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STRUCTURED COSPANS

JOHN C. BAEZ AND KENNY COURSER

Abstract. One goal of applied category theory is to better understand networks
appearing throughout science and engineering. Here we introduce ‘structured cospans’
as a way to study networks with inputs and outputs. Given a functor L : A → X, a
structured cospan is a diagram in X of the form L(a)→ x← L(b). If A and X have finite
colimits and L is a left adjoint, we obtain a symmetric monoidal category whose objects
are those of A and whose morphisms are isomorphism classes of structured cospans.
This is a hypergraph category. However, it arises from a more fundamental structure: a
symmetric monoidal double category where the horizontal 1-cells are structured cospans.
We show how structured cospans solve certain problems in the closely related formalism
of ‘decorated cospans’, and explain how they work in some examples: electrical circuits,
Petri nets, and chemical reaction networks.

1. Introduction

Structured cospans are a framework for dealing with open networks: that is, networks
with inputs and outputs. Networks arise in many areas of science and engineering and
come in many kinds, but a companion paper illustrates the general framework developed
here with the example of open Petri nets [5], so let us consider those.

Petri nets are important in computer science, chemistry and other subjects. For
example, the chemical reaction that takes two atoms of hydrogen and one atom of oxygen
and produces a molecule of water can be represented by this very simple Petri net:

H

O

α H2O

Here we have a set of ‘places’ (or in chemistry, ‘species’) drawn in yellow and a set of
‘transitions’ (or ‘reactions’) drawn in blue. The disjoint union of these two sets then forms
the vertex set of a directed bipartite graph, which is one description of a Petri net.

Networks can often be seen as pieces of larger networks. This naturally leads to the
idea of an open Petri net, meaning that the set of places is equipped with ‘inputs’ and
‘outputs’. We can do this by prescribing two functions into the set of places that pick out
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these inputs and outputs. For example:

H

O

α H2O

1

2

3

a b

4

The inputs and outputs let us compose open Petri nets. For example, suppose we have
another open Petri net that represents the chemical reaction of two molecules of water
turning into hydronium and hydroxide:

H2O β

OH−

H3O+

5

6

7

cb

4

Since the outputs of the first open Petri net coincide with the inputs of the second, we
can compose them by identifying the outputs of the first with the inputs of the second:

H

O

α H2O β

OH−

H3O+

1

2

3

5

6

7

a c

Similarly we can ‘tensor’ two open Petri nets by placing them side by side:

H

O

α H2O

1

2

3

4

H2O β

OH−

H3O+

5

6

7

b+ ca+ b

4
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We can formalize this example using ‘structured cospans’. Given a functor L : A→ X,
a structured cospan is a diagram in X of the form

x

L(a)

i

==

L(b).

o

bb

The objects a and b are called the input and output, respectively, while x is called the
apex. The morphisms i and o are called the legs of the cospan.

Typically the input and output of a structured cospan are simpler in nature than the
apex. For example, an open Petri net is a structured cospan where a and b are sets while
x is a Petri net. As explained in Section 6.6, there is a category Petri with Petri nets as
objects and a functor L : Set → Petri sending any set to the Petri net with that set of
places and no transitions. Furthermore, L is a left adjoint, so it preserves colimits. This
occurs in many examples.

Given a functor L : A → X, we can compose structured cospans whenever X has
pushouts. In Corollary 2.5 we show this gives a category LCsp(X) with:

� objects of A as objects,

� isomorphism classes of structured cospans as morphisms.

Here we say two structured cospans L(a) → x ← L(b) and L(a) → y ← L(b) are
isomorphic if there is an isomorphism f : x→ y such that the diagram

L(a) L(b)

x

y

f

commutes. In Corollary 3.11 we show this category LCsp(X) becomes symmetric monoidal
when A and X have finite colimits and L preserves them. Under these assumptions, in
Theorem 3.12 we prove that LCsp(X) is actually a special sort of symmetric monoidal cat-
egory called a ‘hypergraph category’ [17]. These are important in the theory of networks
[13, 14].

Sometimes it is inconvenient to work with isomorphism classes of structured cospans.
For example, in an open Petri net we can refer to a particular place or transition; in
an isomorphism class of open Petri nets we cannot. To use actual structured cospans as
morphisms we need a higher categorical structure, because composing them is associative
only up to isomorphism. Indeed, in Corollary 2.4 we show that for any functor L : A→ X,
if X has pushouts there is a bicategory LCsp(X) with:

� objects of A as objects,

� structured cospans as 1-morphisms,
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� commutative diagrams

L(a) L(b)

x

y

f

as 2-morphisms.

In Corollary 3.10 we show that the bicategory LCsp(X) is symmetric monoidal when
A and X have finite colimits and L preserves them. However, the coherence laws for a
symmetric monoidal bicategory are rather complicated [35]. As noted by Ehresmann [12],
and then by Grandis and Paré [19, 20], double categories are sometimes more convenient
than bicategories. This is especially true in the symmetric monoidal case [22, 34]. Thus
we show in Theorem 2.3 that for any functor L : A → X, if X has pushouts there is a
double category LCsp(X) with:

� objects of A as objects,

� morphisms of A as vertical 1-morphisms,

� structured cospans as horizontal 1-cells,

� commutative diagrams

L(a) L(b)x

L(a′) L(b′)x′

o

L(α) L(β)f

i

i′ o′

as 2-morphisms.

Note that vertical composition in this double category is strictly associative, while hori-
zontal composition is not. In Theorem 3.9 we show that LCsp(X) is a symmetric monoidal
double category when A and X have finite colimits and L preserves them. Using Shul-
man’s work [34], we conclude in Corollary 3.10 that the bicategory LCsp(X) is a symmetric
monoidal bicategory under the same conditions.

The reader familiar with decorated cospans may wonder why we need structured
cospans. Recall that Fong [13] constructed a category of ‘decorated cospans’ FCospan
from any category A with finite colimits together with a symmetric lax monoidal functor
F : (A,+) → (Set,×). The objects of FCospan are those of A, while the morphisms are
equivalence classes of F -decorated cospans. Here an F -decorated cospan is a pair

(a s b, d ∈ F (s)).
i o
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The element d, called the decoration, serves as a way to equip the apex s with extra
structure. The above decorated cospan is equivalent to

(a s′ b, d′ ∈ F (s′))
i′ o′

iff there an isomorphism f : s→ s′ in A making this diagram commute:

a b

s

s′

o

f

i

i′ o′

and such that F (f)(d) = d′.
Both decorated and structured cospans are ways to describe a cospan whose apex is

equipped with extra structure. Since the theory of decorated cospans is already well-
developed, what is the point of another formalism? One reason is that structured cospans
are a bit simpler: instead of a symmetric lax monoidal functor F : A → Set assigning to
each object of A the set of possible structures we can put on it, we can simply use a left
adjoint L from A to any category X. Another reason is that structured cospans solve some
problems that prevent decorated cospans from being applied as originally intended, and
indeed led to errors in a number of published papers. We discuss these problems, and
how structured cospans get around them, in Section 5. In Section 6 we study applications
of structured cospans to electrical circuits, Petri nets and chemical reaction networks.

Conventions. In this paper, ‘double category’ means ‘pseudo double category’, as in
Definition A.1. Following Shulman [34], vertical composition in our double categories is
strictly associative, while horizontal composition need not be. We use sans-serif font like
C for categories, boldface like B for bicategories or 2-categories, and blackboard bold like
D for double categories. We also use blackboard bold for weak category objects in any
2-category. For double categories with names having more than one letter, like Csp(X),
only the first letter is in blackboard bold. A double category D has a category of objects
and a category of arrows, and we call these D0 and D1 despite the fact that they are
categories.

Acknowledgements. The authors would like to thank Christina Vasilakopoulou for
the clever idea of replacing the category of objects of some double category by some other
category. We would also like to thank Marco Grandis and Robert Paré for pointing out
the importance of double categories with double colimits, and Joachim Kock and Mike
Shulman for catching errors.
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2. Structured cospans

Given a functor L : A→ X, a structured cospan is a cospan in X whose feet come from
a pair of objects in A:

L(a)

x

L(b).

When L has a right adjoint R : X→ A we can also think of this as a cospan in A,

a

R(x)

b,

where the apex is equipped with extra structure, namely an object x ∈ X that it comes
from. However, treating structured cospans as living in X is technically more convenient,
since then we only need X to have pushouts to compose them. In Theorem 2.3 we show that
when X has pushouts, structured cospans are the horizontal 1-cells of a double category

LCsp(X). To prove this we begin by recalling the double category of cospans in X. For
the definition of double category see Appendix A.

2.1. Lemma. Given a category X with chosen pushouts, there is a double category Csp(X)
in which:

� an object is an object of X,

� a vertical 1-morphism is a morphism of X,

� a horizontal 1-cell from x1 to x2 is a cospan in X:

x1 y x2
i o

� a 2-morphism is a commutative diagram in X of this form:

x1 y x2

x′1 y′ x′2,

f1 f2g

i o

i′ o′

� composition of vertical 1-morphisms is composition in X,
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� composition of horizontal 1-cells is done using the chosen pushouts in X:

x1

y

x2

z

x3

y +x2 z

i1 o1 i2 o2

jy jz

where jy and jz are the canonical morphisms from y and z to the pushout object,

� the horizontal composite of two 2-morphisms:

x1 y x2

x′1 y′ x′2

x2 z x3

x′2 z′ x′3

i1

i′1 o′1

o1

f1 f2g

i2 o2

f2

i′2 o′2

f3h

is given by

x1 y +x2 z x3

x′1 y′ +x′2
z′ x′3.

f1 f3g +f2 h

jyi1 jzo2

jy′ i
′
1 jz′o

′
2

� the vertical composite of two 2-morphisms:

x1 y x2

x′1 y′ x′2

f1 f2g

i o

i′ o′

x′1 y′ x′2

x′′1 y′′ x′′2

f ′1 f ′2g′

i′ o′

i′′ o′′

is given by

x1 y x2

x′′1 y′′ x′′2

f ′1f1 f ′2f2g′g

i o

i′′ o′′

� the associator and unitors are defined using the universal property of pushouts.
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Proof. This is well known [9, 31].

We expect that a different choice of pushouts in X will give an equivalent double
category Csp(X), since pushouts are unique up to canonical isomorphism.

To build structured cospan double categories, we use a method we learned from
Christina Vasilakopoulou for taking a double category X and replacing its objects and
vertical 1-morphisms with the objects and morphisms of some category A. In Appendix
A, we recall that any double category X has a category X0 called its category of objects,
whose objects are those of X and whose morphisms are the vertical 1-morphisms of X.
We can replace the category of objects by A using a functor L : A→ X0.

2.2. Lemma. Given a double category X, a category A and a functor L : A → X0, there
is a double category LX in which:

� an object is an object of A,

� a vertical 1-morphism is a morphism of A,

� a horizontal 1-cell from a to b is a horizontal 1-cell L(a)
M−→ L(b) of X,

� a 2-morphism is a 2-morphism in X of the form:

L(a) L(b)

L(a′) L(b′),

⇓ α

M

L(f) L(g)

N

� composition of vertical 1-morphisms is composition in A

� composition of horizontal 1-morphisms is defined as in X,

� vertical and horizontal composition of 2-morphisms are defined as in X,

� the associator and unitors are defined as in X.

