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L′-LOCALIZATION IN AN ∞-TOPOS

MARCO VERGURA

Abstract. We prove that, given any reflective subfibration L• on an∞-topos E, there
exists a reflective subfibration L′• on E whose local maps are the L-separated maps, that
is, the maps whose diagonals are L-local.
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1. Introduction

This paper complements the work of [Ver19] by proving the following theorem, which is
one of our main results in the theory of reflective subfibrations on an ∞-topos E.

1.1. Theorem. [Theorem 4.3 & Corollary 4.4] Let L• be a reflective subfibration on an
∞-topos E. Then, there exists a reflective subfibration L′• on E for which the L′-local maps
are exactly the L-separated maps.

In [Ver19], we took from [RSS17] the notion of reflective subfibration on an ∞-topos
E, and studied its properties. A reflective subfibration L• on E is a pullback-compatible
system of reflective subcategories DX of E/X , for every X ∈ E. The collection of all objects
in DX , as X varies in E, forms the class of L-local maps. Reflective subfibrations provide
a suitable framework for the study of localizations in an ∞-topos. Indeed, all the most
common examples of localizations from classical homotopy theory can be recovered in this
setting: stable factorization systems ([Ver19, Thm. 4.8]), left exact reflective subcategories
of an∞-topos ([Ver19, Prop. 4.11]), and localizations at sets of maps ([Ver19, Prop. 5.11]).
For the reader’s convenience, in Section 2, we briefly gather from [Ver19] the general
aspects of reflective subfibrations that we need.
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For a reflective subfibration L• on E, one can consider the L-separated maps, that is,
those maps in E whose diagonal is L-local. For example, for the reflective subfibration
Ln• having the n-truncated maps as local maps, the Ln• -separated maps are the (n + 1)-
truncated maps, and they are themselves the local maps for a reflective subfibration, Ln+1

• .
It turns out that this behavior is completely general: for any L•, there exists an L′• such
that the L′-local maps are the L-separated maps (Theorem 4.3 and Corollary 4.4).

In this paper, we focus on the proof of this existence result, leaving the study of its
consequences to [Ver19, §7]. To this end, one needs to carefully examine some connections
between L-local and L-separated maps. We develop the study of these relationships in
Section 3. Our main result there is the following characterization of L′-localization maps,
that is, those maps out of a fixed object X (or, more generally, out of a map p) and into
an L-separated object, which are universal among maps with this property.

1.2. Theorem. The following are equivalent, for a map η′ : X → X ′ in E:

1. η′ is an L′-localization of X;

2. η′ is an effective epimorphism and

X

X ×X

X ×X′ X

∆X ��

∆η′ //

��

is an L-localization of ∆X.

The existence result for L′•, together with a few auxiliary lemmas needed in its proof,
is the content of Section 4. The results in both Section 3 and Section 4 require some facts
about locally cartesian closed ∞-categories that we collect in the Appendix (Section 5).
Some of the results there are well known, but for others we could not find any reference in
the literature. Examples of the results in the latter group are Proposition 5.2.1, where we
prove the topos-theoretic version of the function extensionality axiom from HoTT, and
Proposition 5.3.4, which provides a criterion for unique extensions of maps that is crucial
for the proof of Theorem 3.10.

Our approach to localization is inspired by the work in homotopy type theory (HoTT)
developed in [CORS18]. The notion of L-separated map, as well as Proposition 3.6 and
Theorem 4.3, are expressed in HoTT in [CORS18, §2.2-2.3]. We take from there the
main ideas for the proofs of Theorem 3.10 and Theorem 4.3. However, proof details and
techniques have been modified to apply to the “term-free” exposition we work with. This
is particularly evident in the proof of Theorem 3.10, and in the results of Section 4. All
the proofs of the results in the Appendix are also specific to the higher-topos theoretic
setting we work with. For a more detailed description of how our work relates to the
study of localization in HoTT, we refer the reader to the Introduction of [Ver19].

Acknowledgements. We would like to thank Dan Christensen, for his support and
guidance, Mike Shulman, for the careful reading of the material present here, and for
many helpful suggestions, and the anonymous referee for their account on the paper.
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Notation and Conventions. By an ∞-topos we mean an ∞-category E with the
following properties.

(a) E is a locally presentable ∞-category ([Lur09, Def. 5.5.0.1]).

(b) Colimits in E are universal ([Lur09, Def. 6.1.1.2]).

(c) The class of all maps in E is a local class of maps (see [Lur09, Thm. 6.1.3.8]).

This characterization of ∞-topoi follows from [Lur09, Thm. 6.1.6.8].
Given an ∞-category C, we often depict a map m : p→ q in a slice category C/Z as a

commuting triangle in C of the form

E M

Z

m //

p �� q��

leaving the interior 2-simplex implicit. We will often carry over this implicitness to other
maps in slice categories that are constructed from m, at least as long as the context is
enough to disambiguate. For example, if the implicit 2-simplex of m above is σ, then
(σ, σ) is the implicit 2-simplex of the map in C/Z2 given by

E M

Z2

m //

(p,p) �� (q,q)��

If p and q are objects in a slice category C/Z , we write p ×Z q to mean the product
object of p and q in C/Z .

2. Reflective Subfibrations

We gather here some background material on reflective subfibrations in an ∞-topos E

from the companion paper [Ver19].

2.1. Definition. [RSS17, §A.2] Let E be an ∞-topos.

1. A reflective subfibration L• on E is the assignment, for each X ∈ E, of an ∞-
category DX such that:

(a) Each DX is a reflective∞-subcategory of E/X , with associated localization func-
tor LX : E/X → E/X . This is the composite of the reflector of E/X into DX and
the inclusion of DX into E/X . If X = 1, we write D for D1 and L for L1.

(b) For every map f : X → Y in E, and any p ∈ E/Y , the map LX(f ∗p)→ f ∗(LY p)
is an equivalence. In particular, the pullback functor f ∗ : E/Y → E/X restricts
to a functor DY → DX which we still denote by f ∗.

2. A modality on E is a reflective subfibration L• on E which is composing, in that,
whenever p : X → Y is in DY and q : Y → Z is in DZ, the composite qp is in DZ.
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2.2. Example. In [Ver19, §4.2], we show that stable factorization systems in an∞-topos
E correspond to modalities on E. In particular, for every n ≥ −2, there is a modality
Ln• on E, for which the L-local maps are the n-truncated maps. We call this modality
the n-truncated modality on E. Given an object X ∈ E, we will also adopt the more
conventional notation ‖X‖n for Ln(X).

2.3. Example. (Not all reflective subfibrations are modalities.) In [Ver19, §5], we show
that every map f : A → B in E gives rise to a reflective subfibration on E, called f-
localization, whose local objects are all X ∈ E for which the map of internal homs
Xf : XB → XA is an equivalence. Similarly, a map p : E → X in E/X is an f -local
map if the map in E/X obtained by taking internal homs of p with (X → 1)∗(f) is an
equivalence. When E =∞Gpd, an f -local map is simply a map which has f -local fibers.
As long as B 6= 1, f -localization is typically not a modality. A simple example is given
in [CORS18, Ex. 4.8].

2.4. Remark. For every X ∈ E and every map f : Y → X, we have that (E/X)/f ' E/Y
(this follows from [Lur09, Prop. 2.1.2.5], but see also [Kap14, Lemma 4.18] for a more
explicit proof). Hence, for each X ∈ E, a reflective subfibration L• induces a reflective

subfibration L
/X
• of E/X by taking D

/X
f to be DY . It follows that results about reflective

subfibrations on an ∞-topos also hold “locally” in the ∞-topos E/X , for X ∈ E.

From now on, we fix a reflective subfibration L• on our favorite ∞-topos E.

2.5. Notation. We adopt the following notation for the rest of this work.

• A morphism p : E → X is called L-local if, seen as an object of E/X , it is in DX .
We call E ∈ E an L-local object if E → 1 is an L-local map.

• For X ∈ E, SX denotes the class of all LX-equivalences, i.e., maps α in E/X such

that LX(α) is an equivalence. Equivalently, SX = ⊥DX , where ⊥DX denotes the
class of maps in E/X which are left orthogonal to maps in DX . When it is clear that
α is a map in E/X , we often drop the explicit reference to the object X, and just
talk about L-equivalences.

• Given p ∈ E/X , we write ηX(p) : p → LX(p) for the reflection (or localization) map
of p into DX . Note that ηX(p) ∈ SX . For X ∈ E, we set η(X) := η1(X).

2.6. Remark. 1 (Why reflective subfibrations?) Let D be the full subcategory of E•→•

on the L-local maps. (Here, E•→• is the arrow category of E.) Since E has pullbacks,
the codomain functor cod: E•→• −→ E is a cartesian fibration (see [RV18, Prop. 5.1.26]).
Since, given an L-local map p : E → Y and any map f : X → Y in E, the pullback
map f ∗(p) is an L-local map, the codomain functor restricts to a cartesian fibration

1We thank the anonymous referee for the suggestion of considering D as a cartesian fibration over E.
This turned out to be the decisive observation for the author to finally be able to figure out the proper
relationship between reflective subfibrations and reflective subcategories of arrow categories.
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cod: D −→ E. In other words, the inclusion functor i : D ↪→ E•→• gives a cartesian
functor between cartesian fibrations (see [RV18, Def. 5.1.18]):

D E•→•

E

� � i //

cod �� cod��
.

