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VAN KAMPEN’S THEOREM FOR LOCALLY SECTIONABLE MAPS

RONALD BROWN, GEORGE JANELIDZE, AND GEORGE PESCHKE

Abstract. We generalize the Van Kampen theorem for unions of non-connected
spaces, due to R. Brown and A. R. Salleh, to the context where families of sub-
spaces of the base space B are replaced with a ‘large’ space E equipped with a locally
sectionable continuous map p : E → B.

1. Introduction

The most general purely topological version of the 1-dimensional theorem of Van Kampen
seems to be the following, which involves the fundamental groupoid π1(B, S) on a set S
of base points, cf. [Brown, 1987, Brown, 2006, Brown, 2018]. Here we write also π1(B, S)
for π1(B,B ∩ S), so that if U is a subspace of B then π1(U, S) is π1(U,U ∩ S).

1.1. Theorem. [Brown-Salleh, 1984] Let (Bλ)λ∈Λ be a family of subspaces of B such that
the interiors of the sets Bλ (λ ∈ Λ) cover B, and let S be a subset of B. Suppose S meets
each path-component of each one-fold, two-fold, and each three-fold intersection of distinct
members of the family (Bλ)λ∈Λ. Then there is a coequalizer diagram in the category of
groupoids: ⊔

λ,µ∈Λ π1(Bλ ∩Bµ, S)
α //

β
//
⊔
λ∈Λ π1(Bλ, S)

γ // π1(B, S), (1)

in which
⊔

stands for the coproduct in the category of groupoids, and α, β, and γ are de-
termined by the inclusion maps Bλ∩Bµ → Bλ, Bλ∩Bµ → Bµ, and Bλ → B, respectively.

The idea for using more than one base point arose in the writing of the first version
of [Brown, 2006] in order to give a Van Kampen Theorem general enough to compute
the fundamental group of the circle S1, which after all is the basic example in algebraic
topology; of course the “canonical” method for the circle is to use the covering map
R→ S1, but Theorem 1.1 deals also with a myriad of other cases.1

The use of many base points has been supported by Grothendieck in his 1984 “Esquisse
d’un Programme”, [Grothendieck, 1984, Section 2]:
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granted.
1We refer the reader to https://mathoverflow.net/questions/40945/ for a discussion of the use

of more than one base point, a notion commonly not referred to in algebraic topology texts.
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Ceci est lié notamment au fait que les gens s’obstinent encore, en calculant
avec des groupes fondamentaux, a fixer un seul point base, plûtot que d’en
choisir astucieusement tout un paquet qui soit invariant par les symetries de
la situation, lesquelles sont donc perdues en route. Dans certaines situations
(comme des théorèmes de descente à la Van Kampen pour les groupes fon-
damentaux) il est bien plus élégant, voire indispensable pour y comprendre
quelque chose, de travailler avec des groupöıdes fondamentaux par rapport à
un paquet de points base convenable,....

And indeed, restricting to a single base point omits a vast range of other spaces
available in a local-to-global way, that might require even a large number of base points,
and new methods for analyzing the colimits involved. It is unreasonable to suggest that
“the answer has to be a group”, or some form of presentation of a group; cf for example
[Gill-Gillespie-Semeraro, 2018].

The use of groupoids also allows for the applications of Higgins’ “universal morphisms”,
see [Higgins, 2005] and the Appendix B5 Groupoids bifibered over Sets of [Brown-Higgins-
Sivera, 2011] ; the fundamental group of the circle may be obtained from the groupoid
I = π1([0, 1], {0, 1}) by identifying 0 and 1, as there is such a “universal morphism” from
I to the group of integers. Applications of groupoid notions to orbit spaces are given in
the (current) version of [Brown, 2006, Chapter 11].

There are also accounts of the Van Kampen theorem for the fundamental group related
to universal covers and Galois theory, [Douady-Douady, 1979, Brown-Janelidze, 1997];
[Brown-Janelidze, 1997] uses Galois theory of [Janelidze, 1991]. In this paper we return
to the classical approach, but replace families of subspaces of the base space B with a
‘large’ space E equipped with a locally sectionable continuous map p : E → B; this makes
our Main Theorem 2.2, more general than Theorem 1.1. In Section 2 we prove Theorem
2.2 directly, and then, after making various additional remarks in Section 3, briefly discuss
a possibility of deducing it from Theorem 1.1 in Section 4; for instance such deduction is
obviously possible when all points of B are taken as base points.

2. Locally Sectionable Maps and the Main Theorem

A continuous map p : E → B of topological spaces is said to be locally sectionable if for
every b ∈ B there exist an open subset U of B such that b ∈ U and the map p−1(U)→ U
induced by p has a continuous section. We are interested in such maps for two reasons:

• Let (Bλ)λ∈Λ be a family of subspaces of B, let E be their coproduct, and suppose
that the interiors of the sets Bλ (λ ∈ Λ) cover B. Then the canonical map p : E → B
is locally sectionable, and such a family of subspaces is used in the Brown–Salleh
version of van Kampen Theorem [Brown-Salleh, 1984], recalled above as Theorem
1.1; we are going to extend that theorem to arbitrary locally sectionable maps. For
convenience, for any map p : E → B and subset S of B we write π1(E, S) and
π1(E ×B E, S) for π1(E,E ×B S) and π1(E ×B E,E ×B E ×B S), respectively.
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• As shown in [Janelidze-Tholen, 1991], every locally sectionable map is an effective
descent morphism in the category of topological spaces.