Proof. It is easy to check the double category axioms using the fact that X is a double
category and L is a functor.

Putting the above lemmas together, we obtain our double category of structured
cospans. We describe it quite explicitly for reference purposes:

2.3. Theorem. Let L : A→ X be a functor where X is a category with chosen pushouts.
Then there is a double category LCsp(X) in which:

� an object is an object of A,

� a vertical 1-morphism is a morphism of A,
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� a horizontal 1-cell from a to b is a diagram in X of this form:

L(a) x L(b)
i o

� a 2-morphism is a commutative diagram in X of this form:

L(a) L(b)x

L(a′) L(b′)x′

o

L(α) L(β)f

i

i′ o′

� composition of horizontal 1-cells is done using the chosen pushouts in X:

L(a)

x

L(b)

y

L(c)

x+L(b) y

i1 o1 i2 o2

jx jy

where jx and jy are the canonical morphisms from x and y to the pushout object,

� identity horizontal 1-cells are diagrams of this form:

L(a) L(a) L(a)
1 1

� the horizontal composite of two 2-morphisms:

L(a) x L(b)

L(a′) x′ L(b′)

L(b) y L(c)

L(b′) y′ L(c′)

i1

i′1 o′1

o1

L(α) L(β)f

i2 o2

L(β)

i′2 o′2

L(γ)g

is given by

L(a) x+L(b) y L(c)

L(a′) x′ +L(b′) y
′ L(c′)

L(α) L(γ)f +L(β) g

jxi1 jyo2

jx′ i
′
1 jy′o

′
2
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� the identities for horizontal composition of 2-morphisms are diagrams of this form:

L(a) L(a) L(a)

L(a′) L(a′) L(a′)

L(α) L(α)L(α)

1 1

1 1

� the vertical composite of two 2-morphisms:

L(a) y L(b)

L(a′) y′ L(b′)

L(α) L(β)f

i o

i′ o′

L(a′) y′ L(b′)

L(a′′) y′′ L(b′′)

L(α′) L(β′)f ′

i′ o′

i′′ o′′

is given by

L(a) y L(b)

L(a′′) y′′ L(b′′)

L(α′α) L(β′β)f ′f

i o

i′′ o′′

� the associator and unitors are defined using the universal property of pushouts.

Proof. We apply Lemma 2.2 to the double category Csp(X) of Lemma 2.1.

From the double category LCsp(X) we can extract a bicategory LCsp(X) and then a
category LCsp(X). In many applications all we need is a bicategory or even a mere category
of structured cospans, so the reader should not get the misimpression that working with
structured cospans requires using double categories. We begin with the bicategory:

2.4. Corollary. Let L : A→ X be a functor where X is a category with chosen pushouts.
Then there is a bicategory LCsp(X) in which:

� an object is an object of A,

� a morphism from a to b is a diagram in X of this form:

L(a) x L(b)
i o
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� a 2-morphism is a commutative diagram in X of this form:

L(a) L(b)

x

x′

o

f

i

i′ o′

� composition of morphisms is done using the chosen pushouts in X,

� identity morphisms are of this form:

L(a) L(a) L(a)
1 1

� the horizontal composite of 2-morphisms:

L(a)

x

L(b)

x′

L(b)

y

L(c)

y′

i1

i′1 o′1

o1

f

i2 o2

i′2 o′2

g

is given by

L(a)

x+L(b) y

L(c)

x′ +L(b) y
′

f +L(1b)
g

jxi1 jyo2

jx′ i
′
1 jy′o

′
2

where jx and jy are the canonical morphisms from x and y to the pushout object
x+L(b) y, and similarly for jx′ and jy′,

� the vertical composite of 2-morphisms:

L(a)

y

L(b)

y′

f

i o

i′ o′

L(a)

y′

L(b)

y′′

f ′

i′ o′

i′′ o′′

is given by

L(a)

y

L(b)

y′′

f ′f

i o

i′′ o′′
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� the associator and unitors are defined using the universal property of pushouts.

Proof. As noted for example by Shulman [34], any double category X gives rise to a
bicategory X with

� objects given by objects of X,

� morphisms given by horizontal 1-cells of X,

� 2-morphisms given by globular 2-morphisms of X, meaning 2-morphisms whose
source and target vertical 1-morphisms are identities,

� composition of morphisms given by horizontal composition of horizontal 1-cells in
X,

� vertical and horizontal composition of 2-morphisms given by vertical and horizontal
composition of 2-morphisms in X.

Applying this to LCsp(X) we obtain LCsp(X).

2.5. Corollary. Let L : A→ X be a functor where X is a category with pushouts. Then
there is a category LCsp(X) in which:

� an object is an object of A,

� a morphism from a to b is an isomorphism class of diagrams in X of this form:

L(a) x L(b)
i o

where L(a) x L(b)
i o

and L(a) x′ L(b)
i′ o′

are isomorphic iff there is an iso-

morphism f : x→ x′ making this diagram commute:

L(a) L(b)

x

x′

o

f

i

i′ o′

� composition of morphisms is done using pushouts in X.

Proof. By decategorifying a bicategory B we obtain a category B with the same objects,
whose morphisms are isomorphism classes of 1-morphisms in B. Applying this to LCsp(X)
we obtain LCsp(X). Note that this category is independent of our choice of pushouts in
X, since pushouts are unique up to isomorphism.
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3. Symmetric monoidal double categories of structured cospans

Now we give simple conditions under which the double category LCsp(X), the bicategory

LCsp(X) and the category LCsp(X) all become symmetric monoidal. We have seen that if
X has pushouts and L : A→ X is any functor then there is a double category of structured
cospans LCsp(X). In Theorem 3.9 we show that LCsp(X) becomes symmetric monoidal
when A and X have finite colimits and L preserves these. The monoidal structure describes
our ability to take two structured cospans:

L(a)

x

L(b) L(a′)

x′

L(b′)

i o i′ o′

and form a new one via coproduct:

L(a) + L(a′)

x+ x′

L(b) + L(b′)

L(a+ a′) L(b+ b′)

i+ i′ o+ o′

∼= ∼=

One can check that this operation makes LCsp(X) into a monoidal double category simply
by verifying that a rather large number of diagrams commute. This is the approach taken
in [10]. There is nothing tricky about it. Indeed, requiring that L preserve finite colimits
is overkill: it suffices for L to preserve finite coproducts. Thus, for most readers the best
thing to do at this point would be to review the definition of ‘symmetric monoidal double
category’ in Appendix A, look at the statement of Theorem 3.9, and move on to the next
section.

However, it is a bit irksome to check that all the necessary diagrams commute, espe-
cially since one gets the feeling that there must be a simple underlying reason. So, we
decided to give a more conceptual proof. While perhaps harder to digest, this gives us
more—at least when F preserves finite colimits. In this case we can do much more than
take binary coproducts of structured cospans: we can take finite colimits of them! This
means that we can glue together structured cospans in more interesting ways than merely
composing them end to end or setting them side by side. Thus, we prove Theorem 3.9 as
a consequence of a stronger result, Theorem 3.7, which captures the full range of ways we
can take finite colimits of structured cospans.

The key concept we need is that of a ‘weak category’ or ‘pseudocategory’ [26] in a
2-category. This is a slight generalization of the concept of double category.

3.1. Definition. Given a 2-category C, a weak category D in C consists of:

� an object of objects D0 ∈ C and an object of arrows D1 ∈ C,
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� source and target morphisms

S, T : D1 → D0,

� an identity-assigning morphism

U : D0 → D1,

� and a composition morphism

� : D1 ×D0 D1 → D1

where the pullback is taken over D1
T−→ D0

S←− D1,

such that:

� the source and target morphisms behave as expected for identities:

S ◦ U = 1D0 = T ◦ U

and for composition:

S ◦ � = S ◦ p1, T ◦ � = T ◦ p2

where p1, p2 : D1 ×D0 D1 → D1 are projections to the two factors;

� composition is associative up to a 2-isomorphism called the associator:

D1 ×D0 D1 ×D0 D1 D1 ×D0 D1

D1 ×D0 D1 D1

α ⇒

1×�

�× 1 �

�

� composition obeys the left and right unit laws up to 2-isomorphisms called the left
and right unitors:

D0 ×D0 D1 D1 ×D0 D1 D1 ×D0 D0

D1

λ
⇒

ρ ⇒
U ×D0

1 1×D0
U

�
p2 p1

� α, λ and ρ obey the pentagon identity and triangle identity.

In this definition we assume that the necessary pullbacks exist; if C has pullbacks this is
automatic.

Consulting Appendix A, the reader can check that a weak category in Cat is the same
as a double category. We need weak categories in the following 2-categories as well:
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3.2. Definition. Let Rex be the 2-category with:

� categories with chosen finite colimits as objects,

� right exact functors as morphisms,

� natural transformations as 2-morphisms.

3.3. Definition. Let SymMonCat be the 2-category with:

� symmetric monoidal categories as objects,

� (strong) symmetric monoidal functors as morphisms,

� monoidal natural transformations as 2-morphisms.

The word ‘rex’ is an abbreviation of ‘right exact’, which is another term for ‘preserving
finite colimits’. Note that a right exact functor need not preserve a given choice of
finite colimits. Thus, our 2-category Rex is 2-equivalent to one where no choices of
finite colimits were made. One reason for making these choices is that they give us an
unambiguously defined 2-functor

Φ: Rex→ SymMonCat

as follows. Given an object C ∈ Rex, Φ(C) is the symmetric monoidal category (C,+, 0)
where + is the chosen binary coproduct and 0 is the chosen initial object. Each right exact
functor F : C→ C′ between categories C,C′ ∈ Rex then becomes symmetric monoidal in
a canonical way, and each natural transformation between right exact functors becomes
monoidal.

Our plan now proceeds as follows. First, in Theorem 3.7, we show that when L : A→ X
is a morphism in Rex, the double category LCsp(X) is not merely a weak category in
Cat, but actually a weak category in Rex. In Theorem 3.8 we use the 2-functor Φ to
convert LCsp(X) into a weak category in SymMonCat.

Finally, from this weak category in SymMonCat, we wish to get a symmetric
monoidal double category. Here we need the concept of a ‘symmetric pseudomonoid’
[36]. To understand the following definitions the reader should keep in mind the example
where B is Cat made into a symmetric monoidal bicategory using cartesian products.
Then a pseudomonoid in B is a monoidal category, a braided pseudomonoid is a braided
monoidal category, and a symmetric pseudomonoid is a symmetric monoidal category.

3.4. Definition. A pseudomonoid in a monoidal bicategory B is an object M ∈ B
equipped with 1-morphisms called the multiplication m : M ⊗M →M and unit i : I →
M that obey associativity and the left and right unit laws up to 2-isomorphisms called
the associator and left and right unitors, that in turn obey the pentagon identity and
triangle identity.
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3.5. Definition. A pseudomonoid M in a braided monoidal bicategory B is braided if
it is equipped with a 2-isomorphism

b : m ◦ β ∼⇒ m

where β : M ⊗M →M ⊗M is the braiding in B, and b obeys the hexagon identities [24].

