ĉ

∆̂
(k)
C−−→ Ĉ⊗k

̂̈ı⊗k→ ̂̂
C⊗k = Ĉ⊗̂k

)
= ∆

(k)

Ĉ
.
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