Taking fibers over X ∈ E, the diagram above restricts to iX : DX ↪→ E/X , the inclusion
functor of DX into E/X . Since each DX is a reflective subcategory of E/X , [Lur09, Lemma
6.5.2.4] applies to give that D is a reflective subcategory of E, i.e., i : D ↪→ E•→• has a left
adjoint L• : E

•→• −→ D. The pullback-compatibility condition of the localizations on the
various slice categories, given in Definition 2.1.1(b), says that L• is actually a cartesian
functor of cartesian fibrations over E:

E•→• D

E

L• //

cod��cod ��
.

In other words, a reflective subfibration determines a fibered reflective subcategory of
E•→• over E (via the codomain projection), in which both the inclusion and the reflector
are cartesian functors of cartesian fibrations. If we reverse the above reasoning, we can see
that the converse of the previous statement is also true: a fibered reflective subcategory
of E•→• over E, in which both the inclusion and the reflector are cartesian functors of
cartesian fibrations, determines a reflective subfibration. (One key point for this converse
statement is that pullbacks of fibered adjunctions are fibered adjunctions [RV18, Lemma
3.6.7], so that a fibered reflective subcategory of E•→• over E determines a reflective
subcategory (fibered over the point) on each slice of E.)

Given a map f in E, we denote by Σf and by Πf the left and right adjoint to the
pullback functor f ∗, respectively.

2.7. Lemma. [Ver19, Lemma 3.4] Given f : X → Y , we have:

(i) f ∗(SY ) ⊆ SX , that is, if α : p → q is an LY -equivalence, then the induced map
f ∗(p)→ f ∗(q) on pullbacks is an LX-equivalence;

(ii) Σf (SX) ⊆ SY .

One of the characterizing features of ∞-topoi that plays a crucial role in the proof
of our main result (Theorem 4.3) is the existence of classifying maps for local classes of
maps.
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2.8. Definition. [Lur09, Def. 6.1.3.8, Prop. 6.2.3.14] A class S of maps in E is called
local if it closed under small coproducts in E•→•, it is stable under pullbacks and satisfies
the following condition. Given any pullback square in E

E M

X Y

g //

q
��

p
��

f
//

where f is an effective epimorphism, p is in S if and only if q is in S.

2.9. Definition. Let S be a pullback-stable class of maps in an ∞-topos E. Let Cart(S)
be the sub-∞-category of E•→• having the maps in S as objects and pullback squares as
morphisms. A classifying map for S is a terminal object of Cart(S).

Thus, a classifying map p : E → X for S is a map in S such that every other map in
S is a pullback of p in an essentially unique way.

2.10. Proposition. [Lur09, Prop. 6.1.6.7] Let S be a local class of maps in an ∞-topos
E. Then, there are arbitrarily large regular cardinals κ such that the class Sκ of maps in
S that are relatively κ-compact ([Lur09, Def. 6.1.6.4]) is local and has a classifying map.

Classifying maps enjoy an important property, called univalence, which characterizes
equivalences between fibers of classifying maps. The notion of univalent map uses the
construction of objects of equivalences in an∞-topos, which we briefly recall from [GK17].

Let J(E) be the core of E, that is, the (strict) pullback of ∞-categories

J(E) E

J(Ho(E)) Ho(E)

//

�� ��
//

.

Here, Ho(E) is the homotopy category of E, and J(Ho(E)) is the usual core groupoid of
the 1-category Ho(E).

2.11. Proposition. [GK17, Thm. 2.10] For every X, Y ∈ E, there is a subobject EqE(X, Y )
of Y X such that, for every T ∈ E, there is an equivalence of ∞-groupoids

E(T,EqE(X, Y )) ' J(E/T )(X × T, Y × T ),

natural in T ∈ E. Furthermore, this is also true “locally”, that is, for every two objects
p, q in a slice category E/X .

2.12. Notation. For p : E → X and q : M → X, we write Eq/X(E,M) for the domain
of EqE/X

(p, q). We will often just write Eq(p, q) for EqE/X
(p, q).
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2.13. Definition. [GK17, §3.1] The object of equivalences for p : E → X is the object
of E/X×X given by

EqE/X×X
(p× idX , idX × p) : Eq/X×X(p× idX , idX × p)→ X ×X

where p × idX : E × X → X × X and similarly for idX × p. We write the object of
equivalences for p as Eq/X(p) : Eq/X(E)→ X ×X

By the definition of Eq, it follows that the identity map idp ∈ J(E/X)(p, p) induces a
map idtoequiv : X → Eq/X(E) over X ×X.

2.14. Definition. [GK17, §3.2] A univalent map is a map p : E → X in E for which
the associated map idtoequiv : X → Eq/X(E) is an equivalence in E/X×X .

2.15. Proposition. [GK17, Prop. 3.8] Every classifying map p is univalent.

The next result from our companion paper [Ver19] links the theory of univalent clas-
sifying map to reflective subfibrations.

2.16. Proposition. [Ver19, Prop. 3.12 & Thm. 3.15] The class ML of all L-local maps
is a local class of maps of E. In particular, there are arbitrarily large regular cardinals
κ such the class of relatively κ-compact L-local maps admits a univalent classifying map

uLκ : ŨLκ → ULκ .

2.17. Definition. f ∈ E/X is said to be an L-connected map (in E) if LX(f) ' idX .
Equivalently, f is L-connected if

(f
ηX(f)−→ LX(f)) ' (f

f→ idX)

in E/X , where the equivalence is given by idf and LX(f)→ idX . We refer to this fact by
saying that an L-connected map f is its own reflection map.

In particular, an L-connected map f : E → X is an LX-equivalence when seen as a
map f : f → idX in E/X .

2.18. Remark. By taking the reflection of f ∈ E/X into DX and using stability under
pullbacks of reflection maps (see Definition 2.1(1b)), it follows that L-connected maps are
stable under pullbacks along arbitrary maps.

We now give the core notion of this paper.

2.19. Definition. A map p : E → X in E is called L-separated or L′-local if the object
∆p ∈ E/E×XE is in DE×XE, i.e., if ∆p is an L-local map.

2.20. Example. For the reflective subfibration Ln• having the n-truncated maps as local
maps (see Example 2.2), the Ln• -separated maps are the (n+ 1)-truncated maps.
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2.21. Proposition. [Ver19, Prop. 6.5 & Prop. 6.7] Let L• be a reflective subfibration
on an ∞-topos E. Then the following hold.

1. Let f : Y → X be a map in E, and let p : E → X and q : M → Y be L-separated
maps. Then f ∗(p) ∈ E/Y and

∏
f q ∈ E/X are L-separated. Furthermore, the

internal hom pf is L-separated.

2. The class M′ of all L-separated maps is a local class of maps.

3. Interactions between L-local and L-separated maps

We study here some relationships between L-local and L-separated maps and prove a
characterization result for L′-localization maps which will be used in the next section as
a fundamental step for the proof of Theorem 4.3.

3.1. Lemma. [CORS18, Lemma 2.21] Suppose given a commutative triangle

E

X
p ""

E M
α //M

X
q||

in which ∆q ∈ DM×XM and α ∈ DM , that is, q is L-separated and α is L-local. Then ∆p
is in DE×XE, i.e., p is L-separated.

Proof. The map (idE ×X α : E ×X E → E ×X M) = (E ×X M →M)∗(α) is in DE×XM ,
since α : E →M is in DM . Similarly, the map ((idE, α) : E → E×XM) = (α×X idM)∗(∆q)
is in DE×XM . But (idE ×X α) ◦∆p = (idE, α), so ∆p is L-local, by [Ver19, Prop. 3.7]: if
both f and f ◦ g are L−local maps, then so is g.

3.2. Definition. A map α : p → p′ in E/X is called an L′-localization map of p if p′ is
L-separated and E/X(α, q) : E/X(p′, q) → E/X(p, q) is an equivalence of ∞-groupoids for
every L-separated q ∈ E/X . In other words, for every map β : p → q, there is a unique
ψ : p′ → q with ψ ◦ α = β.

3.3. Remark. Given an L-separated r ∈ E/X and any t ∈ E/X , rt ∈ E/X is again L-
separated. It follows that, for a map α : p → p′ in E/X with p′ L-separated, the above
definition can be rephrased internally, by asking that qα is an equivalence in E/X for every
L-separated map q : Y → X.