Such maps also occur as surjective submersions in the context of [Nikolaus-Schweigert,
2011].

2.1. Remark. (a) Let us remove the word “distinct” from our requirement on S in
Theorem 1.1. This will:

• also remove “one-fold, two-fold and”, since it will make one-fold and two-fold inter-
sections special cases of three-fold intersections;

• make so modified Theorem 1.1 formally weaker by forcing each Uλ to become path-
connected.

However, this formally weaker version of Theorem 2.2 is actually easily equivalent to it.
(b) Consider the above-mentioned coproduct E of the family (Bλ)λ∈Λ and the associated
function p : E → B. Since the fundamental groupoid functor π1 preserves coproducts, we
can write

⊔
λ∈Λ π1(Bλ, S) = π1(E, S) and⊔

λ,µ∈Λ

π1(Bλ ∩Bµ, S) = π1(E ×B E, S)

which immediately suggests the formulation of the following Main Theorem 2.2. The
proof, as in [Brown-Salleh, 1984], is by verification of the universal property; for this
purpose, we do not even need to know that coequalisers exist in the category of groupoids,
nor how to construct them. However the details of the construction may be found in
[Higgins, 2005, Brown-Higgins-Sivera, 2011].

2.2. Theorem. Let p : E → B be a locally sectionable continuous map of topological
spaces, and S a subset of B such that the inverse image E×BE×BE×B S of S under the
canonical map E ×B E ×B E → B meets every path-component of E ×B E ×B E. Then
there is a coequalizer diagram in the category of groupoids

π1(E ×B E, S)
α //

β
// π1(E, S)

γ // π1(B, S) ,

in which the functor γ is induced by p : E → B and the functors α, β are induced
respectively by the first and the second projections p1, p2 : E ×B E → E.

Note that our assumption on path-components of E ×B E ×B E implies similar as-
sumptions on path-connected components of E and of E ×B E.

The rest of this section, where we will use notation and assumptions of Theorem 2.2,
will be devoted to its proof.

Let U be the set of all open subsets U of B such that the map p−1(U) → U induced
by p has a continuous section, and let us fix a U-indexed family

(sU : U → p−1(U))U∈U

of such sections. After that we introduce
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2.3. Definition. A weighted path (in (B, S)) is a system (f, n, t, U, g), in which:

• f : [0, 1]→ B is a path in B with f(0) and f(1) in S;

• n is a (non-zero) natural number;

• t = (t0, . . . , tn) is a sequence of n+ 1 real numbers with 0 = t0 < t1 < . . . < tn = 1;

• U = (U1, . . . , Un) is a sequence of n open sets from U with f([ti−1, ti]) ⊆ Ui, or,
equivalently [ti−1, ti] ⊆ f−1(Ui), for each i = 1, . . . , n; the map [ti−1, ti]→ Ui induced
by f will be denoted by fU,i, or simply by fi, if there is no danger of confusion;

• g = (g1, . . . , gn−1) is a sequence of n− 1 paths [0, 1]→ E ×B E with

gi(0) = (sUi
f(ti), sUi+1

f(ti))

and gi(1) in the inverse image (E×BE)×BS of S under the canonical map E×BE →
B, for each i = 1, . . . , n− 1.

We will also say that (n, t, U, g) is a weight of f .

From the definition of U, the fact that the inverse image E ×B E ×B S of S under the
canonical map E ×B E → B meets every path-component of E ×B E, and the fact that
[0, 1] is a compact space, we obtain:

2.4. Lemma. Every path f : [0, 1] → B in B, with f(0) and f(1) in S, has a weight.
Moreover, for every non-zero natural number n and every sequence of n+ 1 real numbers
with 0 = t0 < t1 < . . . < tn = 1 and each f([ti−1, ti]) (i = 1 . . . n) in some U ∈ U, a weight
(n, t, U, g) for f can be chosen with the same n and t = (t0, . . . , tn), and even with each
Ui chosen in advance.

Our next definition and the following lemmas show why weights are useful. Here and
below, the morphism (in a suitable fundamental groupoid) determined by a path f will
be denoted by [f ] (not to be confused with, say, [0, 1] or [ti−1, ti]). Moreover, we will do
same when the domain of f is not just [0, 1] but any [t, t′] with t < t′.

2.5. Definition. For a weighted path (f, n, t, U, g), the associated sequence of morphisms
in π1(E, S) is the sequence (hn, . . . , h1) in which:

• h1 = [p1g1][sU1f1];

• hi = [p1gi][sUi
fi][p2gi−1]−1, if 2 6 i 6 n− 1;

• hn = [sUnfn][p2gn−1]−1.

Here we use composition of maps inside square brackets and composition of morphisms in
π1(E) outside them (in the order used in category theory).