3.6. Definition. A braided pseudomonoid M in a symmetric monoidal bicategory B is
called symmetric if

M ⊗M MM ⊗M M ⊗M

λ−1 ⇓

σ−1 ⇓

b ⇓

b ⇓

m

1

β β m

m

m

is the identity 2-morphism from m to m. Here λ is the left unitor for composition of
1-morphisms in B and σ : β2 ⇒ 1 is the syllepsis for B.

Readers unfamiliar with these concepts may be relieved to learn that the syllepsis in Cat
is the identity; in a general symmetric monoidal bicategory the square of the braiding
may be only isomorphic to the identity, and this isomorphism is called the syllepsis [11].

The plan continues as follows. Having shown that LCsp(X) is a weak category in
SymMonCat, we notice that such a thing is

a weak category in [symmetric pseudomonoids in Cat].

By ‘commutativity of internalization’ we could hope that this is the same as

a symmetric pseudomonoid in [weak categories in Cat].

But the latter is precisely a symmetric double category. So, LCsp(X) should be a sym-
metric monoidal double category.

Unfortunately, this hope is a bit naive. Shulman explains the reason [34]:

The general yoga of internalization says that an X internal to Y s internal to Zs
is equivalent to a Y internal to Xs internal to Zs, but this is only strictly true
when the internalizations are all strict. We have defined a symmetric monoidal
double category to be a (pseudo) symmetric monoid internal to (pseudo) cat-
egories internal to categories, but one could also consider a (pseudo) category
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internal to (pseudo) symmetric monoids internal to categories, i.e. a pseudo
internal category in the 2-category SymMonCat of symmetric monoidal cat-
egories and strong symmetric monoidal functors. This would give almost the
same definition, except that S and T would only be strong monoidal (preserv-
ing ⊗ up to isomorphism) rather than strict monoidal.

Luckily, the difference between the two definitions is quite small, so with a bit of care we
can arrange for LCsp(X) to be a symmetric monoidal double category.

We begin as follows:

3.7. Theorem. Given a morphism L : A→ X in Rex, the double category LCsp(X) is a
weak category object in Rex.

Proof. In the double category LCsp(X),

� the category of objects LCsp(X)0 is A, while

� the category of arrows LCsp(X)1 has structured cospans

L(a) x L(b)
i o

as objects and commutative diagrams of this form:

L(a) L(b)x

L(a′) L(b′)x′

o

L(α) L(β)f

i

i′ o′

as morphisms.

We need to choose finite colimits for LCsp(X)0 and LCsp(X)1 and show the source and
target functors

S, T : LCsp(X)1 → LCsp(X)0,

the identity-assigning functor

U : LCsp(X)0 → LCsp(X)1,

and the composition functor

◦ : LCsp(X)1 ×LCsp(X)0 LCsp(X)1 → LCsp(X)1

are right exact. We also need to check that all the pullbacks in Cat used to define the
double category LCsp(X) are also pullbacks in Rex.

The category of objects LCsp(X)0 = A has chosen finite colimits by hypothesis. The
category of arrows LCsp(X)1 has finite colimits because L preserves finite colimits and



1788 JOHN C. BAEZ AND KENNY COURSER

these colimits are computed pointwise in X. We give LCsp(X)1 chosen finite colimits
using the chosen finite colimits in A and X. The functors S, T and U are right exact,
again because colimits in LCsp(X)1 are computed pointwise in X. The functor ◦ sends
a composable pair of structured cospans to their composite, which is defined using a
pushout. This functor is right exact as a consequence of colimits commuting with other
colimits.

We also need to check that the category

Z = LCsp(X)1 ×LCsp(X)0 LCsp(X)1,

defined as a pullback in Cat, is also a pullback in Rex. Note that objects of Z are
composable pairs of structured cospans:

L(a) x L(b) y L(c),

while morphisms are commuting diagrams of the form

L(a) L(b)x L(c)y

L(a′) L(b′)x′ L(c′).y′

f gL(α) L(β) L(γ)

Because A and X have finite colimits and L preserves them, Z has finite colimits computed
pointwise. Consider the pullback square in Cat defining Z:

Z LCsp(X)1

LCsp(X)1 LCsp(X)0

P2

P1 T

S

where P1 projects to the first structured cospan of an object in Z, and P2 projects to
the second. All the arrows here are right exact because colimits are computed pointwise.
Suppose next that F and G below are right exact:

Q

Z LCsp(X)1

LCsp(X)1 LCsp(X)0.

F

G

Q

P2

P1 T

S
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Then there exists a unique functor Q making the diagram commute. This functor Q
is right exact because its composites with P1 and P2 are: since colimits in a diagram
category are computed pointwise, a cocone in Z is a colimit of F : D→ Z if and only if the
‘pieces’ obtained by applying P1 and P2 to this cocone are colimits of P1 ◦ F and P2 ◦ F ,
respectively.

The other pullbacks used in defining the double category LCsp(X), such as the pullback

LCsp(X)1×LCsp(X)0 LCsp(X)1×LCsp(X)0 LCsp(X)1 used in defining the associator, are also
pullbacks in Rex for the same sort of reason.

Next we make LCsp(X) into a weak category in SymMonCat. We do this by applying
the 2-functor Φ: Rex→ SymMonCat.

3.8. Theorem. Given a morphism L : A → X in Rex, the functor Φ: Rex →
SymMonCat maps the weak category LCsp(X) in Rex to a weak category in
SymMonCat.

Proof. We need to show that the various pullbacks in Rex used to make LCsp(X) into a
weak category in Rex are mapped by Φ to pullbacks in SymMonCat. We do this only
for the pullback Z = LCsp(X)1 ×LCsp(X)0 LCsp(X)1, since the others are similar. To show
that Φ(Z) is the pullback of the following square in SymMonCat:

Φ(Z) Φ(LCsp(X)1)

Φ(LCsp(X)1) Φ(LCsp(X)0)

Φ(P2)

Φ(P1) Φ(T )

Φ(S)

we need to show that for any symmetric monoidal category Q and symmetric monoidal
functors F,G : Q→ Φ(LCsp(X)1) with Φ(S)F = Φ(T )G, there exists a unique symmetric
monoidal functor Q making this diagram commute:

Q

Φ(Z) Φ(LCsp(X)1)

Φ(LCsp(X)1) Φ(LCsp(X)0).

F

G

Q

Φ(P2)

Φ(P1) Φ(T )

Φ(S)

By Theorem 3.7 there exists a unique right exact functorQmaking the underlying diagram
of functors commute. We now show that this Q can be made symmetric monoidal in such
a way that the diagram commutes in SymMonCat.

First, let 0Q be the monoidal unit of Q. Since F : Q → Φ(LCsp(X)1) is symmetric
monoidal, we have an isomorphism between monoidal units:

F0 : 0Φ(LCsp(X)1)
∼−−→ F (0Q)
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where 0Φ(LCsp(X)1) is initial in Φ(LCsp(X)1). Similarly we have an isomorphism

G0 : 0Φ(LCsp(X)1)
∼−−→ G(0Q).

It follows that Q(0Q) is a pair of composable initial cospans in X so there is a unique
isomorphism

Q0 : 0Z
∼−−→ Q(0Q).

Next, given two objects a1 and a2 in Q, we have a natural isomorphism

Fa1,a2 : F (a1) + F (a2) ∼−−→ F (a1 ⊗ a2)

as F is symmetric monoidal, and similarly for G. We know that as objects, F (a1) and
F (a2) are simply cospans in X with F (a1) +F (a2) their chosen coproduct. We also know
that Q(a1) is a pair of composable cospans (F (a1), G(a1)) and likewise Q(a2) is a pair of
composable cospans (F (a2), G(a2)). This results in a natural isomorphism

Qa1,a2 : Q(a1) +Q(a2)→ Q(a1 ⊗ a2)

given by the composite

(F (a1), G(a1)) + (F (a2), G(a2)) ∼−−→ (F (a1) + F (a2), G(a1) +G(a2))

∼−−→ (F (a1 ⊗ a2), G(a1 ⊗ a2)).

One can check that this family of natural isomorphisms Qa1,a2 together with the natural
isomorphism Q0 give Q the structure of a symmetric monoidal functor, and that the above
diagram then commutes in SymMonCat. It follows that Φ(Z) is a pullback square in
SymMonCat, as was to be shown.

In Theorem 3.8 we made LCsp(X) into a weak category in SymMonCat. Now we
make LCsp(X) into a symmetric monoidal double category.

3.9. Theorem. Suppose A and X have finite colimits and L : A → X preserves them.
Choose finite colimits in A and X. Then the double category LCsp(X) becomes symmetric
monoidal where:

� the tensor product of objects a1, a2 is their chosen coproduct a1 + a2 in A,

� the unit object is the chosen initial object 0A in A,

� the tensor product of two vertical 1-morphisms is given by

a1

b1

a2

b2

a1 + a2

b1 + b2

⊗ =f1 f2 f1 + f2
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� the tensor product of horizontal 1-cells is given by

L(a)

x

L(b)

⊗
L(a′)

x′

L(b′)

=

L(a+ a′)

x+ x′

L(b+ b′)

i o i′ o′ i+ i′ o+ o′

where i+ i′ and o+ o′ are defined using the fact that L preserves coproducts,

� the unit horizontal 1-cell is given by

L(0A) 0X L(0A)
i o

where 0X is the chosen initial object in X,

� the tensor product of two 2-morphisms is given by:

L(a1) L(b1)x1

L(a2) L(b2)x2

L(a′1) L(b′1)x′1

L(a′2) L(b′2)x′2

⊗

L(a1 + a′1) L(b1 + b′1)x1 + x′1

L(a2 + a′2) L(b2 + b′2),x2 + x′2

=

o1

L(f) L(g)α

i1

i2 o2

o′1

L(f ′) L(g′)α′

i′1

i′2 o′2

o1 + o′1

L(f + f ′) L(g + g′)α+ α′

i1 + i′1

i2 + i′2 o2 + o′2

and the associators, left and right unitors, and braidings are defined using the universal
properties of binary coproducts and unit objects.

Proof. By Theorem 3.8, LCsp(X) is a weak category object in SymMonCat, so both
its category of objects and category of arrows are symmetric monoidal. To show that it
is a symmetric monoidal double category, we need only show that the source and target
functors

S, T : LCsp(X)1 → LCsp(X)0

are strict symmetric monoidal [34, Remark 2.12]. This follows because S and T simply
pick out the input and output of a structured cospan, and we are using the same chosen
binary coproducts and initial object in A in defining the monoidal structures on both

LCsp(X)0 and LCsp(X)1.
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In fact, to make LCsp(X) into a symmetric monoidal double category it suffices for A
to have finite coproducts, X to have finite colimits, and L to preserve finite coproducts
[10, Theorem 3.2.3]. But in the examples we have studied, A and X have finite colimits,
and L, being a left adjoint, preserves all of these.

Next we take the symmetric monoidal double category LCsp(X) and water it down,
obtaining first a symmetric monoidal bicategory and then a symmetric monoidal category.
The definition of symmetric monoidal bicategory is nicely presented by Stay [35], who
recalls how this definition was gradually discovered by a series of authors. Shulman [34]
provides a convenient way to construct symmetric monoidal bicategories from symmetric
monoidal double categories. He defines a double category D to be isofibrant if every
vertical 1-isomorphism has a ‘companion’ and a ‘conjoint’ [20], and proves that if D is
symmetric monoidal and isofibrant, then D becomes symmetric monoidal in a canonical
way.