3.4. Lemma. [CORS18, Prop. 2.30] Let η′ : p → p′ in E/Y be an L′-localization map of
p ∈ E/Y , with η′ : X → X ′ as a map in E. Then η′ is an L-connected map (Definition
2.17).
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Proof. Let ηX′(η
′) : η′ → LX′(η

′) be the reflection map of η′ ∈ E/X′ into DX′ . Set
r := p′ ◦ LX′(η′), and consider ηX′(η

′) : p → r and LX′(η
′) : r → p′ as maps in E/Y . By

Lemma 3.1 applied to LX′(η
′), r is L-separated. Hence, there is a unique q : p′ → r

with qη′ = ηX′(η
′) as maps p → r in E/Y . Since LX′(η

′)qη′ = LX′(η
′)ηX′(η

′) = η′, the
universal property of η′ gives LX′(η

′)q = idp′ . Thus, we can consider qLX′(η
′) as a map

LX′(η
′) → LX′(η

′) in E/X′ and qLX′(η
′)ηX′(η

′) = qη′ = ηX′(η
′), so that qLX′(η

′) = idr.
Hence, η′ is L-connected.

3.5. Lemma. Let κ be a regular cardinal such that the class of relatively κ-compact L-local

maps has a classifying map uLκ : ŨLκ → ULκ . Then ULκ is L-separated.

Proof. We drop κ from our notation. Since uL is univalent, we have an equivalence
∆(UL) ' Eq/UL(uL) over UL × UL (see [Ver19, Def. 2.10]). By definition, Eq/UL(uL) is

the object of equivalences in E/UL×UL between idUL × uL and uL × idUL , both of which
are L-local since uL is. By [Ver19, Lemma 2.8], such an object of equivalences is then the
pullback of a cospan of objects in DUL×UL and it is therefore in DUL×UL .

3.6. Proposition. Let X ∈ E and let η′ : X → X ′ be an L′-localization of X. Then a
map p : E → X is L-local if and only if there is a pullback square in E

X X ′
η′

//

E

X

p
��

E LX′E
ηX′ (η

′p) // LX′E

X ′
LX′ (η

′p)�� .

Proof. For the non-trivial implication, assume p is L-local. Let κ be a regular cardinal
such that p is relatively κ-compact and the class of relatively κ-compact L-local maps has

a classifying map uL : ŨLκ → ULκ . Let P : X → ULκ be such that we have a pullback square

X ULκP
//

E

X

p
��

E ŨLκ// ŨLκ

ULκ

uL��
. (†)

Since ULκ is L-separated, there is a unique map P ′ : X ′ → ULκ with P = P ′η′. Let
p′ : E ′ → X ′ be the pullback map in

X ′ ULκP ′
//

E ′

X ′
p′ ��

E ′ ŨLκ// ŨLκ

ULκ
uL�� .

By definition of P ′, η′ : X → X ′ induces a map n : E → E ′ such that the composite square

X X ′
η′

//

E

X

p
��

E E ′
n // E ′

X ′
p′ ��
X ′ ULκP ′

//

E ′

X ′

E ′ ŨLκ// ŨLκ

ULκ
uL�� (‡)
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is the square (†). It follows that the left square in (‡) is also a pullback. Thanks to Lemma
3.4, η′ is L-connected. Thus, so is n, by Remark 2.18. In particular, n is an L-equivalence
(i.e., n : n→ idE′ is in SE′). By composing domain and codomain of n : n→ idE with p′,
Lemma 2.7 (ii) gives that n : η′p → p′ is an L-equivalence. Since p′ is L-local, it follows
that n is the L-localization map of η′p, as required.

3.7. Remark. As explained in Lemma 2.4, Proposition 3.6 is also true “locally”, i.e.,
when we take our ground ∞-topos to be E/X instead of E. For the result above, this
means specifically that, if

E

X
p %%

E E ′
η′X(p)

// E ′

X
p′yy

is an L′-localization of p in E/X , a map

Y

X
q %%

Y E
m // E

X
pyy

is L/X-local (as an object in (E/X)/p, so m is in DE) if and only if

E E ′
η′X(p)

//

Y

E

m
��

Y LE′Y
ηE′ (η

′
X(p)◦m)

// LE′Y

E ′
LE′ (η

′
X(p)m)��

is a pullback square in E/X . (Note that, in the above, LE′ should be L
/X
p′ , where L

/X
p′ is

the reflector of (E/X)/p′ onto D
/X
p′ and L

/X
• is the reflective subfibration on E/X induced

by L•, as in Remark 2.4. But, by its own definition, L
/X
p′ = LE′ .)

The following corollary is probably well-known, though the only explicit reference we
could find in the literature is [Rez10, Lemma 8.6], where the statement is proved in the
context of model topoi. Note that our proof is completely internal and does not use the
description of∞-topoi as left exact localizations of presheaf categories. The reader might
remember from Example 2.2 that, given X ∈ E and n ≥ −2, we denote as ‖X‖n the
n-truncation object of X. This is the value at X of the n-truncation modality Ln• (i.e.,
Ln(X) = ‖X‖n).

3.8. Corollary. For n ≥ −2, a map p : E → X is n-truncated if and only if ‖p‖n+1 is
n-truncated and there is a pullback square

X ‖X‖n+1|·|n+1

//

E

X

p
��

E ‖E‖n+1
|·|n+1 // ‖E‖n+1

‖X‖n+1

‖p‖n+1
��

.
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Proof. By [Ver19, Ex. 4.6 & Ex. 6.4], we can apply Proposition 3.6 where L• is the
n-truncation modality and get a pullback square

X ‖X‖n+1|·|n+1

//

E

X

p
��

E L‖X‖n+1(E)m // L‖X‖n+1(E)

‖X‖n+1

L‖X‖n+1
(|·|n+1p)

�� .

Since ‖X‖n+1 is (n + 1)-truncated and L‖X‖n+1(|·|n+1p) is n-truncated, L‖X‖n+1(E) is
(n + 1)-truncated. (This is an instance of Lemma 3.1.) Since m is a pullback of the
(n+ 1)-connected map |·|n+1 : X → ‖X‖n+1, it is (n+ 1)-connected. Finally, any (n+ 1)-
connected map k : A→ B where B is (n+ 1)-truncated is an (n+ 1)-truncation of A.

3.9. Proposition. [CORS18, Prop. 2.26] Let

E

X
p $$

E E ′
η′X(p)

// E ′

X
p′zz

be an L′-localization of p ∈ E/X . Let

E

E ×X E
∆p !!

E R
ηE×XE(∆p)

// R

E ×X E
r}}

be the L-localization of ∆p ∈ E/E×XE and consider r′ defined by the pullback square

E ×X E E ′ ×X E ′
η′X(p)×Xη′X(p)

//

E ×E′ E

E ×X E
r′ ��

E ×E′ E E ′// E ′

E ′ ×X E ′
∆p′�� . (†)

Then there is a natural equivalence ϕ : R
'→ E ×E′ E over E ×X E as in

E

R

ηE×XE(∆p)

}}

E

E ×E′ E

∆(η′X(p))

!!
R

E ×X E
r

��

E ×E′ E

E ×X E
r′��

R E ×E′ E
ϕ // .
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Proof. For sake of readability, we write η′ and η for η′X(p) and ηE×XE(∆p), respectively.
The natural map ϕ is given by the universal property of η, since r′ is L-local. (By
definition, r′ is the pullback of the L-local map ∆p′.) Now, since η′ ×X η′ is the L′-
localization map of the product object p×X p of E/X , Proposition 3.6 applied in E/X gives
that there is a pullback square

R T

E ×X E E ′ ×X E ′

n //

r
��

q
��

η′×Xη′ //

where n : (η′ ×X η′)r → q is the L-localization map of (η′ ×X η′)r. Set m := nη : E → T

and l := πq, where π : E ′×XE ′ → X is given by the composite map E ′×XE ′ → E ′
p′→ X.

Note that π is L-separated, because it is the product in E/X of the L-separated map p′

with itself. Hence, since q is L-local, l is L-separated by Lemma 3.1. Since m = nη is
naturally a map m : p → l in E/X , there is a unique s : E ′ → T over X with commuting
triangles

E

E ′

η′

{{

E

T

m

##
E ′

X
p′ ##

T

X
l{{

E ′ Ts // .

Now, qsη′ = qm = qnη = (η′ ×X η′)∆p = ∆p′η′ so that qs = ∆p′ and we can write
s : ∆p′ → q as a map over E ′ ×X E ′. Hence, s induces the comparison map ψ of pullback
squares in

E ×X E E ′ ×X E ′//

E ×E′ E

E ×X E

r′

��

E ×E′ E E ′// E ′

E ′ ×X E ′

∆p′

��

E ×X E E ′ ×X E ′
η′×Xη′

//

R

E ×X E

r

��

R T
n // T

E ′ ×X E ′

q

��

E ′

T

s
##

E ×E′ E

R

ψ
##

E ×X E

E ×X E
id ##

E ′ ×X E ′

E ′ ×X E ′
id ##

.

