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SPAN COMPOSITION USING FAKE PULLBACKS

Dedicated to Bob Rosebrugh, categorical communication catalyst

ROSS STREET

Abstract. The construction of a category of spans can be made in some categories
A which do not have pullbacks in the traditional sense. The PROP for monoids is a
good example of such an A . The 2012 book concerning homological algebra by Marco
Grandis gives the proof of associativity of relations in a Puppe-exact category based on
a 1967 paper of M.�. Calenko. The proof here is a restructuring of that proof in the
spirit of the �rst sentence of this Abstract. We observe that these relations are spans of
EM-spans and that EM-spans admit fake pullbacks so that spans of EM-spans compose.
Our setting is more general than Puppe-exact categories. We mention the formalism of
distributive laws which, in a generalized form, would cover our setting.
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Introduction

The construction of a category of spans can be made in some categories A not having
pullbacks in the traditional sense, only having some form of fake pullback. The PROP
for monoids is a good example of such an A ; it has a forgetful functor to the category of
�nite sets which takes fake pullbacks to genuine pullbacks.

As discussed in the book [16] by Marco Grandis, relations in a Puppe-exact category
C are zig-zag diagrams of monomorphisms and epimorphisms, rather than the jointly
monomorphic spans as for a regular category (see [7] for example). Associativity of these
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SPAN COMPOSITION USING FAKE PULLBACKS 103

zig-zag relations was proved by M.�. Calenko [6] over 50 years ago; also see [5] Appendix
A.5, pages 140�142.

The present paper is a restructuring of the associativity proof in the spirit of fake
pullbacks. The original category C does not even need to be pointed, but it should have a
suitable factorization system pE ,M q. The fake pullbacks are constructed in what we call
SpnpE ,M q, not in C itself, and there is no forgetful functor turning them into genuine
pullbacks. The relations are spans in SpnpE ,M q. The main point in proving associativity
of the span composition is that fake pullbacks stack properly.

Furthermore, we relate fake pullbacks to distributive laws in the sense of Jon Beck [2].
We are grateful to the referee for suggesting we include material on this.

1. Suitable factorization systems

Let pE ,M q be a factorization system in the sense of Freyd-Kelly [13] on a category C .
That is, E and M are sets of morphisms of C which satisfy the conditions:

FS0. if m P M and w is invertible then mw P M while if e P E and w is invertible then
we P E ;

FS1. if mu � ve with e P E and m P M then there exists a unique w with we � u and
mw � v;

FS2. every morphism f factorizes f � m � e with e P E and m P M .

If we write f : A� B, we mean f P E . If we write f : A� B, we mean f P M . Another
way to express FS1 is to ask, for all X e

ÝÑ Y P E and A m
ÝÑ B P M , that the square (1.1)

should be a pullback.

C pY,Aq
C pe,Aq

//

C pY,mq
��

C pX,Aq

C pX,mq
��

C pY,Bq
C pe,Bq

// C pX,Bq

(1.1)

1.1. Remark.

(a) Actually Freyd-Kelly [13] included the assumption, which in isolation from the other
conditions is clearly stronger than F0, that E and M are closed under composition
(see Ehrbar-Wyler [12]).

(b) If we were dealing with a factorization system on a bicategory C , we would ask (1.1)
(with the associativity constraint providing a natural isomorphism in the square)
to be a bipullback. Also, in FS2, we would only ask f � m � e; see Dupont-Vitale
[11]. This is relevant to Proposition 2.4 and Section 5 below.

The factorization system pE ,M q is suitable when it satis�es:
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SFS1. pullbacks of arbitrary morphisms along members of M exist;

SFS2. pushouts of arbitrary morphisms along members of E exist;

SFS3. the pullback of an E along an M is in E ;

SFS4. the pushout of an M along an E is in M ;

SFS5. a commutative square of the form

D // n //

e
����

B

d
����

A // m
// C

is a pullback if and only if it is a pushout.

1.2. Proposition.

(i) Spans of the form X � S � Y are jointly monomorphic.

(ii) Cospans of the form X � C � Y are jointly epimorphic.

Proof. A pullback of X � C � Y exists by SFS1 and X � C � Y is the pushout
of the resultant span by SFS5. Pushout cospans are jointly epimorphic. This proves (ii),
and (i) is dual.