A companion of a vertical 1-morphism f : a → b is a horizontal 1-cell f̂ : a → b
equipped with 2-morphisms

a b

b b

f̂

f 1

Ub

α ⇓ and
a a

a b

Ua

1 f

f̂

β ⇓

that obey these equations:

a a

a b

b b

1

f

f

1

Ua

Ub

β ⇓

α ⇓
f̂ =

a a

b b

f f

Ua

Ub

⇓ Uf and

a

a

a

b

b

b

a b

1 f 1

Ua f̂

f̂ Ub

f̂

1 1

β ⇓ α ⇓

λf̂ ⇓

=
a a b

a b

Ua f̂

1 1

f̂

ρf ⇓ (1)

A conjoint of f is a horizontal 1-cell f̌ : b→ a that is a companion of f in the ‘horizontal
opposite’ of the double category in question. Since LCsp(X) is its own horizontal opposite,
we only need to check the existence of companions.

3.10. Corollary. If A and X have finite colimits, L : A → X preserves them, and we
choose finite colimits in both A and X, then the bicategory LCsp(X) of Corollary 2.4
becomes symmetric monoidal as follows:

� the tensor product of objects a1 and a2 is their chosen coproduct a1 + a2 in A,

� the unit for the tensor product is the chosen initial object 0A in A,
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� the tensor product of 1-morphisms is given by

L(a)

x

L(b)

⊗
L(a′)

x′

L(b′)

=

L(a+ a′)

x+ x′

L(b+ b′)

i o i′ o′ i+ i′ o+ o′

� the tensor product of 2-morphisms is given by

L(a1)

x1

x′1 x′2 x′1 + x′2

L(a′1) ⊗ L(a2)

x2

L(a′2) = L(a1 + a2)

x1 + x2

L(a′1 + a′2)

i1 o1

i′1 o′1

i2 o2

i′2 o′2

i1 + i2 o1 + o2

i′1 + i′2 o′1 + o′2

α1 α2 α1 + α2

� the associators, unitors, symmetries, and other structures of a symmetric monoidal
bicategory are constructed using the universal properties of binary coproducts and
initial objects.

Proof. A vertical 1-isomorphism in LCsp(X) is a isomorphism f : a → b in A. We take
its companion f̂ to be the structured cospan

L(a) L(b) L(b).
L(f) 1

The unit horizontal 1-cells Ua and Ub are given respectively by

L(a) L(a) L(a) and L(b) L(b) L(b)
1 1 1 1

and the accompanying 2-morphisms α and β are given by

L(a) L(b)L(b)

L(b) L(b)L(b)

and

L(a) L(a)L(a)

L(a) L(b)L(b)

1

L(f) 11

L(f)

1 1

1

1 L(f)L(f)

1

L(f) 1

respectively. An easy calculation verifies Equation (1).
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3.11. Corollary. If A and X have finite colimits, L : A → X preserves them, and we
choose binary coproducts and an initial object in A, then the category LCsp(X) of Corollary
2.5 becomes symmetric monoidal as follows:

� the tensor product of objects a1 and a2 is their chosen coproduct a1 + a2 in A,

� the unit for the tensor product is the chosen initial object 0A in A,

� the tensor product of morphisms is given by

L(a)

x

L(b)

⊗
L(a′)

x′

L(b′)

=

L(a+ a′)

x+ x′

L(b+ b′)

i o i′ o′ i+ i′ o+ o′

where in each case the cospan actually denotes an isomorphism class of cospans,

� the associator, left and right unitors, and symmetry are constructed using the uni-
versal properties of binary coproducts and initial objects.

Proof. It can be checked by inspecting the definitions that any symmetric monoidal
bicategory B gives rise to a symmetric monoidal category B where:

� the objects of B are those of B,

� the morphisms of B are isomorphism classes of morphisms of B,

� the unit object and the tensor product of objects are those of B,

� the tensor product of morphisms, the associator, the left and right unitor, and the
symmetry of B arise from those of B by taking isomorphism classes.

Applying this ‘decategorification’ construction to the symmetric monoidal bicategory

LCsp(X) gives the symmetric monoidal category LCsp(X).

The symmetric monoidal category LCsp(X) is determined up to equality by the choice
of binary coproducts and initial object in A, but different choices of this data give iso-
morphic symmetric monoidal categories.

Readers interested in hypergraph categories may be pleased to learn that structured
cospan categories tend to be of this type. A ‘hypergraph category’ is a symmetric monoidal
category where each object has the structure of a special commutative Frobenius monoid in
a way that is compatible with tensor products but not necessarily preserved by morphisms
[13]. Such categories are ubiquitous in network theory, where Frobenius structure allows
us to split, join, start and terminate strings in string diagrams [14]. While the definition
of hypergraph category may seem awkward at first, Fong and Spivak have clarified this
concept using operads [17].
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3.12. Theorem. If A and X have finite colimits, L : A → X preserves them, and we
choose binary coproducts and an initial object in A, then the symmetric monoidal cate-
gory LCsp(X) is a hypergraph category where each object a ∈ A is a special commutative
Frobenius monoid as follows:

� The multiplication is given by the structured cospan

L(a+ a) L(a) L(a).
L(∇) 1

where ∇ : a+ a→ a is the fold map.

� The unit is given by

L(0) L(a) L(a).
L(!) 1

where ! : 0→ a is the unique morphism.

� The comultiplication is given by

L(a) L(a) L(a+ a).
1 L(∇)

� The counit is given by

L(a) L(a) L(0).
1 L(!)

Proof. Whenever F : C → D is a symmetric monoidal functor bijective on objects and
C is a hypergraph category, there is a unique way to make D into a hypergraph category
such that F is a hypergraph functor. To see this, first note that F equips each object
of D with the structure of a special commutative Frobenius monoid, coming from its
structure in C. These Frobenius structures are compatible with tensor product because
they were in C and F is symmetric monoidal. Thus, D becomes a hypergraph category.
By construction F : C → D preserves the Frobenius structures on objects, so F is a
hypergraph functor. Moreover, the Frobenius structures on objects of D are uniquely
determined by this requirement.

Let Csp(A) be the symmetric monoidal category whose morphisms are isomorphism
classes of cospans in A. Since L preserves finite colimits, there is a symmetric monoidal
functor F : Csp(A)→ LCsp(X) given as follows:

a

c

b

7→
L(a)

L(c)

L(b).

i o L(i) L(o)

This is bijective on objects, and Csp(A) is a hypergraph category [13], so LCsp(X) has a
unique hypergraph category structure making F into a hypergraph functor. This is given
as in the statement of the theorem.



1796 JOHN C. BAEZ AND KENNY COURSER

4. Maps between structured cospan double categories

In this section we show how to construct maps between structured cospan categories, or
bicategories, or double categories. As before, it is best to start with double categories
and work our way down. A map between double categories is called a ‘double functor’,
and these are defined in Definition A.3. Suppose that we have structured cospan double
categories coming from functors L : A→ X and L′ : A′ → X ′, where X and X′ have chosen
pushouts. Then we get a double functor between these double categories from a diagram
of this form:

A X

A′ X′

α ⇒

L

F0 F1

L′

where F0 is a functor, F1 is a functor preserving pushouts, and α is a natural isomor-
phism. We prove this in Theorem 4.2. Furthermore, if all four categories involved have
finite colimits and all four functors preserve these, then this double functor is symmetric
monoidal—a concept defined in Definition A.7. We prove this in Theorem 4.3.

4.1. Definition. Given a 2-category C and two weak categories D and D′ in C, a weak
functor F : D→ D′ in C consists of:

� a morphism of objects F0 : D0 → D′0,

� a morphism of arrows F1 : D1 → D′1,

such that:

� F preserves the source and target morphisms: S ′ ◦F1 = F0 ◦S and T ′ ◦F1 = F0 ◦ T ,

� composition and the identity-assigning morphism are preserved up to 2-
isomorphisms F� and FU , respectively:

D1 ×D0 D1 D1

D′1 ×D′0 D
′
1 D′1

F� ⇒

D0 D1

D′0 D′1

FU ⇒

◦

F1

◦′
F1 ×F0 F1

U

F1

U ′

F0

� the 2-isomorphisms F� and FU satisfy the hexagon and square identities familiar
from the definition of a monoidal functor.

A weak functor in Cat is the same as a double functor, and one can consult Definition
A.3 to see the hexagon and square identities in this case. We will also need weak functors
in Rex and SymMonCat.

We begin by getting double functors between structured cospan double categories.
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4.2. Theorem. Suppose we have a square in Cat:

A X

A′ X′

α ⇒

L

F1

L′

F0

where X and X′ have chosen pushouts, F1 preserves pushouts and α is a natural isomor-
phism. Then there is a double functor F : LCsp(X)→ L′Csp(X′) such that:

� F0 = F0.

� F1 acts as follows on objects:

L(a) x L(b)
i o

7→ L′(F0(a)) F1(x) L′(F0(b))
F1(i)αa F1(o)αb

and as follows on morphisms:

L(a) x L(b)

L(a′) x′ L(b′)

i o

i′ o′

L(g)γL(f) 7→
L′(F0(a)) F1(x) L′(F0(b))

L′(F0(a′)) F1(x′) L′(F0(b′))

F1(i)αa F1(o)αb

F1(i′)αa′ F1(o′)αb′

L′(F0(f)) F1(γ) L′(F0(g))

� Given composable structured cospans in LCsp(X):

L(a) x L(b) L(b) y L(c)
i o i′ o′

the natural isomorphism F� : F1(M)�F1(N)→ F1(M �N) is given by this map of
cospans:

L′(F0(a)) F1(x) +L′(F0(b)) F1(y) L′(F0(c))

L′(F0(a)) F1(x+L(b) y) L′(F0(c))

ΨjF1(x)F1(i)αa ΨjF1(y)F1(o′)αa

F1(ψjxi)αc F1(ψjyo′)αc

1 φM,N 1

Here jx : x → x + y is the natural map into a coproduct, and likewise for
jy, jF1(x), jF1(y), ψ : x + y → x +L(b) y is the natural map from a coproduct to a
pushout and likewise for Ψ, and φM,N : F1(x)+L′(F0(b))F1(y)→ F1(x+L(b) y) is given
by the composite

F1(x) +L′(F0(b)) F1(y)
id+αb id
−−−−→ F1(x) +F1(L(b)) F1(y)

κ−→ F1(x+L(b) y)

where κ is the natural isomorphism arising from F1 preserving pushouts.
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� Given an object a ∈ A, the natural isomorphism FU : U ′(F0(a))→ F1(U(a)) is given
by this map of cospans:

L′(F0(a)) L′(F0(a)) L′(F0(a))

L′(F0(a)) F1(L(a)) L′(F0(a))

1 1

αa αa

1 αa 1

Proof. The diagram in the definition of F� commutes as

F1(ψjxi)αa = F1(ψ)F1x,yjF1(x)F1(i)αa = φM,NΨjF1(x)F1(i)αa

where F1x,y : F1(x) + F1(y) → F1(x + y) is the natural isomorphism arising from F1

preserving binary coproducts. One can check that the natural isomorphisms F� and FU
satisfy the left and right unit squares and laxator hexagon of a monoidal functor.