The following diagrams in the groupoid π1(E) (which are not diagrams in π1(E, S))
help to understand this definition:
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sU1f(0) = sU1f(t0)
[sU1

f1]
// sU1f(t1)

[p1g1] // p1g1(1),

p2gi−1(1) sUi
f(ti−1)

[p2gi−1]oo
[sUi

fi]// sUi
f(ti)

[p1gi] // p1gi(1),

p2gn−1(1) sUnf(tn−1)
[p2gn−1]oo [sUnfn]// sUnf(tn) = snf(1).

Let G be an arbitrary groupoid and δ : π1(E, S) → G an arbitrary functor with
δα = δβ.

2.6. Lemma. Let (hn, . . . , h1) be as in Definition 2.5. Then:

(a) The sequence (δ(hn), . . . , δ(h1)) of morphisms in G is composable; in particular this
applies to δ = γ, making (γ(hn), . . . , γ(h1)) a composable sequence of morphisms in
π1(B, S).

(b) γ(hn) . . . γ(h1) = [f ].

Proof. (a): We need to show that the domain of δ(hi+1) is the same as the codomain
of δ(hi), for every i = 1, . . . , n − 1. Writing dom and cod for domain and codomain,
respectively, we have:

dom(δ(hi+1)) = δ(dom(hi+1))
= δ(dom([p1gi+1][sUi+1

fi+1][p2gi]
−1))

(i)
= δ(cod([p2gi]))
(ii)
= δ(p2gi(1)) = δ(p1gi(1))
= δ(cod([p1gi])) = δ(cod([p1gi][sUi

fi][p2gi−1]−1)) = δ(cod(hi)) ,

where equality (i) holds because all calculations inside π1(E, S) can equivalently be made
inside π1(E); and equality (ii) holds since (p1gi(1), p2gi(1)) = gi(1) belongs to E ×B E
and δα = δβ.

(b): Here we in fact need a calculation in π1(B, S), in which we can replace γ : π1(E, S)→
π1(B, S) with π1(p) : π1(E) → π1(B). This allows us to present γ(hn) . . . γ(h1) as the
composite of

f(0) = f(t0)
[f1] // f(t1)

[pp1g1]// . . .

. . .
[pp2gi−1]−1

// f(ti−1)
[fi] // f(ti)

[pp1gi]// pp1gi(1) = pp2gi(1)
[pp2gi]

−1

// f(ti)
[fi+1] // f(ti+1)

[pp1gi+1]// . . .

. . .
[pp2gn−1]−1

// f(tn−1)
[fn] // f(tn) = f(1),

where we use the fact that, for each i = 1, . . . , n, the image of [sUi
fi] : sUi

f(ti−1)→ sUi
f(ti)

under π1(p) is [fi] : f(ti−1)→ f(ti) (since sU (U ∈ U) are local sections of p). After that,
note also that [pp1gi] = [pp2gi], and makes the composite above equal to [fn] . . . [f1] = [f ].
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2.7. Lemma. Let (f, n, t, U, g) and (f, n, t, U, g′) be weighted paths and (hn, . . . , h1) and
(h′n, . . . , h

′
1) their associated sequences of morphisms in π1(E, S). Then

δ(hn) . . . δ(h1) = δ(h′n) . . . δ(h′1) .

Proof. We can assume, without loss of generality, gi = g′i for all i = 1, . . . , n− 1 except
i = k, for some k. Assuming that we only need to prove the equality δ(hk+1)δ(hk) =
δ(h′k+1)δ(h′k). There are three cases to consider, k = 1, 2 6 k 6 n − 2, and k = n − 1,
but we will consider only second case (since two other cases can obviously be treated
similarly). We have:

(a) δ([p1gk][p1g
′
k]
−1) = δα([gk][g

′
k]
−1) : δα(g′k(1)) → δα(gk(1)) in G, where, although

we compose morphisms in π1(E) and π1(E ×B E), the results [p1gk][p1g
′
k]
−1 and

[gk][g
′
k]
−1 belong to π1(E, S) and π1(E ×B E, S), respectively;

(b) similarly, δ([p2gk][p2g
′
k]
−1) = δβ([gk][g

′
k]
−1) : δβ(g′k(1))→ δβ(gk(1)) in G;

(c) since δα = δβ, (a) and (b) imply δ([p1gk][p1g
′
k]
−1) = δ([p2gk][p2g

′
k]
−1);

(d) In G we compute:

δ([p2gk][p2g
′
k]
−1)δ([p1g

′
k][p1gk]

−1) = δ([p2gk][p2g
′
k]
−1)(δ([p1gk][p1g

′
k]
−1))−1 = 1δα(gk(1)) = 1δβ(gk(1))

Using (d) we calculate:

δ(hk+1)δ(hk) = δ([p1gk+1][sUk+1
fk+1][p2gk]

−1)δ([p1gk][sUk
fk][p2gk−1]−1)

= δ([p1gk+1][sUk+1
fk+1][p2gk]

−1[p2gk][p2g
′
k]
−1)δ([p1g

′
k][p1gk]

−1[p1gk][sUk
fk][p2gk−1]−1)

= δ([p1gk+1][sUk+1
fk+1][p2g

′
k]
−1)δ([p1g

′
k][sUk

fk][p2gk−1]−1)
= δ([p1g

′
k+1][sUk+1

fk+1][p2g
′
k]
−1)δ([p1g

′
k][sUk

fk][p2g
′
k−1]−1)

= δ(h′k+1)δ(h′k).