Since the front face is a pullback, it follows that ψ ◦∆η′ = η, from which we get ψϕη = η,
so that ψ ◦ ϕ = id. We now show that s is an equivalence, so that ψ (and therefore also
ϕ) is an equivalence. Since s : ∆p′ → q is a map between L-local maps over E ′ ×X E ′,
it is enough to show that s ∈ SE′×XE′ . Now, η′ : p → p′ is L-connected so it is an LE′-
equivalence (more precisely, η′ : η′ → idE′ is in SE′). By Lemma 2.7 (ii), composing
η′ : η′ → idE′ with ∆p′ gives that η′ : (∆p′)η′ → ∆p′ is in SE′×XE′ . Similarly, composing
domain and codomain of η with η′×X η′ turns η into a map in SE′×XE′ and then m = nη
is in SE′×XE′ , since n is an L-equivalence. Since sη′ = m, s ∈ SE′×XE′ , as needed.
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Our next result characterizes L′-localization maps in terms of their diagonal maps.
We will use here some results from the Appendix (Section 5.3).

3.10. Theorem. [CORS18, Thm. 2.34] The following are equivalent for a map in E/Z

X

Z
p ##

X X ′
η′ // X ′

Z
p′{{

1. η′ is an L′-localization map of p.

2. η′ is an effective epimorphism and

X

X ×Z X
∆p ##

X X ×X′ X
∆η′ // X ×X′ X

X ×Z X
{{

is an L-localization map of ∆p.

Proof. We prove the theorem when Z = 1; the general statement follows from this one
by Remark 2.4. We show first that (1) implies (2). If η′ : X → X ′ is an L′-localization
of X, then, by Proposition 3.9, we only need to show that η′ is an effective epimorphism.
Let (π, i) be the (effective epi,mono)-factorization of η′, with i : W → X ′. Since i is a
mono, and X ′ is L-separated, so is W . (This is because i being a mono is equivalent to
the fact that ∆W = i∗(∆X), where i∗(∆X) is the pullback map of ∆X along i . Hence,
if ∆X is an equivalence, so is ∆W .) Therefore there is a unique s : X ′ → W with sη′ = π.
From isη′ = iπ = η′, we get that is = idX′ . Thus, i is both a mono and an effective epi,
so it is an equivalence.

Conversely, assume η′ is an effective epimorphism and ∆η′ is the L-localization of ∆X.
In the pullback square

X ×X X ′ ×X ′
η′×η′

//

X ×X′ X

X ×X
t ��

X ×X′ X X ′// X ′

X ′ ×X ′
∆X′�� (∗)

η′ × η′ is also an effective epi and t is L-local by hypothesis. Thus, ∆X ′ is L-local since
L-local maps are a local class of maps in E (Proposition 2.16). This shows that X ′ is
L-separated. We now verify that η′ has the universal property of an L′-localization map.
Let f : X → Y be a map into an L-separated object Y . We show that f extends uniquely
along η′, by applying Proposition 5.3.4 to f and η′. We want to show that

E :=
∑

X′×Y→X′

( ∏
X×X′×Y→X′×Y

(prX , X
′ × f)(prX ,η

′×Y )

)
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is contractible in E/X′ . Applying Lemma 5.3.1 and the Beck-Chevalley condition (Lemma
5.1.3) to the pullback squares

X ×X × Y X × Y X

X ×X ′ × Y X ′ × Y X ′

prX×Y // prX //

X×η′×Y
��

//

η′×Y
��

//

η′

��

we can instead show that

E ′ :=
∑

X×Y→X

( ∏
X×X×Y→X×Y

(X × η′ × Y )∗
(

(prX , X
′ × f)(prX ,η

′×Y )
))

is contractible in E/X . We will show that this object of E/X is equivalent to the object
idX , which is contractible in E/X . Lemma 5.1.1 gives that

(X × η′ × Y )∗
(

(prX , X
′ × f)(prX ,η

′×Y )
)
'

' ((X × η′ × Y )∗(prX , X
′ × f))

(X×η′×Y )∗((prX ,η
′×Y ))

Notice that

(prX , X
′ × f) = (f × prY )∗(∆Y ), (prX , η

′ × Y ) = (η′ × prX′)
∗(∆X ′)

and (f × prY )(X × η′ × Y ) = (f × Y )(pr1, pr3), where pr1 : X × X × Y → X and
pr3 : X ×X × Y → Y are appropriate projections. One can then see that

(X × η′ × Y )∗ ((prX , X
′ × f)) = (idX×X , f pr1) : X ×X → X ×X × Y,

(X × η′ × Y )∗ ((prX , η
′ × Y )) = t× Y : (X ×X′ X)× Y → X ×X × Y

where t is defined in the pullback square (∗) above. Therefore,

(X × η′ × Y )∗
(

(prX , X
′ × f)(prX ,η

′×Y )
)
' (idX×X , f pr1)t×Y .

Now, since t is the localization of ∆X in E/X×X , taking pullbacks along the projection
X ×X × Y → X ×X gives that t× Y is the localization of ∆X × Y in E/X×X×Y . Since
(idX×X , f pr1) is L-local (as the pullback of the L-local map ∆Y ), we further have

(idX×X , f pr1)t×Y ' (idX×X , f pr1)∆X×Y '

'
∏

∆X×Y

(∆X × Y )∗(idX×X , f pr1) '
∏

∆X×Y

(idX , f),

where (idX , f) : X → X × Y . We can now finally conclude because

E ′ '
∑

X×Y→X

 ∏
prX×Y : X×X×Y→X×Y

( ∏
∆X×Y

(idX , f)

) '
'

∑
X×Y→X

 ∏
prX×Y ◦(∆X×Y )

(idX , f)

 =
∑

X×Y→X

(idX , f) = idX .
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4. Existence of L′-localization

We prove here our main result that the class of L-separated maps is the class of local
maps for a reflective subfibration on E, and we start by proving a few preliminary results.

Recall that, if p, q are objects in a slice category E/Z , we write p ×Z q to mean the
product object of p and q in E/Z .

The first result we need is an internal Yoneda lemma involving diagonal maps.

4.1. Lemma. Let t : E → X be a map in E and form the pullback square

X ×X Xpr2
//

X × E

X ×X
X×t ��

X × E E// E

X

t�� .

Then there is a map in E/X2

E

X ×X
(∆X)t ##

E X × E(t,id) // X × E

X ×X
X×t{{

,

inducing an equivalence

β : t
'−→
∏
pr1

(X × t)∆X

in E/X , where pr1 : X ×X → X is the projection onto the first component.

Proof. For any k : M → X, the product object (k ×X) ×X2
(∆X) in E/X2 is given by

(∆X)k. In fact, (∆X)k is also the product object (X × k) ×X2
(∆X) in E/X2 . Taking

k = t, we get that (t, id) : (∆X)t→ X × t gives a map

β : t −→
∏
pr1

(X × t)∆X

by adjointness. Using the fact that ∆X is a section of pr2, and considering the adjoint
pairs Σpr2 a pr∗2, pr∗1 a

∏
pr1

, we get a chain of natural equivalences

E/X(k, t) ' E/X(pr2(∆X)k, t) ' E/X2 ((∆X)k,X × t) '

' E/X2

(
k ×X, (X × t)∆X

)
' E/X

k,∏
pr1

(X × t)∆X


where the composite map is given by composition with β.
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4.2. Lemma. Let X ∈ E and let r : R→ X2 be an object in E/X2. Let also X̃ × r be the
composite map (τ ×X) ◦ (X × r), where τ : X2 ' X2 is the canonical involution. Then
the following hold.

(i) There is a natural equivalence in E/X2

β : r
'−→
∏
pr23

(X̃ × r)(∆X×X) .

(ii) There is a map ρ : ∆X →
∏

pr23
(X̃ × r)(r×X) such that, given any map η : ∆X → r

in E/X2, there is a commutative square

r
∏
pr23

(X̃ × r)(∆X×X)
β

//

∆X

r

η

��

∆X
∏
pr23

(X̃ × r)(r×X)ρ //
∏
pr23

(X̃ × r)(r×X)

∏
pr23

(X̃ × r)(∆X×X)

∏
pr23

(X̃×r)(η×X)

��
. (1)

Proof. The first claim is a special case of Lemma 4.1 applied to r = (r1, r2) : R → X2,
seen as a map r : r2 → pr2 in E/X2 . Indeed, the following pullback square in E

X2 Xpr2
//

X3

X2

pr23 ��

X3 X2pr13 // X2

X

pr2��

witnesses that pr3 : X3 → X is the product object of pr2 : X2 → X with itself in E/X
and the displayed maps pr13 and pr23 give the projection maps out of this product. The
map ∆X × X : X2 → X3, seen as a map pr3 → pr3, is the diagonal of the object

pr3 ∈ E/X . Since X̃ × r = pr∗13(r), Lemma 4.1 gives the desired natural equivalence

β : r '
∏

pr23
(X̃ × r)(∆X×X).