1.3. Example. [Suitable factorization systems]

1. Take C to be the category Grp of groups, E to be the set of surjective morphisms
and M to be the set of injective morphisms.

2. Take C to be any Puppe-exact category as studied by Grandis [16], E the epimor-
phisms and M the monomorphisms. This includes all abelian categories.

3. Take C to be the category of spans in the category Setinj of sets and injective
functions. The objects are sets and the morphisms are isomorphism classes of spans
with both legs injective functions. Take E to consist of the morphisms represented
by spans i� with right leg an identity and M represented by spans i� with left leg
an identity.

4. Take C to be any groupoid with E � M containing all morphisms. This is a special
case of the next example.

5. Take C to be any category with pullbacks, E the isomorphisms and M all mor-
phisms.

6. If pE ,M q is a suitable factorization system on C then pM op,E opq is a suitable
factorization system on C op.

Now we remind the reader of Lemma 2.5.9 from [16].
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1.4. Lemma. In a commutative diagram of the form

A
d // //

��

`
��

B //
i //

��

m

��

C��
n

��

X e
// // Y //

j
// Z ,

(1.2)

the horizontally pasted square is a pullback if and only if both the component squares are
pullbacks.

Proof. �If� is true without any condition on the morphisms. For the converse, using
SFS1, take the pullback of j and n to obtain another pastable pair of squares with the
same left, right and bottom sides. The top composites are equal. By factorization system
properties and SFS3, the new top is also a factorization of i � d and thus isomorphic to
the given factorization. So both of the old squares are also pullbacks.

We might call the diagram (1.2) an M -morphism of factorizations. The dual of the
lemma concerns pushouts in E -morphisms of factorizations; it therefore holds. We did
not use SFS5 in proving the Lemma. However condition SFS5 does tell us that the left
square of (1.2) is also a pushout when the pasted diagram is a pullback.

2. The bicategory of EM-spans

Some terminology used here, for bicategories, spans and discrete �brations, is explained
in [28]; also see the beginning of Section 3 of [26].

Let pE ,M q be a suitable factorization system on the category C .
We de�ne a bicategory SpnpE ,M q with the same objects as C . The morphisms

pd,R,mq : U Ñ W are spans U � R � W in C . The 2-cells are the usual morphisms of
spans in a bicategory. Composition is the usual composition of spans; this uses conditions
SFS1, SFS3 and closure of E under composition.

Proposition 1.2 tells us that the bicategory SpnpE ,M q is locally preordered.

Each pX m
ÝÑ Y q P M gives a morphism m� : X

p1X ,X,mq
ÝÝÝÝÝÑ Y in SpnpE ,M q and each

pX
e
ÝÑ Y q P E gives a morphism e� : Y

pe,X,1Xq
ÝÝÝÝÝÑ X in SpnpE ,M q. Write M� for the class

of all morphisms isomorphic to m� for some m P M and write E � for the class of all
morphisms isomorphic to e� with e P E .

2.1. Proposition. If m P M then m� is a discrete �bration in SpnpE ,M q; that is, each
functor SpnpE ,M qpK,m�q is a discrete �bration.

Proof. We can choose the pullback so that the functor SpnpE ,M qpK,m�q, up to iso-

morphism, takes K
pe,R,nq
ÝÝÝÝÑ X to K

pe,R,mnq
ÝÝÝÝÝÑ Y . Given f : pd, S, `q ñ pe, R,mnq we see

that mnf � `, so f P M . Then f : pd, S, nfq ñ pe, R, nq is the only 2-cell lifting this f .
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2.2. Proposition. A morphism of SpnpE ,M q has an adjoint if and only if it is an
equivalence if and only if both legs of the span are invertible in C .

Proof. As in Proposition 2 of [7], we see that a span X
pe,R,mq
ÝÝÝÝÑ Y can only have a right

adjoint if e is invertible and, in this case, the right adjoint must, up to isomorphism, be

Y
pm,R,eq
ÝÝÝÝÑ X. For this, we require m P E . So m is also invertible. Then it is clear that

X
pe,R,mq
ÝÝÝÝÑ Y is an equivalence.