This completes the proof.

The following lemma is stronger, but it uses Lemma 2.7 in its proof.

2.8. Lemma. Let (f, n, t, U, g) and (f, n′, t′, U ′, g′) be weighted paths and (hn, . . . , h1) and
(h′n′ , . . . , h

′
1) their associated sequences of morphisms in π1(E, S). Then

δ(hn) . . . δ(h1) = δ(h′n′) . . . δ(h
′
1) .

Proof. We can assume, without loss of generality, that {t0 . . . tn} ∩ {t′0 . . . t′n′} = {0, 1}.
Indeed, using the second assertion of Lemma 2.4, we can choose a weight (n′′, t′′, U ′′, g′′)
for f with {t0 . . . tn} ∩ {t′′0 . . . t′′n′′} = {0, 1} and {t′0 . . . t′n′} ∩ {t′′0 . . . t′′n′′} = {0, 1}, and
then δ(hn) . . . δ(h1) = δ(h′′n′′) . . . δ(h

′′
1) and δ(h′n′) . . . δ(h

′
1) = δ(h′′n′′) . . . δ(h

′′
1) would imply

δ(hn) . . . δ(h1) = δ(h′n′) . . . δ(h
′
1) (in obvious notation).

After that let us introduce the following notation:
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• ñ = n+ n′ − 1.

• {t̃0, . . . , t̃ñ} = {t0 . . . tn} ∪ {t′0 . . . t′n′}.

• fi is the restristion of f on [t̃i−1, t̃i]; accordingly, we will not abbreviate fU,i as fi in
this proof. Note that: (a) fi = fU,i when t̃i = tj and t̃i−1 = tj−1; (b) fi = fU ′,i when
t̃i = t′j and t̃i−1 = t′j−1.

•
{1, . . . , n− 1}

ϕ // {1, . . . , n′ − 1}
ϕ′
oo

are the maps defined by

ϕ(i) = min{j ∈ {1, . . . , n′} | ti < t′j} and ϕ′(i) = min{j ∈ {1, . . . , n} | t′i < tj}.

• q1, q2, and q3 are the three projections E ×B E ×B E → E.

Let us also choose paths ri : [0, 1]→ E ×B E ×B E (i = 1, . . . , ñ− 1) with

ri(0) =

{
(sUj

f(tj), sU ′
ϕ(j)
f(tj), sUj+1

f(tj)), if t̃i = tj,

(sU ′jf(t′j), sUϕ′(j)
f(t′j), sU ′j+1

f(t′j)), if t̃i = t′j,

and ri(1) in the inverse image (E ×B E ×B E)×B S of S under the canonical map

E ×B E ×B E → B,

for each i = 1, . . . , ñ−1; such choices are possible by our assumption on path-components
of E ×B E ×B E in Theorem 2.2.

Using this data we define morphisms h̃1, . . . , h̃ñ in π1(E ×B E, S), by

h̃i =



[〈q1r1, q2r1〉][〈sU1f1, sU ′1f1〉], if i = 1 and t̃1 = t1,
[〈q2r1, q1r1〉][〈sU1f1, sU ′1f1〉], if i = 1 and t̃1 = t′1,
[〈q1ri, q2ri〉][〈sUj

fi, sU ′
ϕ(j)
fi〉][〈q3ri−1, q2ri−1〉]−1, if 1 < i < ñ, t̃i = tj, and t̃i−1 = tj−1,

[〈q2ri, q1ri〉][〈sUϕ′(j)
fi, sU ′jfi〉][〈q2ri−1, q3ri−1〉]−1, if 1 < i < ñ, t̃i = t′j, and t̃i−1 = t′j−1,

[〈q1ri, q2ri〉][〈sUj
fi, sU ′

ϕ(j)
fi〉][〈q2ri−1, q3ri−1〉]−1, if 1 < i < ñ, t̃i = tj, and t̃i−1 = t′ϕ(j)−1,

[〈q2ri, q1ri〉][〈sUϕ′(j)
fi, sU ′jfi〉][〈q3ri−1, q2ri−1〉]−1, if 1 < i < ñ, t̃i = t′j, and t̃i−1 = tϕ′(j)−1,

[〈sUnfñ, sU ′n′fñ〉][〈q3rñ−1, q2rñ−1〉], if i = ñ, and t̃ñ−1 = tn−1,

[〈sUnfñ, sU ′n′fñ〉][〈q2rñ−1, q3rñ−1〉], if i = ñ, and t̃ñ−1 = t′n−1.

Here we omitted routine calculations to show that the composites involved are well defined
in π1(E ×B E), and similar routine calculations show that

(δα(h̃ñ), . . . , δα(h̃1)) = (δβ(h̃ñ), . . . , δβ(h̃1))

is a composable sequences of morphisms in G.
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Our aim is to prove that

δ(hn) . . . δ(h1) = δα(h̃ñ) . . . δα(h̃1) = δβ(h̃ñ) . . . δβ(h̃1) = δ(h′n) . . . δ(h′1),

but since the middle equality is trivial, while the first and third one are similar to each
other, it suffices to prove the first equality.