For the second part, we describe the map ρ and how it makes the square (1) commute
by looking at its adjunct. Under the adjunction pr∗23 a

∏
pr23

, giving a square as (1) is the
same as giving a square

X × r (X̃ × r)(∆X×X)

β′
//

X ×∆X

X × r

X×η
��

X ×∆X (X̃ × r)(r×X)ρ′ // (X̃ × r)(r×X)

(X̃ × r)(∆X×X)

(X̃×r)(η×X)

��
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since X × ∆X = pr∗23(∆X) and similarly for X × r. Taking further adjoints along
(−)×X2

(∆X ×X) a (−)∆X×X , we need to exhibit a square

(X ×∆X)×X3
(r ×X) X̃ × r

ρ]
//

(X ×∆X)×X3
(∆X ×X)

(X ×∆X)×X3
(r ×X)

(X×∆X)×X3
(η×X)

��

(X ×∆X)×X3
(∆X ×X) (X × r)×X3

(∆X ×X)
(X×η)×X3

(∆X×X) // (X × r)×X3
(∆X ×X)

X̃ × r

β]
��

.

The products (X×∆X)×X3
(∆X×X), (X×r)×X3

(∆X×X) and (X×∆X)×X3
(r×X)

in E/X3 , together with their projections onto the factors, are represented, in order, by the
following pullback squares in E

X X2

X2 X3

R X2

X ×R X3

R R×X

X2 X3

∆X //

∆X

��
∆X×X
��

X×∆X
//

(id,id,id)

&&

r //

(r1,id)

��
∆X×X
��

X×r
//

(r1,r1,r2)

&&

(id,r2) //

r

��
r×X
��

X×∆X
//

(r1,r2,r2)

&&
.

Using Lemma 4.1 as in the first part, we know the map β] is given by

R

X2

X ×R

X3

β]=(r1,id) //

r
��

X̃×r
��

∆X×X
//

(r1,r1,r2)

''
.

We take ρ] to be given by

R

X2

X ×R

X3

ρ]=(r2,id) //

r
��

X̃×r
��

X×∆X
//

(r1,r2,r2)

''
.

Then the composite maps β]
(

(X × η)×X3
(∆X ×X)

)
and ρ]

(
(X ×∆X)×X3

(η ×X)
)

are given by the following composite maps in E/X3 , respectively:

X R X ×R

X3

X R X ×R

X3

η // (r1,id) //

(id,id,id) !!
(r1,r1,r2)

�� X̃×rzz

η // (r2,id) //

(id,id,id) !!
(r1,r2,r2)

�� X̃×rzz

.

By using properties of the product X ×R and since η is a section of both r1 and r2, one
can see that these composite maps are equal since they are both equal to the morphism

(id, η) : (id, id, id)→ X̃ × r in E/X3 . (The needed homotopies are obtained by using either
degenerate 2-simplices or the 2-simplices defining η : ∆X → r.)
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4.3. Theorem. [CORS18, Thm. 2.25] For any Y ∈ E, each f ∈ E/Y has an L′-
localization η′Y (f) : f → f ′.

Proof. We prove the result for Y = 1. Fix X ∈ E and let η : ∆X → r be the L-reflection
map of ∆X ∈ E/X2 . Let κ be a regular cardinal such that r is relatively κ-compact and

the relatively κ-compact L-local maps have a classifying map uκL : ŨκL → UκL. Omitting κ
from our notation, we then have pullback squares

X ×X ULr
//

R

X ×X
r
��

R ŨLr̃ // ŨL

UL

uL
�� and

UL U//
ι
//

ŨL

UL

uL
��

ŨL Ũ// Ũ

U
u
��
.

We denote the composite pullback square as

X ×X U
prq
//

R

X ×X
r
��

R Ũr̃ // Ũ

U
u
�� . (2)

Let (η′, i) be the (effective epi, mono)-factorization of prq] : X → UX , the adjunct map
to prq. Set X ′ := cod(η′), so that we can picture the situation as:

X

UX

X ′

prq ��

η′ // //
��

i��

together with the implicit 2-simplex witnessing the commutativity of the diagram. Note
that, if (η′L, iL) is the (effective epi,mono)-factorization of r], then η′ = η′L and i = ιX ◦ iL
since ιX is a mono.

Our goal is to apply Theorem 3.10 to η′. The map η′ is an effective epi by definition.
To show that X ′ is L-separated, note first that UL is L-separated by Lemma 3.5, hence
so is UXL , by Proposition 2.21(1). Since i is a mono, this implies that X ′ is L-separated.
It remains to show that ∆η′ is the L-localization map of ∆X. We can see ∆η′ as a map
∆η′ : ∆X → t in E/X2 , where t is the pullback map (η′ × η′)∗(∆X ′) and it is therefore
L-local. Hence, there is a unique map ϕ : r → t with ϕη = ∆η′ as maps in E/X2 . We will
show that ϕ is an equivalence.

The strategy we adopt is to, first, construct a monomorphism ϕ′ : t � r and, then,
show that ϕ′ϕ : r → r is an equivalence by showing that we have ϕ′ϕη = η. This will
imply that ϕ itself is an equivalence. Note that, by definition of ϕ, showing that ϕ′ϕη = η
is the same as showing that ϕ′∆η′ = η.
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Step 1. Construction of ϕ′ and description of ϕ′∆η′ We construct ϕ′ as a composite
of some equivalences and a monomorphism. Consider the diagram:

X UX X × UX U EqU(Ũ)

M
X2 UX × UX X × UX × UX U × U

X3 W

X2

prq] // pr2oo

∆X

��
∆UX

��
X×∆UX

��

prq]×prq]
// pr23oo

X×∆X

��

pr2

__

pr23

__

X×prq]

??

X×prq]×prq]

??
ev //

ev //

∆U
��

'
//

EqU (u)

��
(id×u)(u×id)pp

88
j

��

(prqpr12,prqpr13)

88

&&

��

ψ

**

(X̃×r)(r×X)
pp

σ

;;

(1) (2) (3)

(4)

(5)

(6)

(7)

. (D)

The maps labelled as ev are appropriate counits of product – internal-hom adjunctions.
We proceed to explain this diagram, show how it defines ϕ′, and give a description of ϕ′∆η′.

(i) Recall that ∆η′ is a map ∆X → t in E/X2 , and one can show that t is the pullback
map of the cospan in (1) of (D). Because of this, the square (1) determines ∆η′.

(ii) Thanks to Function Extensionality (Proposition 5.2.1), ∆UX ' Πpr23ev∗(∆U). Hence,

t ' (prq] × prq])∗
(
Πpr23ev∗(∆U)

)
.

(iii) Since the bottom square (5) in (D) is a pullback, we can use the Beck-Chevalley
condition (Lemma 5.1.3) to get an equivalence t ' Πpr23(prq pr12, prq pr13)∗(∆U). Since

the pullback of X×∆UX along X×prq]×prq] is X× t, the square (6) in (D) determines
the map X × ∆η′ : X × ∆X → X × t in E/X3 . It follows that the map X × ∆X →
(prq pr12, prq pr13)∗(∆U) determined by the square given as the composite of (3) and (6)
is the adjunct of the composite map

∆X
∆η′−−→ t '

∏
pr23

(prq pr12, prq pr13)∗(∆U) .

(iv) We now consider the map j in E/U2 displayed in the top-right corner of (D). Here,
M is simply a name for the domain of the map (id × u)(u×id). The map j is defined as
the composite of the equivalence ∆U ' EqU(u), given by univalence ([Ver19, Def. 2.10]),
and the monomorphism EqU(u) � (id × u)(u×id). Thus, j is a mono as well. Using the
fact that (7) in (D) is a pullback square, we obtain a monomorphism

∏
pr23

(prq pr12, prq pr13)∗(∆U)

∏
pr23

(prq pr12,prq pr13)∗(j) ∏
pr23

(X̃ × r)(r×X) .
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Here, X̃ × r is the pullback map pr∗13(r) = (τ × X)(X × r), where τ : X2 ' X2 is the

swapping equivalence, and W is simply a name for the domain of the map (X̃ × r)(r×X).
Note that the map displayed above is indeed a monomorphism because, being right ad-
joints, pullback and dependent-product functors preserve monomorphisms. Therefore, we
get a composite monomorphism

t
∏
pr23

(X̃ × r)(r×X).

The map ψ in E/X3 given in (D) is determined, as a map X × ∆X → (X̃ × r)(r×X),
by the composite of the squares (3) and (6) with the 2-simplex representing the map
j : ∆(U)� (id× u)(u×id). It follows that ψ is the adjunct to the composite

∆X
∆η′−−→ t

∏
pr23

(X̃ × r)(r×X) .

This means that this latter map is the composite

∆X
γ−→
∏
pr23

X ×∆X

∏
pr23

ψ

−−−→
∏
pr23

(X̃ × r)(r×X),

where γ is the unit of the adjunction pr∗23 a
∏

pr23
at ∆X.

(v) Since X̃ × r = pr∗13(r), X̃ × r is L-local. Hence, because η×X : ∆X ×X → r×X is
an L-localization map (it is the pullback along pr12 of η), we have an equivalence

(X̃ × r)(η×X) : (X̃ × r)(r×X) '−→ (X̃ × r)(∆X×X) .

Whence, we have a composite monomorphism

t
∏
pr23

(X̃ × r)(r×X) '
∏
pr23

(X̃ × r)(∆X×X) .