4.3. Theorem. Suppose we have a square commuting up to isomorphism in Rex:

A X

A′ X′

α ⇒

L

F1

L′

F0

Then the double functor F : LCsp(X)→ L′Csp(X′) is a weak functor between weak category
objects in Rex. Moreover, if we make LCsp(X) and L′Csp(X′) into symmetric monoidal
double categories as in Theorem 3.9, then F : LCsp(X) → L′Csp(X′) can be given the
structure of a symmetric monoidal double functor.

Proof. This is a straightforward but lengthy verification.

We can then water down this result, obtaining maps between symmetric monoidal
bicategories or categories:

4.4. Theorem. A symmetric monoidal double functor F : LCsp(X)→ L′Csp(X′) induces
a symmetric monoidal functor F : LCsp(X)→ L′Csp(X′).

Proof. See Hansen and Shulman [22] for details of how this works, and a proof.

4.5. Theorem. A symmetric monoidal functor between bicategories F : LCsp(X) →
L′Csp(X′) induces a symmetric monoidal functor between categories F : LCsp(X) →
L′Csp(X′).

Proof. This is a straightforward decategorification process.



STRUCTURED COSPANS 1799

5. Structured versus decorated cospans

We can illustrate some of the advantages of structured over decorated categories with an
example that is fundamental in the study of networks: the double category with open
graphs as morphisms. An ‘open graph’ consists of a graph together with maps from two
sets into its set of nodes:

•
n1

•
n2

•
n3 •

n4

e1

e2

e3

e4

1

2

3

S T

4

As usual in category theory, by ‘graph’ we mean a directed multigraph or quiver. In
what follows we restrict attention to finite graphs because these are the most important
in applications.

5.1. Definition. A graph is a pair of functions s, t : E → N where E and N are finite
sets. We call elements of E edges and elements of N nodes. We say that the edge
e ∈ E has source s(e) and target t(e), and say that e is an edge from s(e) to t(e). A
morphism from the graph s, t : E → N to the graph s′, t′ : E ′ → N ′ is a pair of functions
f : E → E ′, g : N → N ′ such that these diagrams commute:

E

E ′

N

N ′

s

s′

f g

E

E ′

N

N ′.

t

t′

f g

5.2. Definition. Let Graph be the category of graphs and morphisms between them, with
composition defined by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).
There is a functor U : Graph→ FinSet that takes a graph s, t : E → N to its underlying

set of nodes N . This has a left adjoint L : FinSet → Graph sending any set to the graph
with that set of nodes and no edges. Both FinSet and Graph have finite colimits, and L,
being a left adjoint, preserves them. Thus Theorem 3.9 gives us a symmetric monoidal
double category LCsp(Graph) where:

� an object is a finite set,

� a vertical 1-morphism is a function between finite sets,

� a horizontal 1-cell from S to T is an open graph, meaning a cospan in Graph of
this form:

L(S) G L(T ),
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� a 2-morphism is a map of open graphs, meaning a commutative diagram in Graph
of this form:

L(S) L(T )G

L(S ′) L(T ′)G′

L(f) L(g)h

Applying Corollary 3.10 we obtain a symmetric monoidal bicategory LCsp(Graph) where
the objects are finite sets, the morphisms are open graphs, and the 2-morphisms are
commutative diagrams in Graph of this form:

L(S) L(T )

G

G′

o

h

i

i′ o′

We can go further and apply Corollary 3.11 to obtain a symmetric monoidal category

LCsp(Graph) where the objects are finite sets and the morphisms are isomorphism classes
of open graphs. An isomorphism of open graphs is a diagram as above where h is an
isomorphism. Below is a pair of isomorphic open graphs.

•
n1

•
n2

•
n3

•
n4

e1

e2

e3

e4

e51 2

S T

•
n1

•
n2

•
n3

•
n4

e1

e2

e3

e4

e61 2

S T

These differ only in that the edge e5 has been renamed e6. We could also rename nodes,
but we chose this example for a specific reason. We can define a similar category of open
graphs using the machinery of decorated cospans. The morphisms in this other category
are again equivalence classes of open graphs—but with a finer equivalence relation, for
which the above open graphs are not equivalent! Indeed, this other notion of equivalence
between open graphs only allows us to rename nodes, not edges.

Now let us compare the decorated cospan category of open graphs. We shall go into
some detail here, since the problems we meet afflict a number of attempted applications
of decorated cospans in the published literature [3, 4, 6, 13]. We start with a functor
F : FinSet → Set that assigns to any finite set N the collection of all graph structures
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on N , meaning graphs whose set of nodes is N . A small issue immediately presents itself:
as described, F (N) is actually a proper class. We can get around this in various ways.
For example, we can replace FinSet by an equivalent small category, and define a finite
graph to be a diagram s, t : E → N in this category. Henceforth we consider this done.

The functor F acts on morphisms as follows: given any function f : N → N ′, we say
that F (f) : F (N)→ F (N ′) maps the graph structure s, t : E → N to the graph structure

f ◦ s, f ◦ t : E → N ′.

Thus, we use f to rename the nodes and let the edges ‘go along for the ride’.
To obtain a symmetric monoidal category FCospan as described in Section 1, we need

to make F into a symmetric lax monoidal functor from (FinSet,+) to (Set,×). There is
an obvious choice of laxator

φN,N ′ : F (N)× F (N ′)→ F (N +N ′)

since there is a natural graph structure on N+N ′ built from graph structures s, t : E → N
and s′, t′ : E ′ → N ′: namely, s+ s′, t+ t′ : E +E ′ → N +N ′. However, as pointed out by
an anonymous referee in a paper by Moeller and Vasilakopoulou [29], this diagram in the
definition of lax monoidal functor may fail to commute:

(F (N)× F (N ′))× F (N ′′) F (N)× (F (N ′)× F (N ′′))

F (N +N ′)× F (N ′′) F (N)× F (N ′ +N ′′)

F ((N +N ′) +N ′′) F (N + (N ′ +N ′′))

φN,N′ × 1 1× φN′,N′′

φN+N′,N′′ φN,N′+N′′

where the horizontal arrows are the associator in (Set,×) and F of the associator in
(FinSet, +), respectively. Suppose we start at upper left with a triple of graph structures
s, t : E → N , s′, t′ : E ′ → N ′ and s′′, t′′ : E ′′ → N ′′. If we follow the arrows first down
and then across, we obtain a graph structure on N + (N ′ + N ′′) where the set of edges
is (E + E ′) + E ′′. If instead we follow the arrows first across and then down, we obtain
a graph structure where the set of edges is E + (E ′ + E ′′). These graph structures are
different if (E + E ′) + E ′′ 6= E + (E ′ + E ′′). The problem is that (FinSet,+) may not
be a strict monoidal category. We say “may not” because we have replaced the original
(FinSet,+) by an equivalent small category.

Of course we can use Mac Lane’s coherence theorem to choose an equivalent monoidal
category that is both small and strict. One can then prove F becomes lax monoidal with
φ as its laxator—but still not symmetric lax monoidal. The problem is that this diagram
fails to commute:

F (N)× F (N ′) F (N ′)× F (N)

F (N +N ′) F (N ′ +N)

φN,N′ φN′,N
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where the horizontal arrows are the braiding in (Set,×) and F of the braiding in
(FinSet,+), respectively. Suppose we start at upper left with a pair of graph structures
s, t : E → N and s′, t′ : E ′ → N ′. If we follow the arrows first down and then across we
obtain a graph structure on N ′+N where the set of edges is E +E ′, but if we follow the
arrows first across and then down we obtain a graph structure where the set of edges is
E ′+E. These graph structures are different in general, and we cannot cure this problem
with further strictification: (FinSet,+) is not equivalent as a symmetric monoidal category
to one that where the braiding is the identity.

As a result, the theory of decorated cospans only gives a monoidal category FCospan
[10, Thm. 2.1.3]. An object of FCospan is a finite set, while a morphism is an equivalence
class of F -decorated cospans

S N T , G ∈ F (N).
i o

Such an F -decorated cospan is a way of describing an open graph from S to T . However,
two such F -decorated cospans, say the above one and this:

S N ′ T , G′ ∈ F ′(N),
i o

are equivalent iff there is a bijection f : N → N ′ making this diagram commute:

S T

N

N ′

o

f

i

i′ o′

and such that F (f)(G) = G′. It follows that the graphs G = (s, t : E → N) and G′ =
(s′, t′ : E ′ → N ′) are isomorphic, but in a specific way: we must have E ′ = E, s′ = f ◦ s,
and t′ = f ◦ t. Thus, two open graphs with different edge sets cannot be equivalent!

In short, the decorated cospan category of open graphs resembles the structured cospan
category, but it is merely monoidal, not symmetric monoidal, and it has many morphisms
for each morphism in the structured cospan category, for no particularly useful reason.
This ‘redundancy’ is eliminated by the functor J : FCospan → LCsp(Graph) that is the
identity on objects and identifies isomorphic open graphs.

In attempted applications so far, one often uses a decorated cospan category as the
‘syntax’ for open systems of a particular kind, with the ‘semantics’ given by a monoidal
functor out of this category [14]. Often this functor factors through a structured cospan
category that eliminates the redundancy in the morphisms of the structured cospan cat-
egory. We give some examples in the next section.

On the other hand, there are also useful decorated cospan categories that do not
suffer from the problems we have described. Some appear not to be structured cospan
categories. An example is the category of open dynamical systems described in Section
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6.16. Furthermore, the theory of decorated cospans plays an important role in the more
general theory of decorated corelations [15, 16]. So, it also interesting to see if we can
improve the theory of decorated cospans a bit to eliminate the problems we have seen.

In the case of open graphs, one cheap solution is to use a different symmetric lax
monoidal functor, say F ′ : (FinSet,+) → (Set,×), that sends any finite set N to the
set of isomorphism classes of graph structures on N . Here given two graph structures
s, t : E → N and s′, t′ : E ′ → N on N , we define a morphism from the first to the second
to be a function f : E → E ′ such that these diagrams commute:

E

E ′

N

N

s

s′

f 1

E

E ′

N

N

t

t′

f 1

We obtain a category of graph structures on N in this way, allowing us to define iso-
morphism classes of these. One can check that using the theory of decorated cospans we
obtain a symmetric monoidal category F ′Cospan that is equivalent to LCsp(Graph).

However, working with isomorphism classes of graph structures does not give a double
category of decorated cospans that is equivalent to LCsp(Graph). We should really work
with the category of graph structures, not isomorphism classes of graph structures! A
clue to a better approach is to note that the forgetful functor U : Graph → FinSet is an
opfibration, and the category of graph structures on a finite set N is the fiber of this
opfibration over N . Thus, the inverse Grothendieck construction gives a pseudofunctor
F̃ : FinSet → Cat sending each finite set N to the category of graph structures on N .
Moreover, F̃ is symmetric lax monoidal from (FinSet,+) to (Cat,×).