Let χ : {0, . . . , n} → {0, . . . , ñ} be the map defined by χ(j) = i⇔ tj = t̃i. We have

δα(h̃ñ) . . . δα(h̃1) = δα(h̃χ(n)) . . . δα(h̃χ(n−1)+1) . . . δα(h̃χ1) . . . δα(h̃1),

and so to prove the desired first equality above it suffices to prove the equality

δ(hj) = δα(h̃χ(j)) . . . δα(h̃χ(j−1)+1), (1)

for every j = 1, . . . , n. Let us do it assuming 1 < j < n (since in the cases j = 1 and
j = n it can be done similarly, but with a bit shorter calculation). For, putting χ(j) = i,
we observe:

(a) If χ(j) = χ(j − 1) + 1, we have

δα(h̃χ(j)) . . . δα(h̃χ(j−1)+1) = δα(h̃χ(j))
= δα([〈q1ri, q2ri〉][〈sUj

fi, sU ′
ϕ(j)
fi〉][〈q3ri−1, q2ri−1〉]−1)

= δ([q1ri][sUj
fi][q3ri−1]−1),

where the second equality follows from the third line in the definition of h̃i.

(b) If χ(j) = χ(j − 1) + 2, which gives

t̃χ(j)−2 = t̃χ(j−1) = tj−1 and then t̃χ(j)−1 = t′ϕ(j−1) = t′ϕ(j)−1,

we have

δα(h̃χ(j)) . . . δα(h̃χ(j−1)+1) = δα(h̃χ(j))δα(h̃χ(j)−1)

= δα([〈q1ri, q2ri〉][〈sUj
fi, sU ′

ϕ(j)
fi〉][〈q2ri−1, q3ri−1〉]−1)δα(h̃χ(j)−1)

= δ([q1ri][sUj
fi][q2ri−1]−1)δα(h̃χ(j)−1)

= δ([q1ri][sUj
fi][q2ri−1]−1)δα([〈q2ri−1, q1ri−1〉][〈sUϕ′(ϕ(j)−1)

fi−1, sU ′
ϕ(j)−1

fi−1〉][〈q3ri−2, q2ri−2〉]−1)

= δ([q1ri][sUj
fi][q2ri−1]−1)δ([q2ri−1][sUϕ′(ϕ(j)−1)

fi−1][q3ri−2]−1)

= δ([q1ri][sUj
fi][q2ri−1]−1)δ([q2ri−1][sUj

fi−1][q3ri−2]−1)
= δ([q1ri][sUj

fi][sUj
fi−1][q3ri−2]−1),

where:

− the second equality follows from the fifth line in the definition of h̃i;

− the forth equality follows from the sixth line in the definition of h̃i with i
replaced with i− 1;

− the sixth equality follows from the equation ϕ′(ϕ(j)−1) = j, while this equation
is easy to check having in mind that t′ϕ(j)−1 = t̃χ(j)−1 and tj = t̃χ(j);
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− the last equation follows from the fact that

([q1ri][sUj
fi][q2ri−1]−1, [q2ri−1][sUj

fi−1][q3ri−2]−1)

is a composable pair of morphisms in π1(E, S).

(c) Similarly, whenever χ(j) > χ(j−1)+2, one can show that δα(h̃χ(j)) . . . δα(h̃χ(j−1)+1)
is given by

δ([q1rχ(j)][sUj
fχ(j)][sUj

fχ(j)−1] . . . [sUj
fχ(j)+2][sUj

fχ(j)+1][q3rχ(j)]
−1).

Now, since (inside π1(E)) we have [sUj
fχ(j)] . . . [sUj

fχ(j)+1] = [sUj
fU,j], to prove (1) it

would suffice to prove the equality

[p1gj][sUj
fU,j][p2gj−1]−1 = [q1rχ(j)][sUj

fU,j][q3rχ(j)]
−1. (2)

Moreover, thanks to Lemma 2.7, in proving (2) we are allowed to change the component
g of the weighted path (f, n, t, U, g). But this makes the equality (2) trivial, since we can
define g by gj = 〈q1rχ(j), q3rχ(j)〉, which makes p1gj = q1rχ(j) and p2gj−1 = q3rχ(j).

2.9. Definition. Let P = (f, n, t, U, g) and P ′ = (f ′, n′, t′, U ′, g′) be weighted paths with
f(0) = f ′(0), f(1) = f ′(1), n = n′, t = t′, and U = U ′. A homotopy H : P → P ′ is a
continuous map H : [0, 1]× [0, 1]→ B with

(a) H(t, 0) = f(t), H(t, 1) = f ′(t), H(0, t) = f(0), H(0, t) = f(0) for every t ∈ [0, 1];

(b) H([ti−1, ti]× [0, 1]) ⊆ Ui, for each i = 1, . . . , n.

We will say that P and P ′ are homotopic when such a homotopy H : P → P ′ does exist.

2.10. Lemma. Let (f, n, t, U, g) and (f ′, n′, t′, U ′, g′) be homotopic weighted paths, and
let (hn, . . . , h1) and (h′n, . . . , h

′
1) be their associated sequences of morphisms in π1(E, S).