(vi) Finally, we have an equivalence β : r
'−→
∏

pr23
(X̃ × r)(∆X×X) as in Lemma 4.2. Com-

posing the monomorphism obtained in (v) with the inverse of β we obtain the needed
monomorphism ϕ′ : t � r. Using what we found in (iv) above, the composite ϕ′∆η′ is
then given as the composite

∆X
γ−→
∏
pr23

X ×∆X

∏
pr23

ψ

−−−→
∏
pr23

(X̃ × r)(r×X) '−→ r,

where the displayed equivalence is β−1
∏
pr23

(X̃ × r)(η×X).
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Step 2. Proof that ϕ′∆η′ = η. By the work above, it suffices to show that the maps

∆X
η−→ r

β−−−→
'

∏
pr23

(X̃ × r)(∆X×X)

and

∆X
γ−→
∏
pr23

X ×∆X

∏
pr23

ψ

−−−→
∏
pr23

(X̃ × r)(r×X)

∏
pr23

(X̃×r)(η×X)

−−−−−−−−−→
'

∏
pr23

(X̃ × r)(∆X×X)

are equal in E/X2 . By Lemma 4.2 (ii), there is a map ρ : ∆X →
∏
pr23

(X̃ × r)(r×X) making

the following diagram commute in E/X2 :

r
∏
pr23

(X̃ × r)(∆X×X)
β

//

∆X

r

η

��

∆X
∏
pr23

(X̃ × r)(r×X)ρ //
∏
pr23

(X̃ × r)(r×X)

∏
pr23

(X̃ × r)(∆X×X)

∏
pr23

(X̃×r)(η×X)

��
.

Thus, we only need to show that ρ =
(∏

pr23
ψ
)
γ. Equivalently, we can show that the

adjunct maps ρ′, ψ : (X × ∆X) → (X̃ × r)(r×X) are equal in E/X3 . Since the square (7)
in the diagram (D) is a pullback, we only need to show that ρ′ and ψ are equal after
composing with g := (prq pr12, prq pr13) and

σ : g(X̃ × r)(r×X) → (id× u)(u×id),

that is, as maps g(X×∆X)→ (id×u)(u×id). Finally, we can further show that σρ′, σψ are
equal in E/U2 by showing their adjuncts along the adjunction (−)×U2

(u× id) a (−)(u×id)

are equal.

In order to describe the adjunct of σρ′, we use Lemma 5.1.2 with f = X × ∆X,
g := (prq pr12, prq pr13), p = id × u and q = u × id. Consequently, g∗q = r × X,

g∗p = X̃ × r and the adjunct of σρ′ is given as the composite map

g((X ×∆X)×X3

(r ×X))
ρ]−→ g(X̃ × r) = gg∗(id× u)

ε(id×u)−−−−→ id× u.

Recall the pullback square (2) defining prq. Since (X ×∆X)×X3
(r×X) = (X ×∆X)r,

using the proof of Lemma 4.2 and the fact that g∗(id × u) = X̃ × r, we have that the

maps ρ] : (X ×∆X)r → X̃ × r and ε(id×u) : g(X̃ × r) → id × u are described by the two
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squares below

R

X2

X ×R

X3

X ×R

X3

U × Ũ

U2

ρ]=(r2,id) //

r
��

X̃×r
��

X×∆X
//

(r1,r2,r2)

''

ε(id×u)=(prq(r1 pr2,pr1),r̃ pr2)
//

X̃×r
��

id×u
��

g=(prq pr12,prq pr13)
//

.

Hence, the composite ε(id×u)ρ
] (the adjunct of σρ′ in E/U2) is given by the map

R U × Ũ

U2

(prqr,r̃) //

(prq,prq)r !! id×u}}
. (3)

To describe the adjunct of σψ, note that, from the squares (6), (7) and (3) and the
definition of j in the diagram (D), σψ is given as the map in E/U2 described by the
diagram

X2 U

X3 U2

M
prq // j //

X×∆X

��
∆U
��

g=(prq pr12,prqpr13)
//

(prq,prq)

))
(id×u)(u×id)

xx
.

Then, the adjunct of jprq in E/U2 is the composite j](prq ×U2
(u × id)), where the map

j] : ∆U ×U2
(u× id)→ id× u is the adjunct of j. Using that there are pullback squares

R Ũ × U

X2 U2

Ũ Ũ × U

U U2

(r̃,prqr) //

r
��

u×id
��

(prq,prq)
//

(id,u) //

u
��

u×id
��

∆U
//

we get that j](prq×U2
(u× id)) is the composite map

R Ũ U × Ũ

U2

R U × Ũ

U2

r̃ // j]=(u,id) //

(prq,prq)r &&
(u,u)
�� id×uxx

(ur̃,r̃) //

(prq,prq)r �� id×u��=
. (4)

One can now see that the maps (3) and (4) are equal by using the square (2) defining prq
(including the implicit given homotopies). Our proof is then complete.

Once we know that every map in E has an L′-localization, we can also show that
L′-localization form a reflective subfibration on E. The crucial point here is to show
pullback-compatibility of L′-reflections. This is necessary when working in higher topos
theory, but it is superfluous in homotopy type theory as reflections are automatically
stable under pullbacks in that setting.
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4.4. Corollary. Given any reflective subfibration L• of an ∞-topos E, there exists a
reflective subfibration L′• of E such that the L′-local maps are exactly the L-separated maps.
Furthermore, if L• is a modality, then so is L′•.

Proof. Let D′ be the full subcategory of E spanned by the L-separated objects and
let ι : D′ → E be the inclusion functor. Theorem 4.3 constructs, for every X ∈ E, an
L′-localization map η(X) : X → L′(X). By definition of L′-localization map, this means
that, for every X ∈ E, the ∞-category defined as the pullback

D′X/ D′

EX/ E

//

//
��

ι
��

has an initial object. (Here, D′X/ is the slice category of D′ under X, and similarly for

EX/.) By [Joy08, §17.4], ι has a left adjoint L′ : E→ D′, i.e., D′ is a reflective subcategory
of E. The same construction performed on each slice category now gives that, for every
X ∈ E, the full subcategory D′X of E/X on the L-separated p ∈ E/X is reflective. Since
L-separated maps are closed under pullbacks (see Proposition 2.21), to conclude that we
get a reflective subfibration l′• on E, we need to verify that the L′-reflection maps are
compatible with pullbacks.

Let then p : E → X be an object in E/X and f : Y → X a map in E. Let

E

X
p ""

E E ′
η′:=η′X(p)

// E ′

X
p′||

be the L′-localization of p. We need to show that m := f ∗(η′) : f ∗(p) → f ∗(p′) is the
L′-localization of f ∗(p) in E/Y . To do so we use Theorem 3.10. Set f ∗(E) := Y ×X E,
q := f ∗(p) and f ∗(E ′) := Y ×X E ′. Since η′ is an effective epimorphism and effective
epimorphisms are closed under pullbacks, an application of the pasting lemma for pull-
backs show that m is also an effective epimorphism. By Proposition 2.21(1), f ∗(p′) is
L-separated. Therefore, we only need to show that ∆(m), as a map in E/f∗(E)×Y f∗(E), is
the L′-localization map of ∆q. In E/Y we have the pullback square (products are products
in E/Y )

q × q f ∗(p′)× f ∗(p′)
m×m

//

q ×f∗(p′) q

q × q
(m×m)∗(∆(f∗(p′))

��

q ×f∗(p′) q f ∗(p′)// f ∗(p′)

f ∗(p′)× f ∗(p′)

∆(f∗(p′))
��

and ∆m is a map ∆q → (m × m)∗(∆(f ∗(p′)) in
(
E/Y

)
/(q×q). Since

(
E/Y

)
/(q×q) '

E/f∗(E)×Y f∗(E) and m = f ∗(η′), one can see that ∆m is the map

f ∗(E)

f ∗(E)×Y f ∗(E)

∆q
%%

f ∗(E) f ∗(E)×f∗(E′) f ∗(E)∆m // f ∗(E)×f∗(E′) f ∗(E)

f ∗(E)×Y f ∗(E)

t
yy
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in E/f∗(E)×Y f∗(E), where t corresponds to the map (m ×m)∗(∆(f ∗(p′)) above. Similarly,
∆η′ is a map ∆p → s in E/E×XE (where s is given by a suitable pullback) and it is the
L-localization of ∆p by Theorem 3.10. We want to show that ∆m is a pullback of this
L-localization and conclude because L• is a reflective subfibration. Let g : f ∗(E) → E
and g′ : f ∗(E ′)→ E ′ be the projection maps. As in the proof of Proposition 2.21, we see
that the following are all pullback squares in E

f ∗(E) Eg
//

f ∗(E)×Y f ∗(E)

f ∗(E)
��

f ∗(E)×Y f ∗(E) E ×X E// E ×X E

E
��

f ∗(E ′) E ′
g′

//

f ∗(E ′)×Y f ∗(E ′)

f ∗(E ′)
��

f ∗(E ′)×Y f ∗(E ′) E ′ ×X E ′// E ′ ×X E ′

E ′
��

f ∗(E)×Y f ∗(E) E ×X E//

f ∗(E)

f ∗(E)×Y f ∗(E)

∆(f∗(p))
��

f ∗(E) E
g // E

E ×X E
∆p
��

f ∗(E ′)×Y f ∗(E ′) E ′ ×X E ′//

f ∗(E ′)

f ∗(E ′)×Y f ∗(E ′)
∆(f∗(p′))

��

f ∗(E ′) E ′
g′ // E ′

E ′ ×X E ′
∆p′

��
.