In a forthcoming paper with Vasilakopoulou [1], we extend the theory of decorated
cospans to handle this sort of data. That is, given a category A with finite colimits and a
symmetric lax monoidal pseudofunctor F̃ : (A,+)→ (Cat,×), we construct a symmetric
monoidal double category F̃Cospan with decorated cospans as horizontal 1-cells. Any
such pseudofunctor also gives an opfibration R : X→ A where X =

∫
F̃ is defined by the

Grothendieck construction. We show that if the symmetric lax monoidal pseudofunctor
F̃ : (A,+) → (Cat,×) factors through (Rex,×), the resulting opfibration R : X → A
is also a right adjoint. From the accompanying left adjoint L : A → X, we construct a
symmetric monoidal double category LCsp(X) of structured cospans. Finally, we prove
that this structured cospan double category LCsp(X) is equivalent to the decorated cospan
double category F̃Cospan. Thus, we reconcile the theory of structured cospans and the
theory of decorated cospan categories by enhancing the latter.

6. Applications

Decorated cospans have already been used to study electrical circuits [3], Markov processes
[4], and chemical reaction networks [6], while structured cospans have been used to study
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electrical circuits [2] and Petri nets [5]. Here we revisit this work and show that structured
cospans can take the place of decorated cospans in many of these applications. For
structured cospans in graph rewriting, see Cicala’s thesis [8].

6.1. Circuits. Building on work with Fong [3], Coya, Rebro and the first author have
used structured cospans to describe electrical circuits with inputs and outputs [2]. The
key idea is to use graphs with labeled edges. The edge labels can stand for resistors with
any chosen resistance, capacitors with any chosen capacitance, inductors with any chosen
inductance, or other circuit elements such as voltage sources, current sources, diodes, and
so on. To study such circuits quite generally we start by fixing any set L to serve as edge
labels.

6.2. Definition. Given a set L of labels, an L-graph is a graph s, t : E → N equipped
with a function ` : E → L. A morphism from the L-graph

L E
s //

t
//

`oo N

to the L-graph

L E ′
s′ //

t′
//

`′oo N ′

is a pair of functions f : E → E ′, g : N → N ′ such that these diagrams commute:

E

E ′

N

N ′

s

s′

f g

E

E ′

N

N ′

t

t′

f g L

E

E ′.

`

f

`′

We say such a morphism is determined by its action on nodes if E ′ = E and f = 1E.

6.3. Definition. We define GraphL to be the category of L-graphs and morphisms be-
tween them, with composition given by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).

When L = 1, an L-graph reduces to a graph and GraphL reduces to the category Graph
discussed in Section 5. We now generalize the key ideas of that section from graphs to
L-graphs. Everything works the same way, but following previous work [2] we call an
open L-graph an ‘L-circuit’.

There is a functor U : GraphL → FinSet that takes an L-graph to its underlying
set of nodes. This has a left adjoint L : FinSet → GraphL sending any set to the L-
graph with that set of nodes and no edges. Both FinSet and GraphL have colimits, and
L preserves them. Thus Theorem 3.9 gives us a symmetric monoidal double category

LCsp(GraphL). Alternatively, we can use Corollary 3.11 to create a symmetric monoidal
category LCsp(GraphL) where:
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� an object is a finite set,

� a morphism is an isomorphism class of L-circuits, where an L-circuit is a cospan
in GraphL of this form:

L(S) G L(T ),

and an isomorphism of L-circuits is a commutative diagram in GraphL of this form:

L(S) L(T )

G

G′

o

h

i

i′ o′

where h is an isomorphism.

This category has a nice universal property, found by Rosebrugh, Sabadini and Walters
[32]. To state this, it is convenient to use the language of props. Recall that a prop
is a symmetric strict monoidal category whose objects are natural numbers, with tensor
product of objects given by addition. An algebra of a prop T in a symmetric strict
monoidal category C is a symmetric strict monoidal functor A : T → C. A morphism
from the algebra A : T→ C to the algebra A′ : T→ C is a monoidal natural transformation
α : A⇒ A′.

6.4. Lemma. As a symmetric monoidal category, LCsp(GraphL) is equivalent to a prop
CircL.

Proof. This is [2, Proposition 4.3].

6.5. Proposition. An algebra of CircL in a symmetric strict monoidal category C is a
special commutative Frobenius monoid in C whose underlying object x is equipped with
an endomorphism ` : x → x for each element ` ∈ L. A morphism of algebras of CircL in
C is a morphism of special commutative Frobenius monoids that also preserves all these
endomorphisms.

Proof. This was proved by Rosebrugh, Sabadini and Walters [32], and appears in the
above form in [2, Proposition 7.2].

In applications to circuits, the morphisms ` : x→ x describe different circuit elements,
while the special commutative Frobenius monoid structure is used to split and join wires.
This framework is used to study a wide variety of electrical circuits in a paper with Coya
and Rebro [2], so the reader can turn there for details. To illustrate the ideas let us
consider circuits of resistors, where a label in L = (0,∞) serves to indicate the resistance
of a resistor. In this case a typical morphism from 1 to 3 in CircL looks like this:

•

•

•

•

•

2.53

0.71

9.6

1.02

12.4 6.3

1 3
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The edges here represent wires, and the positive real numbers labeling them describe the
resistance of the resistor on each wire. The points in the boxes represent ‘terminals’: that
is, points where we allow ourselves to attach a wire from another circuit. The points in
the left box are called ‘inputs’ and the points in the right box are called ‘outputs’. In
electrical engineering we associate two real numbers to each terminal, called ‘potential’
and ‘current’. Any circuit of resistors imposes a specific relation between the potentials
and currents at its inputs and those at its outputs. All these relations, for all circuits of
resistors, can be described using a single functor as follows.

There is a symmetric monoidal category FinRelR where the objects are finite-
dimensional real vector spaces and a morphism from V to W is a linear relation from
V to W : that is, a relation L ⊆ V ×W that is a linear subspace of V ×W . Composition
in FinRelR is the usual composition of relations, and the symmetric monoidal structure is
provided by direct sum.

There is a symmetric monoidal functor

� : CircL → FinRelR

sending any finite set S to the vector space RS ⊕ RS and sending any circuit of resistors
to the relation it imposes between the potentials and currents at its inputs and those at
its outputs [2, Section 9]. We can construct this using Proposition 6.5, by choosing a
special commutative Frobenius monoid in FinRelR whose underlying object is equipped
with an endomorphism for each resistance R ∈ (0,∞). The object R2 ∈ FinRelR is a
special commutative Frobenius monoid in a standard way [2, Section 8], so we choose this
one. To define � : CircL → FinRelR it then suffices to choose for each R ∈ (0,∞) a linear
relation from R2 to itself. We use this:

{(φ1, I1, φ2, I2) : I1 = I2, φ2 − φ1 = RI1} ⊆ R2 ⊕ R2.

This expresses two laws of electrical engineering. Kirchhoff’s current law says that the
current flowing into a wire equals the current flowing out: I1 = I2. Ohm’s law says that
the voltage across a wire with a resistor on it, φ2 − φ1, is equal to the current flowing
through the wire times the resistance R of that resistor.

Earlier work with Fong studied circuits using decorated rather than structured cospans
[3], and it fell afoul of the problems discussed in Section 5. We make no attempt to explain
the results here, but we can quickly explain a corrected version of this decorated cospan
category of circuits. For any set L, define an L-graph structure on a finite set N to
be an L-graph whose set of nodes is N . If we use a small strict monoidal version of
(FinSet,+), there is a lax monoidal functor

FL : (FinSet,+)→ (Set,×)

assigning to each finite set N the collection of all L-graph structures on N . The theory
of decorated cospans [10, Thm. 2.1.3] thus gives a monoidal category FLCospan where:

� an object is a finite set,
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� a morphism is an equivalence class of L-circuits

L(S) G L(T )

where two are equivalent if there is a commutative diagram in GraphL of this form:

L(S) L(T )

G

G′

o

h

i

i′ o′

with h an isomorphism that is determined by its action on nodes in the sense of
Definition 6.3.

The restriction that h be determined by its action on nodes means that isomorphic
L-circuits can give different morphisms in FLCospan. However, there is a functor

J : FLCospan→ CircL

that eliminates this redundancy: it is the identity on objects, and it maps each open circuit
to its isomorphism class. Furthermore, CircL is symmetric monoidal, while FLCospan is
merely monoidal, due to the problem discussed in Section 5.

6.6. Petri nets. Petri nets are widely used by computer scientists as a simple model of
distributed, concurrent computation [18, 30]. From the viewpoint of a category theorist,
a Petri net is a convenient way to present a simple sort of symmetric monoidal category:
namely, a commutative monoidal category—a commutative monoid object in Cat—that
is free on some objects and morphisms [28]. Recently Master and the first author studied
‘open’ Petri nets using structured cospans [5]. By composing and tensoring open Petri
nets, we can build complicated Petri nets out of smaller pieces. As we shall see, the
semantics of open Petri nets is a nice illustration of our main method of describing maps
between structured cospan categories, Theorem 4.3.

To define Petri nets [28] we start with the monad for commutative monoids, N : Set→
Set. Concretely, N[X] is the set of formal finite linear combinations of elements of X with
natural number coefficients. The set X naturally includes in N[X], and for any function
f : X → Y , there is a unique monoid homomorphism N[f ] : N[X]→ N[Y ] extending f .

6.7. Definition. We define a Petri net to be a pair of functions of the following form:

T
t
//

s // N[S].

We call T the set of transitions, S the set of places, s the source function and t
the target function. A morphism from the Petri net s, t : T → N[S] to the Petri net
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s′, t′ : T ′ → N[S ′] is a pair of functions f : T → T ′, g : S → S ′ such that the following
diagrams commute:

T

f

��

s // N[S]

N[g]
��

T ′
s′ // N[S ′]

T

f

��

t // N[S]

N[g]
��

T ′
t′ // N[S ′].

Let Petri be the category of Petri nets and Petri net morphisms, with composition defined
by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).

It is commmon to draw a Petri net as a bipartite graph with the places as circles and
the transitions as squares:

A

B

α

C

β

However, we must bear in mind that the edges in this graph are merely a device for
describing the source and target of each transition: there is not really a set of edges from
a place to a transition or a transition to a place, but merely a number. For example, α
above is a transition with s(α) = A+B and t(α) = 2C.

Any Petri net has an underlying set of places. Indeed there is a functor R : Petri→ Set
that acts as follows on Petri nets and Petri net morphisms:

T

f

��

t
//

s // N[S]

N[g] 7→
��

S

g

��

T ′
t′
//

s′ // N[S ′] S ′.

To build a structured cospan category we need the left adjoint of R, and we need Petri to
have finite colimits.

6.8. Lemma. The functor R has a left adjoint L : Set → Petri defined on sets and func-
tions as follows:

X

g 7→
��

∅

��

//
// N[X]

N[g]
��

Y ∅ //
// N[Y ]

where the unlabeled maps are the unique maps of that type.

Proof. This is [5, Lemma 11].
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6.9. Lemma. The category Petri has small colimits.

Proof. This is [5, Lemma 15].

Thanks to these lemmas, Theorem 3.9 gives us a symmetric monoidal double category

LCsp(Petri), or Open(Petri) for short, in which:

� an object is a set,

� a vertical 1-morphism is a function,

� a horizontal 1-cell from X to Y is an open Petri net, meaning a cospan in Petri
of this form:

L(X) P L(Y ),

� a 2-morphism is a map of open Petri nets, meaning a commutative diagram in
Petri of this form:

L(X) L(Y )P

L(X ′) L(Y ′).P ′

L(f) L(g)h

We can draw an open Petri net as a Petri net with maps from sets X and Y into its set
of places:

A

B
α C D

β

γ

X
1
2
3

Y

4

We explained composition and tensoring of open Petri nets using pictures in Section 1.
Now we construct a structured cospan category Open(CMC) of ‘open commutative

monoidal categories’ and a map

Open(F ) : Open(Petri)→ Open(CMC).