Then δ(hn) . . . δ(h1) = δ(h′n′) . . . δ(h
′
1).

Proof. Thanks to Lemma 2.7, we can change g and g′ as it will be suitable for our
argument. We will not change g′, but, given a homotopy H : P → P ′, assume that [gi]
(i = 1, . . . , n− 1) is the composite

(sUi
f(ti), sUi+1

f(ti))
[Hi] // (sUi

f ′(ti), sUi+1
f ′(ti))

[g′i] // g′i(1),

where Hi is a path in E ×B E defined by Hi(t) = (sUi
H(ti, t), sUi+1

H(ti, t)).
For 2 6 i 6 n− 1, consider the diagram

p2g
′
i−1(1) sUi

f ′(ti−1)
[p2g′i−1]
oo

[sUi
f ′i ]// sUi

f ′(ti)
[p1g′i] // p1g

′
i(1)

sUi
f(ti−1)

[sUi
fi]
//

[p2Hi−1]

OO

sUi
f(ti)

[p1Hi]

OO



VAN KAMPEN’S THEOREM FOR LOCALLY SECTIONABLE MAPS 57

in π1(E). Since its square part represents (up to ordinary homotopy) the boundary of the
sUi
H-image of the rectangle [ti−1, ti]× [0, 1], we obtain

[sUi
f ′i ] = [p1Hi][sUi

fi][p2Hi−1]−1,

which gives hi = h′i, according to the second formula in Definition 2.5 and our choice
of g. Proving that hi = h′i for i = 1 and i = n is similar (and a bit shorter). Hence
δ(hn) . . . δ(h1) = δ(h′n′) . . . δ(h

′
1), as desired.

2.11. Lemma. Let f and f ′ be paths in B with endpoints in S and [f ] = [f ′] in π1(B, S).
There exists natural numbers m and n, weighted paths P i = (f i, n, t, U i, gi) (i = 1, . . . ,m)
and P ′i = (f i, n, t, U ′i, g′i) (i = 0, . . . ,m − 1) with f 0 = f , f 1 = f ′, U ′i−1 = U i, and
homotopies H i : P ′i−1 → P i (i = 1, . . . ,m).

Proof. [f ] = [f ′] means that there exists H : [0, 1]× [0, 1]→ B satisfying condition (a) of
Definition 2.9. Then, according to Lemma 6.8.5 in [Borceux-Janelidze, 2001], there exist
finite sequences x0, . . . , xm and y0, . . . , ym of real numbers with

• 0 = x0 < . . . < xm = 1 and 0 = y0 < . . . < yn = 1,

• for every (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, there exist U(i,j) ∈ U with

H([yj−1, yj]× [xi−1, xi]) ⊆ U(i,j).

Using these sequences we can define

• f i by f i(y) = H(y, xi) (i = 0, . . . ,m),

• t by tj = yj (j = 0, . . . , n),

• U i by U i
j = U(i,j) (i = 1, . . . ,m and j = 1, . . . , n),

• U ′i by U ′ij = U(i+1,j) (i = 0, . . . ,m− 1 and j = 1, . . . , n),

and choose g0, . . . , gm and g′0, . . . , g′m arbitrarily (see the last part of Lemma 2.4). It
remains to note that H induces homotopies H i : P ′i−1 → P i (i = 1, . . . ,m) via [xi−1, xi] ≈
[0, 1].

Now, following Lemmas 2.7 and 2.8, we make their strongest version:

2.12. Lemma. Let (f, n, t, U, g) and (f ′, n′, t′, U ′, g′) be weighted paths with [f ] = [f ′] in
π1(B, S), and (hn, . . . , h1) and (h′n′ , . . . , h

′
1) their associated sequences of morphisms in

π1(E, S). Then δ(hn) . . . δ(h1) = δ(h′n′) . . . δ(h
′
1).
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Proof. Let us write P = (f, n, t, U, g), δ(hn) . . . δ(h1) = δ[P ], and use similar notation for
other weighted paths. Using weighted paths P i (i = 1, . . . ,m) and P ′i (i = 0, . . . ,m− 1)
from Lemma 2.11, we see that

• δ[P ] = δ[P ′0] by Lemma 2.8;

• δ[P ′0] = δ[P 1] by Lemma 2.10;

• δ[P 1] = δ[P ′1] by Lemma 2.8 again, and so on.

This gives δ[P ] = δ[P ′], as desired.

Lemma 2.12 easily implies that sending [f ] to δ(hn) . . . δ(h1), where (hn, . . . , h1) is as
in Definition 2.5, determines a functor ε : π1(B, S) → G, and, to prove Theorem 2.2, it
remains to prove that it is the unique functor with εγ = δ.

To prove the equality εγ = δ, we chose:

• any path e in E with endpoints in E ×B S = p−1(S);

• a triple (n, t, U) as in Definition 2.3 with f = p(e), ei denoting the restriction of e
on [ti−1, ti], and fi denoting the map [ti−1, ti]→ Ui induced by f ;

• paths ri : [0, 1]→ E×BE×BE (i = 1, . . . , n−1) with ri(0) = (sUi
f(ti), e(ti), sUi+1

f(ti))
and ri(1) in the inverse image (E ×B E ×B E)×B S of S under the canonical map

E ×B E ×B E → B,

for each i = 0, . . . , n (again, such choices are possible by our assumption on path-
components of E ×B E ×B E in Theorem 2.2).