Then in the diagram

f ∗(E)×Y f ∗(E) E ×X E//

f ∗(E)×f∗(E′) f ∗(E)

f ∗(E)×Y f ∗(E)

t

��

f ∗(E)×f∗(E′) f ∗(E) E ×E′ E// E ×E′ E

E ×X E

s

��

f ∗(E ′)×Y f ∗(E ′) E ′ ×X E ′//

f ∗(E ′)

f ∗(E ′)×Y f ∗(E ′)

∆(f∗(p′))

��

f ∗(E ′) E ′
g′

// E ′

E ′ ×X E ′

∆p′

��

E ×E′ E

E ′
''

f ∗(E)×f∗(E′) f ∗(E)

f ∗(E ′)
''

f ∗(E)×Y f ∗(E)

f ∗(E ′)×Y f ∗(E ′)
m×Ym

''

E ×X E

E ′ ×X E ′
η′×Xη′

''

the left and right sides are pullbacks (by definition of t and s) and the front square is a
pullback by the above. Therefore, the back square is also a pullback. A final application
of the pasting lemma now shows that there are pullback squares in E

E E ×E′ E
∆η′

//

f ∗(E)

E

g
��

f ∗(E) f ∗(E)×f∗(E′) f ∗(E)∆m // f ∗(E)×f∗(E′) f ∗(E)

E ×E′ E
��

E ×E′ E E ×X Es
//

f ∗(E)×f∗(E′) f ∗(E)

E ×E′ E

f ∗(E)×f∗(E′) f ∗(E) f ∗(E)×Y f ∗(E)t // f ∗(E)×Y f ∗(E)

E ×X E
��

completing the proof that L′• is a reflective subfibration.
The final claim about L′ being a modality when L is follows from the observation that,

given composable maps f : X → Y and g : Y → Z in E, we have ∆(gf) = p∆f , where p
is the leftmost vertical map in

X ×Z X X ×Z YidX×Zf
//

X ×Y X

X ×Z X
��

X ×Y X X// X

X ×Z Y
��

X ×Z Y Y ×Z Yf×Z idY
//

X

X ×Z Y

X Y
f // Y

Y ×Z Y
∆g
��

.
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Therefore, if g is L-separated (so that ∆g is L-local), p is L-local. If also f is L-separated
and L is a modality, we can then conclude from ∆(gf) = p∆f that gf is L-separated.

5. Appendix: On locally cartesian closed ∞-categories

We prove here some miscellaneous facts about locally cartesian closed (lcc) ∞-categories
that we need but we could not fit elsewhere. Some of these results are well-known, but
others do not seem to appear or be proven in the literature.

In Section 5.1, we discuss some results about cartesian-closedness of pullback functors,
and some interactions between their adjoints. In Section 5.2, we give a “term-free” version
of the type-theoretic axiom known as function extensionality, and we prove that it holds in
any lcc∞-category. Finally, in Section 5.3, we prove a “fiberwise” criterion for extending
a map along another one with the same domain.

We fix throughout an lcc ∞-category C.

5.1. Pullback functor and its adjoints. The first set of results we need explore
the behaviours of the pullback functors and of their adjoints in C.

5.1.1. Lemma. Let C be a locally cartesian closed ∞-category. Given any morphism
g : Y → X in C the pullback functor g∗ : C/X → C/Y is cartesian closed, i.e., for every
p, q ∈ C/X , g∗ (pq) is the exponential object g∗(p)g

∗(q) in C/Y .

A proof of the above result for 1-categories can be found in [Joh02, Lemma A.1.5.2]
and the same proof carries over to ∞-categories.

5.1.2. Lemma. Let ε : gg∗ → idC/X be the counit of the adjunction g ◦ (−) a g∗. Given
X ∈ C, take p, q ∈ C/X . Suppose given a diagram in C

A
W T

Y X

ρ
++ σ:=εpq //

f
))

(g∗p)(g
∗q)

��
pq

��

g
//

.

Let ρ] : f ×Y g∗q → g∗p be the adjunct to ρ in C/Y and consider the map σρ : gf → pq in
C/X . Then, g(f ×Y g∗q) = gf ×X q and the adjunct of σρ is given by the composite map:

g(f ×Y g∗q) ρ]−→ gg∗p
εp−→ p.

Proof. The fact that g(f×Y g∗q) = gf×X q is given by the pasting-lemma for pullbacks.
By definition, the adjunct of σρ is the composite

gf ×X q σρ×Xq−−−−→ pq ×X q evp,q−−→ p

and the adjunct ρ] is the composite

f ×Y g∗q ρ×Y g∗q−−−−→ (g∗p)(g∗q) ×Y g∗q
evg∗p,g∗q−−−−−→ g∗p.
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Using that (g∗p)(g∗q) ×Y g∗q = g∗(pq ×X q), the map evg∗p,g∗q is the map g∗(evp,q). One
then needs to show that the maps evp,q(σρ ×X q) and εpg

∗(evp,q)(ρ ×Y g∗q) are equal.
Consider the diagram below, where all squares are pullbacks

A

W T

Y X

(gf)∗Q

g∗(T ×X Q)

g∗Q

T ×X Q

Q

f
//

g
//

// //

σ′ //

m
66

����

��
pq

��

(gf)∗q

��

g∗q

��

q

��
ρ

66 σ //
�� ��

.

Then m (as a map over Y ) is ρ ×Y g∗q and σ′m (as a map over X) is σρ ×X q. The
claim now follows thanks to the following commutative diagram, where the back, front
and bottom faces of the cube (and, hence, also the top face) are pullbacks

A

W T

Y X

(gf)∗Q

g∗(T ×X Q)

g∗P

T ×X Q

P

f
//

g
//

εp //

σ′ //
ρ×Y g∗q 66

evp,q

��
g∗(evp,q)

��

��
pq

��

(gf)∗q

��

g∗p

��

p

��
ρ

66 σ //
�� ��

.

5.1.3. Lemma. [Beck–Chevalley condition] Let C be a locally cartesian closed∞-category
and let

A Bg
//

D

A

k ��

D C
h // C

B

f
��

be a pullback square in C. Then there are canonical natural equivalences∑
k

h∗
'−−→ g∗

∑
f

and f ∗
∏
g

'−−→
∏
h

k∗ .

Proof. The first map being an equivalence at every p ∈ C/C is a restatement of the
pasting lemma for pullbacks. The result for dependent products follows from the one for
dependent sums by taking right adjoints, since adjoints compose.



222 MARCO VERGURA

5.2. Function extensionality. In homotopy type theory, given types X and A, and
morphisms f, g : X → A, there is a map

(f =AX g) −→
∏
x:X

(f(x) =A g(x))

evaluating a path between f and g at each x : X. The statement that this map is an
equivalence (for all types A,X and all f, g : A→ X) is known as function extensionality.
In our setting, function extensionality can be stated as follows.

5.2.1. Proposition. [Function Extensionality] Let C be a locally cartesian closed ∞-
category. Given A,X ∈ C, let ev : AX × X → A be the counit at A of the adjunction
(−)×X a (−)X and form the pullback

AX × AX ×X A× A
(ev1,ev2)

//

Q

AX × AX ×X
q
��

Q A// A

A× A
∆A
�� .

Here ev1 (resp. ev2) is the composite of the projection AX ×AX ×X → AX ×X onto the
first (resp. second) and third components with the evaluation map. Consider the projection
map pr : AX × AX ×X → AX × AX . Then, there is a canonical equivalence in C/AX×AX

∆(AX)
'−→
∏
pr

q .

Proof. Let k : E → AX×AX be an object in C/AX×AX . By adjointness, there is a natural
equivalence

C/AX×AX

(
k,
∏
pr

q

)
' C/AX×AX×X(k ×X, q).

By the description of hom-spaces in∞-slice categories (see [Lur09, Lemma 5.5.5.12]) and
since Q is a pullback, we get a homotopy pullback square of ∞-groupoids

∗ C(E ×X,A× A)
(ev1,ev2)◦(k×X)

//

C/AX×AX×X(k ×X, q)

∗
��

C/AX×AX×X(k ×X, q) C(E ×X,A)// C(E ×X,A)

C(E ×X,A× A)

C(E×X,∆A)
�� .

But C(E,∆(AX)) ' C(E ×X,∆A) ' ∆C(E×X,A), which means that

C/AX×AX×X(k ×X, q) ' hofibk(C(E,∆(AX))) ' C/AX×AX (k,∆(AX)),

where the last equivalence is again [Lur09, Lemma 5.5.5.12]. We then get the needed
composite natural equivalence

C/AX×AX

(
k,
∏
pr

q

)
' C/AX×AX (k,∆(AX)).
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Proposition 5.2.1 can be promoted to a result about diagonals of dependent products.
We now set up what we need to state this generalization of Proposition 5.2.1.