6.10. Definition. A commutative monoidal category is a symmetric strict
monoidal category where all the braidings a ⊗ b → b ⊗ a are identities. A morphism
of commutative monoidal categories is a symmetric strict monoidal functor.

6.11. Definition. Let CMC be the category of commutative monoidal categories and
morphisms between them.

Any commutative monoidal category has an underlying set of objects. Let R′ : CMC→
Set be the functor sending any commutative monoidal category to its underlying set of
objects and any morphism to its underlying function on objects. To build a structured
cospan category of open commutative monoidal categories we use a left adjoint of R′, and
we need CMC to have finite colimits.
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6.12. Lemma. The functor R′ has a left adjoint L′ : Set→ CMC sending any set S to the
commutative monoidal category with N[S] as its commutative monoid of objects and with
only identity morphisms.

Proof. This is [5, Lemma 9].

6.13. Lemma. The category CMC has small colimits.

Proof. This can be shown in various ways; see [5, Theorem 16] for two.

Thanks to these lemmas, Theorem 3.9 gives us a symmetric monoidal double category

L′Csp(CMC), or Open(CMC) for short, in which:

� an object is a set,

� a vertical 1-morphism is a function,

� a horizontal 1-cell from X to Y is an open commutative monoidal category,
meaning a cospan in CMC of this form:

L′(X) C L′(Y ),

� a 2-morphism is a map of open commutative monoidal categories, meaning
a commutative diagram in CMC of this form:

L′(X) L′(Y )C

L′(X ′) L(Y ′).C′

L′(f) L′(g)h

We can turn a Petri net P = (s, t : T → N[S]) into a commutative monoidal category FP
as follows. We take the commutative monoid of objects Ob(FP ) to be the free commu-
tative monoid on S. We construct the commutative monoid of morphisms Mor(FP ) as
follows. First we generate morphisms recursively:

� for every transition τ ∈ T we include a morphism τ : s(τ)→ t(τ);

� for any object a we include a morphism 1a : a→ a;

� for any morphisms f : a → b and g : a′ → b′ we include a morphism denoted f +
g : a+ a′ → b+ b′ to serve as their tensor product;

� for any morphisms f : a → b and g : b → c we include a morphism g ◦ f : a → c to
serve as their composite.
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Then we mod out by an equivalence relation on morphisms that imposes the laws of a
commutative monoidal category, obtaining the commutative monoid Mor(FP ).

Let F : Petri → CMC be the functor that makes the following assignments on Petri
nets and morphisms:

T

f

��

t
//

s // N[S]

N[g] 7→
��

FP

F (f,g)

��

T ′
t′
//

s′ // N[S ′] FP ′.

Here F (f, g) : FP → FP ′ is defined on objects by N[g]. On morphisms, F (f, g) is the
unique map extending f that preserves identities, composition, and the tensor product.

6.14. Lemma. The functor
F : Petri→ CMC

is a left adjoint.

Proof. This is a special case of [27, Theorem 5.1].

We thus obtain a triangle of left adjoint functors, which commutes up to natural
isomorphism:

Set Petri

CMC

α ⇒

L

F
L′

As a result we obtain:

6.15. Theorem. There is a symmetric monoidal double functor

Open(F ) : Open(Petri)→ Open(CMC)

that is the identity on objects and vertical 1-morphisms and makes the following assign-
ments on horizontal 1-cells and 2-morphisms:

LX
i //

Lf
��

P

h
��

LY
ooo

Lg 7→
��

L′X
F (i)αX

//

L′f
��

FP

Fh
��

L′Y
F (o)αY
oo

L′g
��

LX ′ i′ // P ′ LY ′o′oo L′X ′
F (i′)αX′// FP ′ L′Y ′.

F (o′)αY ′oo

Proof. The triangle above is a degenerate case of the square studied in Theorem 4.2:

Set Petri

Set CMC

α ⇒

L

F

L′

1

and applying that theorem we obtain the desired result.
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In the language of computer science, the commutative monoidal category FP provides
an ‘operational semantics’ for the Petri net P : morphisms in this category are processes
allowed by the Petri net. The above theorem says that this semantics is compositional.
That is, if we write P as a composite (or tensor product) of smaller open Petri nets,
FP will be the composite (or tensor product) of the corresponding open commutative
monoidal categories.

6.16. Petri nets with rates. Chemists often describe collections of chemical reactions
using ‘reaction networks’. They have a standard formalism for obtaining a dynamical sys-
tem from any reaction network where each reaction is labeled by a positive real number
called its ‘rate constant’ [23]. Reaction networks equipped with rate constants are equiv-
alent to Petri nets where every transition is labeled by a positive real number. These are
sometimes called ‘stochastic’ Petri nets, and they are used not only in chemistry but also
biology and other fields [21, 25].

Pollard and the first author studied ‘open’ reaction networks using decorated cospans
[6]. Here we show how to translate some of that work into the language of structured
cospans. We need a finiteness condition in many applications, so we include that from
the start.

6.17. Definition. A Petri net with rates is a Petri net s, t : T → N[S] where S and
T are finite sets, together with a function r : T → (0,∞). We call r(τ) the rate constant
of the transition τ ∈ T . A morphism from the Petri net with rates

(0,∞) Troo

t
//

s // N[S]

to the Petri net with rates

(0,∞) T ′r′oo

t′
//

s′ // N[S ′]

is a morphism f : T → T ′, g : S → S ′ of the underlying Petri nets such that the following
diagram also commutes:

(0,∞)

T

T ′

f

r

r′

Let Petrir be the category of Petri nets with rates and morphisms between them, with
composition defined by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).
There is a functor R : Petrir → Set that sends any Petri net with rates to its underlying

set of places

(0,∞)

1
��

Troo

f

��

t
//

s // N[S]

N[g] 7→
��

S

g

��

(0,∞) T ′r′oo

t′
//

s′ // N[S ′] S ′.
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To build a structured cospan category we use the left adjoint of R, and we need Petrir to
have finite colimits.

6.18. Lemma. The functor R has a left adjoint L : Set → Petrir defined on sets and
functions as follows:

X

f 7→
��

(0,∞)

1
��

∅oo

��

//
// N[X]

N[f ]

��

Y (0,∞) ∅oo //
// N[Y ]

where the unlabeled maps are the unique maps of that type.

Proof. This is easily checked from the definitions.

6.19. Lemma. The category Petrir has finite colimits.

Proof. Note that Petrir is equivalent to the comma category f/g where f : FinSet →
FinSet is the identity and g : FinSet → FinSet is (0,∞) × N[−]2. Whenever A and B are
have finite colimits, f : A → C preserves finite colimits and g : B → C is any functor,
then f/g has finite colimits [7, Section 5.2, Theorem 3].

As a consequence of these lemmas, Corollary 3.11 gives a symmetric monoidal category

LCsp(Petrir), or Open(Petrir) for short, in which:

� an object is a finite set,

� a morphism is an isomorphism class of open Petri nets with rates, where an open
Petri net with rates is a cospan in Petrir of this form:

L(X) P L(Y ),

and an isomorphism of such is a commutative diagram in Petrir of this form:

L(X) L(Y )

P

P ′

o

h

i

i′ o′

where h is an isomorphism.

Pollard and the first author [6] used decorated cospans to construct a symmetric
monoidal category RxNet equivalent to Open(Petrir). They avoided the ‘redundancy prob-
lem’ using a trick explained in Section 5. Namely, they used a symmetric lax monoidal
functor F ′ : (FinSet,+) → (Set,×) sending any finite set S to the set of isomorphism
classes of Petri nets with rates having S as their set of places.

Pollard and the first author then constructed a symmetric monoidal functor from RxNet
to a category Dynam of ‘open dynamical systems’, and a further symmetric monoidal
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functor from Dynam assigning to each open dynamical system the relation between its
inputs and outputs that holds in steady state. Thanks to the equivalence between RxNet
and Open(Petrir), these functors can also be construed as functors out of the structured
cospan category Open(Petrir). Thus, structured cospans can be used to study both the
dynamics and the steady states of open systems of chemical reactions.

A. Double Categories

What follows is a brief review of double categories. A more detailed exposition can be
found in the work of Grandis and Paré [19, 20], and for monoidal double categories the
work of Hansen and Shulman [22, 33, 34]. We use ‘double category’ to mean what earlier
authors called a ‘pseudo double category’.

A.1. Definition. A double category is a weak category in Cat. More explicitly, a
double category D consists of:

� a category of objects D0 and a category of arrows D1,

� source and target functors
S, T : D1 → D0,

an identity-assigning functor

U : D0 → D1,

and a composition functor

� : D1 ×D0 D1 → D1

where the pullback is taken over D1
T−→ D0

S←− D1, such that

S(UA) = A = T (UA), S(M �N) = SN, T (M �N) = TM,

� natural isomorphisms called the associator

αN,N ′,N ′′ : (N �N ′)�N ′′ ∼−−→ N � (N ′ �N ′′),

the left unitor
λN : UT (N) �N ∼−−→ N,

and the right unitor
ρN : N � US(N)

∼−−→ N

such that S(α), S(λ), S(ρ), T (α), T (λ) and T (ρ) are all identities, and such that the
standard coherence axioms hold: the pentagon identity for the associator and the
triangle identity for the left and right unitor.
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If α, λ and ρ are identities, we call D a strict double category.

Objects of D0 are called objects and morphisms in D0 are called vertical 1-
morphisms. Objects of D1 are called horizontal 1-cells of D and morphisms in D1

are called 2-morphisms. A morphism α : M → N in D1 can be drawn as a square:

a b

c d

⇓ α

M

gf

N

where f = Sα and g = Tα. If f and g are identities we call α a globular 2-morphism.
These give rise to a bicategory:

A.2. Definition. Let D be a double category. Then the horizontal bicategory of
D, denoted H(D), is the bicategory consisting of objects, horizontal 1-cells and globular
2-morphisms of D.

We have maps between double categories, and also transformations between maps:

A.3. Definition. Let A and B be double categories. A double functor F : A → B
consists of:

� functors F0 : A0 → B0 and F1 : A1 → B1 obeying the following equations:

S ◦ F1 = F0 ◦ S, T ◦ F1 = F0 ◦ T,

� natural isomorphisms called the composition comparison:

φ(N,N ′) : F1(N)� F1(N ′) ∼−−→ F1(N �N ′)

and the unit comparison:

φA : UF0(A)
∼−−→ F1(UA)

whose components are globular 2-morphisms,

such that the following diagrams commmute:

� a diagram expressing compatibility with the associator:

(F1(N)� F1(N ′))� F1(N ′′)

φ(N,N ′)�1
��

α // F1(N)� (F1(N ′)� F1(N ′′))

1�φ(N ′,N ′′)
��

F1(N �N ′)� F1(N ′′)

φ(N�N ′,N ′′)
��

F1(N)� F1(N ′ �N ′′)
φ(N,N ′�N ′′)
��

F1((N �N ′)�N ′′) F1(α)
// F1(N � (N ′ �N ′′))
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� two diagrams expressing compatibility with the left and right unitors:

F1(N)� UF0(A)

F1(N)� F1(UA)

F1(N)

F1(N � UA)

1� φA F1(ρN )

ρF1(N)

φ(N,UA)

UF0(B) � F1(N)

F1(UB)� F1(N)

F1(N)

F1(UB �N).