Then, using the weighted path (f, n, t, U, g), in which gi = 〈q1ri, q3ri〉, and its associated
sequence hn, . . . , h1, we can write:

εγ([e]) = ε([f ]) = δ(hn) . . . δ(h1)
= δ([sUnfn][p2gn−1]−1) . . . δ([p1gi][sUi

fi][p2gi−1]−1) . . . δ([p1g1][sU1f1])
= δ([sUnfn][q3rn−1]−1) . . . δ([q1ri][sUi

fi][q3ri−1]−1) . . . δ([q1r1][sU1f1]).

In order to complete this calculation, note that:

(a) psUi
fi = pei, pq3ri = pq2ri, and pq1ri = pq2ri;

(b) as follows from (a), 〈sUi
fi, ei〉, 〈q3ri, q2ri〉, and 〈q1ri, q2ri〉 are paths in E;

(c) thanks to (b), we can write:

δ([sUnfn][q3rn−1]−1) = δα([〈sUnfn, en〉][〈q3rn−1, q2rn−1〉]−1)
= δβ([〈sUnfn, en〉][〈q3rn−1, q2rn−1〉]−1) = δ([en][q2rn−1]−1),

δ([q1ri][sUi
fi][q3ri−1]−1) = δα([〈q1ri, q2ri〉][〈sUi

fi, ei〉][〈q3ri−1, q2ri−1〉]−1)
= δβ([〈q1ri, q2ri〉][〈sUi

fi, ei〉][〈q3ri−1, q2ri−1〉]−1) = δ([q2ri][ei][q2ri−1]−1),
δ([q1r1][sU1f1]) = δα([〈q1r1, q2r1〉][〈sU1f1, e1〉])

= δβ([〈q1r1, q2r1〉][〈sU1f1, e1〉]) = δ([q2r1][e1]);
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(d) the sequence [en][q2rn−1]−1, . . . , [q2ri][ei][q2ri]
−1, . . . , [q2r1][e1] is a composable se-

quence of morphisms in π1(E, S), and so

δ([en][q2rn−1]−1) . . . δ([q2ri][ei][q2ri]
−1) . . . δ([q2r1][e1])

= δ([en][q2rn−1]−1 . . . [q2ri][ei][q2ri]
−1 . . . [q2r1][e1]) = δ([en] . . . [e1]) = δ([e]).

That is,

εγ([e]) = δ([sUnfn][q3rn−1]−1) . . . δ([q1ri][sUi
fi][q3ri−1]−1) . . . δ([q1r1][sU1f1])

= δ([en][q2rn−1]−1) . . . δ([q2ri][ei][q2ri]
−1) . . . δ([q2r1][e1]) = δ([e])

(where the second equality follows from (c)), which proves that ε satisfies the equality
εγ = δ.

The uniqueness is easy: for any functor ε : π1(B, S)→ G with ε′γ = δ, and any path
f in π1(B, S), we have:

ε′([f ]) = ε′(γ(hn) . . . γ(h1)) = ε′γ(hn) . . . ε′γ(h1)) = δ(hn) . . . δ(h1) = ε([f ]),

where:

• (hn, . . . , h1) is the sequence of morphisms in π1(E, S) associated with any weighted
path constructed for f , which does exist by Lemma 2.4.

• the first equality follows from Lemma 2.6(b).

This completes our proof of Theorem 2.2.

3. Additional remarks

In what follows, Set, Top, and Grpd denote the categories of sets, of topological spaces,
and of groupoids, respectively; ∆ denotes the simplicial category, and, accordingly, Set∆op

denotes the category of simplicial sets.
Taking S = B in Theorem 2.2 we obtain:

3.1. Corollary. Let p : E → B be a locally sectionable continuous map of topological
spaces. There is a coequalizer diagram

π1(E ×B E)
α //

β
// π1(E)

γ // π1(B) ,

in Grpd, in which the functors α, β, and γ are induced respectively by the first and the
second projection E ×B E → E, and by p.
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3.2. Remark. Let us mention a couple of much easier counterparts of Corollary 3.1:

(a) Suppose p : E → B itself is sectionable, that is, p is a split epimorphism in Top.
Then the diagram

E ×B E //// E // B ,

becomes an absolute coequalizer diagram, that is, it is preserved not just by π1, but
by every functor defined on Top. In particular, this is the case when p is a trivial
fibre bundle.

(b) More generally, suppose the image S∆(p) of p : E → B under the singular complex
functor S∆ : Top → Set∆op

is an epimorphism. Then the diagram of Corollary
3.1 is again a coequalizer diagram since: (i) the functor S∆ being a right adjoint
preserves pullbacks, and so

S∆(E ×B E) //// S∆(E) ,

is the kernel pair of S∆(p); (ii) every epimorphism in Set∆op

is a coequalizer of
its kernel pair; (iii) the fundamental groupoid functor Set∆op → Grpd being a
left adjoint preserves coequalizers, and, composed with S∆, gives the fundamental
groupoid functor Top → Grpd. Moreover, our assumption here can be weakened
by using certain truncated simplicial sets instead of all simplicial sets.