Let p : E → X be a map in C and let

(
∏

X p)×X

X
π %%

(
∏

X p)×X Eε // E

X
pyy

be the component of the counit of the adjunction (−) ×X a
∏

X at p ∈ C/X . Here π is
the projection map onto X. The projection map(∏

X

p

)
×

(∏
X

p

)
×X → X

is the product object π ×X π in C/X . Hence, the product map ε×X ε : π ×X π → p×X p
in C/X is the map over X given by

(ε1, ε2) :

(∏
X

p

)
×

(∏
X

p

)
×X → E ×X E,

where ε1 (resp. ε2) is the composite of the projection(∏
X

p

)
×

(∏
X

p

)
×X →

(∏
X

p

)
×X

onto the first (resp. the second) and third components with the counit map. The pullback
of ∆p along ε×X ε in C/X can be described as the pullback square

(
∏

X p)× (
∏

X p)×X E ×X E
(ε1,ε2)

//

Q′

(
∏

X p)× (
∏

X p)×X
q′
��

Q′ E// E

E ×X E
∆p
�� (5)

in C and Q′ can be naturally regarded as an object over X.

5.2.2. Proposition. [Dependent Function Extensionality] Let C be a locally cartesian
closed ∞-category and let p : E → X be a map in C. Construct q′ as in (5) and let

pr :

(∏
X

p

)
×

(∏
X

p

)
×X →

(∏
X

p

)
×

(∏
X

p

)
be the projection map. Then there is a canonical equivalence in C/(

∏
X p)×(

∏
X p)

∆

(∏
X

p

)
'−→
∏
pr

q′ .

Mutatis mutandis, the proof is the same as for Proposition 5.2.1, so we omit it.
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5.2.3. Remark. If C is a locally cartesian closed ∞-category, then so is C/X for any
X ∈ C. Thus, Proposition 5.2.1 and Proposition 5.2.2 hold true also in C/X and give,
for maps p : E → X, f : Y → X and q : M → Y in C, an alternative description of the

diagonal of pf ∈ C/X and of ∆
(∏

f q
)

as a map in C/Y .

5.3. Contractibility. We provide here a criterion for the existence and the uniqueness
of extensions of one map along another one with the same domain. This result is linked
to the notion of contractibility in C.

Recall that an object A ∈ C is contractible if the map A→ 1 is an equivalence. When
we apply this definition to an object p ∈ C/X , this means that p is contractible in C/X
exactly when, seen as a map in C, it is an equivalence. Since equivalences in an ∞-topos
form a local class of maps, we immediately get the following result.

5.3.1. Lemma. Let E be an ∞-topos and let f : Y → X be an effective epimorphism in
E. For any p ∈ E/X , f ∗(p) ∈ E/Y is contractible if and only if p is.

The following lemma is a standard exercise in 2-category theory since the notions of
slice ∞-categories and of adjunctions between ∞-categories can be completely character-
ized in the 2-category of ∞-categories — see [RV18, §3 and 4].

5.3.2. Lemma. Let C
F //

D
G
oo _ be an adjunction and let D ∈ D. Then there is an induced

adjunction on slice categories

C/GD
F //

D/D

G

oo _

where, for p ∈ C/GD and q ∈ D/D, F̄ (p) = εDFp and Ḡ(q) = Gq.

5.3.3. Lemma. Let p : D → B × C be a map in a locally cartesian closed ∞-category C.
Consider the map q : E → B × CB given by the pullback square

B × CB B × C
(pr1,ev)

//

E

B × CB

q
��

E D// D

B × C

p
�� .

Then there is an equivalence(∏
B

∑
B×C→B

p

)
'

∑
CB

∏
B×CB→CB

q

 .

Proof. Let prB : B × C → B and prCB : B × CB → CB be the projection maps. Note
that Πpr

CB
q is, by definition, a map Πpr

CB
q : ΣCBΠpr

CB
q −→ CB. On the other hand, we

can see p as a map p : ΣprBp→ prB in C/B. Setting α := ΠBp, we then get a map

α :
∏
B

∑
prB

p −→
∏
B

prB = CB.
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It is therefore sufficient to show that α ' Πpr
CB
q in C/CB . Let k : Z → CB be an object

in C/CB . Using Lemma 5.3.2 applied to the adjunction

C
B×(−)

//
C/B∏

B

oo _

we get C/CB(k, α) '
(
C/B
)
/ prB

(
κ], p

)
. Here κ] is the composite (pr1, ev)(B×k), seen as a

map from (B × Z pr1−−→ B) to prB, and thus as an object in
(
C/B
)
/prB

. Since
(
C/B
)
/prB
'

C/B×C and using the definition of q = (pr1, ev)∗p, we obtain

C/CB(k, α) ' C/B×C
(
κ], p

)
= C/B×C ((pr1, ev)(B × k), p) '

' C/B×CB(B × k, q) = C/B×CB ((prCB)∗k, q) ' C/CB

k, ∏
pr
CB

q

 ,

whence α ' Πpr
CB
q, as needed.

Intuitively, the following result is about the existence of a unique extension of a map
f along another map g in terms of unique extensions along the fibers of g. Taking fibers
out of the picture, we get the following odd-looking statement.

5.3.4. Proposition. [cf. [CORS18, Lemma 2.23]] Let f : A→ C and g : A→ B be two
maps in a locally cartesian closed ∞-category C. Form the following pullback squares in
C:

A×B × C B ×B
g×prB

//

A× C

A×B × C
(prA,g×C)

��

A× C B// B

B ×B
∆B
��

A×B × C C × C
f×prC

//

B × A

A×B × C
(prA,B×f)

��

B × A C// C

C × C
∆C
�� .

Consider the following object in C/B

E :=
∑

B×C→B

( ∏
A×B×C→B×C

(prA, B × f)(prA,g×C)

)
where the displayed internal hom is taken in C/A×B×C. Then the following hold.

(i) If we let f : CB → CA be the composite CB → 1
f−→ CA, there is an equivalence∏

B

E '
∑
CB

(f, Cg)∗
(
∆(CA)

)
. (6)

(ii) The space of global elements of the right-hand side in (6) is equivalent to the space
Ext(f, g) of extensions of f along g. In particular, if

∏
B E is contractible in C/B,

then there is a unique dotted extension in

A

B

C
g
��

f //
??
.
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Proof. We start by proving the first claim. We have

(prA, B × f)(prA,g×C) =
∏

(prA,g×C)

(prA, g × C)∗(prA, B × f).

Since (prA, B × f) = (f × prC)∗(∆C) and (f × prC)(prA, g × C) = f × C, we get that
(prA, g × C)∗(prA, B × f) = (idA, f) : A→ A× C. If prB×C : A× B × C → B × C is the
projection map, we then have

∏
prB×C

(prA, B × f)(prA,g×C) =
∏

prB×C

 ∏
(prA,g×C)

(idA, f)

 =
∏
g×C

(idA, f)

Using Lemma 5.3.3, we then get

∏
B

E =
∏
B

∑
B×C→B

∏
g×C

(idA, f) '
∑
CB

∏
pr
CB

(pr1, ev)∗

(∏
g×C

(idA, f)

)
=: E ′

where prCB : B × CB → CB is the projection map. There are pullback squares

A× CB A× C

B × CB B × C

A C

A× C C × C

(idA, ev(g×CB)) //

g×CB �� g×C��

(pr1,ev)
//

f //

(idA,f)
�� ∆C��

f×C
//

.

Thus, using the Beck–Chevalley condition, we get

E ′ '
∑
CB

∏
pr
CB

∏
g×CB

(
(f × C)(idA, ev(g × CB))

)∗
(∆C) '

'
∑
CB

∏
A×CB→CB

(
(f × C)(idA, ev(g × CB))

)∗
(∆C) '

'
∑
CB

∏
A×CB→CB

(ev(A× (f, Cg)))∗ (∆C) =: E ′′

where the last equivalence is due to the fact that (f × C)(idA, ev(g × CB)) is equal to
the composite map ev ◦ (A× (f, Cg)). Using the Beck–Chevalley condition applied to the
pullback square

A× CB A× CA × CA

CB CA × CA

A×(f,Cg) //

pr2 ��
pr2��

(f,Cg)
//

we further deduce that

E ′′ =
∑
CB

∏
A×CB→CB

(A× (f, Cg))∗(ev∗(∆C)) '
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'
∑
CB

(f, Cg)∗

∏
pr2

ev∗(∆C)

 '∑
CB

(f, Cg)∗(∆(CA))

where the last equivalence is given by Function Extensionality.
For the second part, P :=

∑
CB(f, Cg)∗(∆(CA)) is the pullback object of Cg along

f : 1→ CA and thus C(1, P ) is the homotopy fiber of C(1, Cg) at f ∈ C(1, CA). The latter
homotopy fiber gives the needed space of extensions.
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