φB � 1

φ(UB , N)

λF1(N)

F1(λN )

If the 2-morphisms φ(N,N ′) and φA are identities for all N,N ′ ∈ A1 and A ∈ A0, we say
F : A → B is a strict double functor. If on the other hand we drop the requirement that
these 2-morphisms be invertible, we call F a lax double functor.

A.4. Definition. Let F : A→ B and G : A→ B be lax double functors. A transforma-
tion β : F ⇒ G consists of natural transformations β0 : F0 ⇒ G0 and β1 : F1 ⇒ G1 (both
usually written as β) such that

� S(βM) = βSM and T (βM) = βTM for any M ∈ A1,

� β preserves the composition comparison, and

� β preserves the unit comparison.

Grandis and Paré define a 2-category Dbl of double categories, double functors, and
transformations [20]. This has finite products. In any 2-category with finite products we
can define a pseudomonoid [11].

A.5. Definition. A monoidal double category is a pseudomonoid in Dbl. Explicitly,
a monoidal double category is a double category equipped with double functors ⊗ : D ×
D → D and I : 1 → D where 1 is the terminal double category, along with invertible
transformations called the associator:

α : ⊗ ◦ (1D ×⊗)⇒ ⊗ ◦ (⊗× 1D),

left unitor:
` : ⊗ ◦ (1D × I)⇒ 1D,

and right unitor:
r : ⊗ ◦ (I × 1D)⇒ 1D

satisfying the pentagon axiom and triangle axioms.

This definition neatly packages a large quantity of information. In detail, a monoidal
double category D is a double category with:
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� monoidal structures on both categories D0 and D1 (with tensor product denoted ⊗,
associator a, left unitor ` and right unitor r), and

� the structure of a double functor on ⊗: that is, invertible globular 2-morphisms

χ : (M1 ⊗N1)� (M2 ⊗N2) ∼−−→ (M1 �M2)⊗ (N1 �N2)

µ : UA⊗B
∼−→ (UA ⊗ UB)

making these diagrams commute:

((M1 ⊗N1)� (M2 ⊗N2))� (M3 ⊗N3)
χ�1

//

α

��

((M1 �M2)⊗ (N1 �N2))� (M3 ⊗N3)

χ

��

(M1 ⊗N1)� ((M2 ⊗N2)� (M3 ⊗N3))

1�χ
��

((M1 �M2)�M3)⊗ ((N1 �N2)�N3)

α⊗α
��

(M1 ⊗N1)� ((M2 �M3)⊗ (N2 �N3))
χ
// (M1 � (M2 �M3))⊗ (N1 � (N2 �N3))

(M ⊗N)� UC⊗D
1�µ
//

ρ

��

(M ⊗N)� (UC ⊗ UD)

χ

��

M ⊗N oo ρ⊗ρ
(M � UC)⊗ (N � UD)

UA⊗B � (M ⊗N)
µ�1
//

λ

��

(UA ⊗ UB)� (M ⊗N)

χ

��

M ⊗N oo λ⊗λ
(UA �M)⊗ (UB �N)

We also demand the following properties:

� If I is the monoidal unit of D0 then UI the monoidal unit of D1.

� The functors S and T are strict monoidal.

� The associator and left and right unitors for the tensor product in D are trans-
formations between double functors. In other words, the following six diagrams
commute:

((M1 ⊗N1)⊗ P1)� ((M2 ⊗N2)⊗ P2)
a�a
//

χ

��

(M1 ⊗ (N1 ⊗ P1))� (M2 ⊗ (N2 ⊗ P2))

χ

��

((M1 ⊗N1)� (M2 ⊗N2))⊗ (P1 � P2)

χ⊗1

��

(M1 �M2)⊗ ((N1 ⊗ P1)� (N2 ⊗ P2))

1⊗χ
��

((M1 �M2)⊗ (N1 �N2))⊗ (P1 � P2) a // (M1 �M2)⊗ ((N1 �N2)⊗ (P1 � P2))
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U(A⊗B)⊗C
Ua //

µ

��

UA⊗(B⊗C)

µ

��

UA⊗B ⊗ UC
µ⊗1
��

UA ⊗ UB⊗C
1⊗µ
��

(UA ⊗ UB)⊗ UC a // UA ⊗ (UB ⊗ UC)

(UI ⊗M)� (UI ⊗N)
χ
//

`�`
��

(UI � UI)⊗ (M �N)

λ⊗1
��

M �N oo ` UI ⊗ (M �N)

UI⊗A
µ
//

U`
%%

UI ⊗ UA
`
��

UA

(M ⊗ UI)� (N ⊗ UI)
χ
//

r�r
��

(M �N)⊗ (UI � UI)
1⊗ρ
��

M �N oo r (M �N)⊗ UI

UA⊗I
µ
//

Ur %%

UA ⊗ UI
r

��

UA.

A.6. Definition. A braided monoidal double category is a braided pseudomonoid
in Dbl. Explicitly, it is a monoidal double category equipped with an invertible transfor-
mation

β : ⊗ ⇒ ⊗ ◦ τ

called the braiding, where τ : D × D → D × D is the twist double functor sending pairs
in the object and arrow categories to the same pairs in the opposite order. The braiding
is required to satisfy the usual two hexagon identities [24]. If the braiding is self-inverse
we say that D is a symmetric monoidal double category.

A.7. Definition. A monoidal lax double functor F : C → C′ between monoidal
double categories C and C′ is a lax double functor F : C→ C′ such that

� F0 and F1 are monoidal functors,

� S ′F1 = F0S and T ′F1 = F0T as monoidal functors, and
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� the composition and unit comparisons φ(N1, N2) : F1(N1)� F1(N2)→ F1(N1 �N2)
and φA : UF0(A) → F1(UA) are monoidal natural transformations.

The monoidal lax double functor is braided if F0 and F1 are braided monoidal functors
and symmetric if they are symmetric monoidal functors.

We also have transformations between double functors:

A.8. Definition. A double transformation Φ: F ⇒ G between two double functors
F : X → X′ and G : X → X′ consists of two natural transformations Φ0 : F0 ⇒ G0 and
Φ1 : F1 ⇒ G1 such that for all horizontal 1-cells M we have that S(Φ1M) = Φ0S(M) and
T (Φ1M) = Φ0T (M) and for composable horizontal 1-cells M and N , we have

F(x) F(y) F(z)

G(x) G(z)

F(x) F(z) =

F(y)

G(x) G(y) G(z)

⇓ FM,N

⇓ Φ1M�N

F(x)

G(x)

F(z)

G(z)

⇓ Φ1M ⇓ Φ1N

⇓ GM,N

1

Φ0x

1

Φ0z

F(M)

F(M �N)

F(N)

G(M �N)

Φ0x

1

Φ0y

G(N)G(M)

G(M �N)

F(M) F(N)

Φ0z

1

F(x) F(x)

G(x) G(x)

F(x) F(x) = G(x) G(x)

⇓ FU

⇓ Φ1Ux

F(x)

G(x)

F(x)

G(x)

⇓ UΦ0x

⇓ GU

1

Φ0x

1

Φ0x

UF(x)

F(Ux)

G(Ux)

Φ0x

1

UG(x)

G(Ux)

UF(x)

Φ0x

1

We call Φ0 the object component and Φ1 the arrow component of the double trans-
formation Φ.

One can also define monoidal, braided monoidal and symmetric monoidal double trans-
formations, but since we do not use these, we refer the reader to Hansen and Shulman for
the details [22, Definition 2.15].

References

[1] J. C. Baez, K. Courser and C. Vasilakopoulou, Structured versus decorated cospans.
Manuscript in preparation.

[2] J. C. Baez, B. Coya and F. Rebro, Props in circuit theory, Theory Appl. Categ. 33
(2018), 727–783. Available as arXiv:1707.08321.

../../../../../https@arxiv.org/abs/1707.08321


1820 JOHN C. BAEZ AND KENNY COURSER

[3] J. C. Baez and B. Fong, A compositional framework for passive linear networks,
Theory Appl. Categ. 33 (2018), 1158–1222. Available as arXiv:1504.05625.

[4] J. C. Baez, B. Fong and B. Pollard, A compositional framework for Markov pro-
cesses, J. Math. Phys. 57 (2016), 033301. Available as arXiv:1508.06448.

[5] J. C. Baez and J. Master, Open Petri nets, Math. Struct. Comput. Sci. 30 (2020),
314–341. Available as arXiv:1808.05415.

[6] J. C. Baez and B. Pollard, A compositional framework for chemical reaction net-
works, Rev. Math. Phys. 29 (2017), 1750028.

[7] R. M. Burstall and D. E. Rydeheard, Computational Category Theory, Prentice
Hall, Englewood Cliffs, 1988.

[8] D. Cicala, Rewriting Structured Cospans: A Syntax For Open Systems,
Ph.D. thesis, Department of Mathematics, U. C. Riverside, 2019. Available at
arXiv:1906.05443.

[9] K. Courser, A bicategory of decorated cospans, Theory Appl. Categ. 32 (2017),
995–1027. Available as arXiv:1605.08100.

[10] K. Courser, Open Systems: a Double Categorical Perspective, Ph.D. thesis, Depart-
ment of Mathematics, U. C. Riverside, 2020. Available as arxiv:2008.02394.

[11] B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129
(1997), 99–157.

[12] C. Ehresmann, Catégories et Structures, Dunod, Paris, 1965.

[13] B. Fong, Decorated cospans, Theory Appl. Categ. 30 (2015), 1096–1120. Available
as arXiv:1502.00872.

[14] B. Fong, The Algebra of Open and Interconnected Systems, Ph.D. thesis, Computer
Science Department, University of Oxford, 2016. Available as arXiv:1609.05382.

[15] B. Fong, Decorated corelations, Theory Appl. Categ. 33 (2018), 608–643. Available
as arXiv:1703.09888.

[16] B. Fong and M. Sarazola, A recipe for black box functors, Theory Appl. Categ. 35
(2020), 979–1011. Available as arXiv:1812.03601.

[17] B. Fong and D. Spivak, Hypergraph categories. Available as arXiv:1806.08304.

[18] C. Girault and R. Valk, Petri Nets for Systems Engineering: a Guide to Modeling,
Verification, and Applications, Springer, Berlin, 2013.

../../../../../arxiv.org/abs/1504.05625
../../../../../arxiv.org/abs/1508.06448
../../../../../https@arxiv.org/abs/1808.05415
../../../../../https@arxiv.org/abs/1906.05443
../../../../../https@arxiv.org/abs/1605.08100
../../../../../https@arxiv.org/abs/2008.02394
../../../../../arxiv.org/abs/1502.00872
../../../../../https@arxiv.org/abs/1609.05382
../../../../../https@arxiv.org/abs/1703.09888
../../../../../https@arxiv.org/abs/1812.03601
../../../../../https@arxiv.org/abs/1806.08304


STRUCTURED COSPANS 1821
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