Corollary 3.1 could be called the ‘absolute case’ of Theorem 2.2. The ‘opposite extreme
case’, which seems to be a new simple way of calculating the fundamental groups of some
topological spaces is:

3.3. Corollary. Let p : E → B be a locally sectionable continuous map of topological
spaces, and x an element of B such that the inverse image (E ×B E ×B E) ×B {x} of x
under the canonical map E×BE×BE → B meets every path-component of E×BE×BE.
Then the diagram

π1(E ×B E, {x})
α //

β
// π1(E, {x}) γ // π1(B, x),

in which the functors α, β, and γ are induced by the first and the second projection
E ×B E → E, and by p, respectively, is a coequalizer diagram in Grpd.

3.4. Remark. When B is a ‘good’ space admitting a universal covering map p : E → B,
the groupoids π1(E ×B E) and π1(E) are coproducts of indiscrete groupoids. Therefore
Theorem 2.2 and Corollaries 3.1 and 3.3 present π1(B, S), π1(B), and π1(B, x), respec-
tively, as colimits of indiscrete groupoids.



VAN KAMPEN’S THEOREM FOR LOCALLY SECTIONABLE MAPS 61

3.5. Remark. Since the fundamental group(oid) of a space B does not in general classify
covering spaces over B, one cannot deduce Theorem 1.1 from the results of [Brown-
Janelidze, 1997] based on categorical Galois theory [Janelidze, 1991]. Nevertheless, a
detailed comparison of the two approaches would be desirable, especially since all locally
sectionable continuous maps are effective descent morphisms in Top. In particular, it
would be interesting to answer the following questions:

(a) What is a necessary and sufficient condition on p : E → B under which the diagram
considered in Corollary 3.1 is a coequalizer diagram in Grpd?

(b) Compare the diagrams considered in Theorem 2.2 and in Corollary 3.1. In general
there is no way to conclude that the first of them is a coequalizer diagram whenever
the second one is. What are reasonable conditions on p : E → B under which such
conclusion can be made?

4. Theorem 1.1 almost implies Theorem 2.2

Let Top2 be the category of pairs (X,A), where X is a topological space and A is a subset
of X. In the notation of Section 2, consider the diagram

(E ×B E ×B E ′ ×B E ′, S) // //

����

(E ×B E ′ ×B E ′, S)

����

// (E ′ ×B E ′, S)

����
(E ×B E ×B E ′, S)

��

//// (E ×B E ′, S)

��

// (E ′, S)

p′

��
(E ×B E, S) //// (E, S) p

// (B, S)

in Top2, in which:

• E ′ is the coproduct of all elements of U, and p′ is induced by all the coproduct
injections;

• presenting pairs we use the same convention as for the fundamental groupoids, that
is, we write (E, S) instead of (E,E ×B S), etc.

• the bottom right-hand square is a pullback and all unlabeled arrows are obviously
defined canonical morphisms.

We observe:

(a) Once the columns of this diagram satisfy the triple intersection assumption of The-
orem 1.1, each of them is carried to a coequalizer diagram by the fundamental
groupoid functor Top2 → Grpd.
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(b) The first two rows of this diagram are absolute coequalizer diagrams (for the same
reason as in Remark 3.2(a)).

(c) As follows from (b), the first two rows of this diagram are also carried to a coequalizer
diagram by the fundamental groupoid functor Top2 → Grpd.

(d) Under the assumption made in (a), Theorem 2.2 follows from (a) and (c).

That is, under a mild additional condition, Theorem 2.2 can be deduced from 1.1 using
the pullback of p and p′ above and simple purely-categorical arguments. In particular,
this mild additional condition obviously holds when S = B.



VAN KAMPEN’S THEOREM FOR LOCALLY SECTIONABLE MAPS 63

References

F. Borceux and G. Janelidze, Galois Theories. Cambridge Studies in Advanced Mathe-
matics 72, Cambridge University Press, 2001.

R. Brown, Elements of modern topology. McGraw Hill (1968), Revised version available
as Topology and Groupoids (2006) from amazon.

R. Brown, From groups to groupoids: a brief survey. Bull. London Math. Soc. 19 (1987)
113-134.

R. Brown, Modelling and Computing Homotopy Types: I. Indagationes Math. (Special
issue in honor of L.E.J. Brouwer) 29 (2018) 459-482.

R. Brown and G. Janelidze, Van Kampen theorem for categories of covering morphisms
in lextensive categories. J. Pure Appl. Algebra 119, 1997, 255-263.

R. Brown and A. R. Salleh, A van Kampen theorem for unions of non-connected spaces.
Arch. Math. 42, 1984, 85-88.

R. Brown, P. J. Higgins, and R. Sivera, Nonabelian algebraic topology: filtered spaces,
crossed complexes, cubical homotopy groupoids. EMS Tracts in Mathematics Vol 15.
European Mathematical Society (2011).
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