Notice that 2-cells between members of M�, 2-cells between members of E �, and 2-
cells from a member of E � to a member of M�, are all invertible. In the last case, the
existence of such a 2-cell implies both its domain and codomain are equivalences. A 2-cell
from an M� to an E� requires a morphism in M with a left inverse in E . The following
property makes one think of a distributive law for monads and a bicategorical comma
construction.

2.3. Proposition. Given X
m�ÝÝÑ Y P M� and Z

e�
ÝÑ Y P E �, there exists a diagram of

the form

J ē� //

m̄�

��

X

ks m�

��

Z
e�
// Y

(2.3)

in SpnpE ,M q, with ē� P E � and m̄� P M�, which is unique up to equivalence.

Proof. Interpreting m� � ē
� ¤ e� � m̄�, we see that m̄ � ē is forced to be an pE ,M q

factorization of e �m. For clari�cation: the uniqueness clause means that, given any span

X
pd,R,nq
ÐÝÝÝÝ K

pc,S,`q
ÝÝÝÑ Z with n and c invertible, there exists an equivalence K

ps,U,tq
ÝÝÝÑ J such

that ē� � ps, U, tq � pd,R, nq and m̄� � ps, U, tq � pc, S, `q, and this equivalence is unique
up to compatible isomorphism.

2.4. Proposition. pE �,M�q is a factorization system on the bicategory SpnpE ,M q.

Proof. Both E � and M� are closed under composition and contain the equivalences. For

FS2, every morphism U
pd,R,mq
ÝÝÝÝÑ W decomposes as U d�

ÝÑ R
m�ÝÝÑ W ; this decomposition

M�E � is unique up to equivalence. For FS1, the bipullback form of (1.1) can be routinely
checked.

2.5. Proposition. Pullbacks in C whose morphisms are all in M are taken by p�q� to
bipullbacks in SpnpE ,M q. Also, pushouts in C whose morphisms are all in E are taken
by p�q� to bipullbacks in SpnpE ,M q.
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3. Relations as spans of spans

By regular categories we mean those in the sense of Barr [1] which admit all �nite limits.
One characterization of the bicategory of relations in a regular category was given in [7].
A relation from X to Z in a regular category is a jointly monomorphic span from X to
Z; these are composed using span composition followed by factorization. Equivalently, a
relation from X to Z is a subobject of X � Z.

The category Grp of groups is regular. So relations are subgroups of products X �Z.
The Goursat Lemma [14] is a bijection between subgroups S ¤ X � Z of a cartesian
product of groups X and Z and end-�xed isomorphism classes of diagrams

X Uoo
moo d // // Y V

eoooo // n // Z . (3.4)

To obtain S from (3.4), take the pullback U ē
ÐÝ P

d̄
ÝÑ V of U d

ÝÑ Y
e
ÐÝ V then S is the

image of P
pmē,ed̄q
ÝÝÝÝÑ X � Z. To obtain the zig-zag (3.4) from S ãÑ X � Z, factorize the

two restricted projections to obtain

X Uoomoo Se1oooo d1 // // V // n // Z ,

then pushout e1 and d1 to obtain d and e. (Lambek [21] proved a similar result for some
categories of algebraic structures other than groups; also see [8, 15] for Goursat regular
categories.)

This motivates the de�nition of relation from X to Z in a category C equipped with
a suitable factorization system pE ,M q as an isomorphism class of diagrams of the form
(3.4). A good reference is Grandis [16] for the case where C is Puppe-exact.

The starting point for the present paper was the simple observation that a relation
diagram (3.4) is a span in SpnpE ,M q:

pd, U,m, Y, e, V, nq : X Y
pd,U,mq

oo
pe,V,nq

// Z . (3.5)

We would like to de�ne the category RelpE ,M q to have equivalence classes of spans
in SpnpE ,M q as morphisms. This is satisfactory as a de�nition of the underlying graph
but for the composition we need a well-de�ned way to compose spans in SpnpE ,M q.

4. A fake pullback construction

Let pE ,M q be a suitable factorization system on a category C . Although SpnpE ,M q
may not have all bipullbacks, we will now show that it does allow some kind of span
composition and this gives a composition of relations. The construction and proof of
associativity restructures that of Calenko [6]. We will see in Section 5 that the properties of
SpnpE ,M q established in Section 2 allow an abstract proof of associativity of composition
of relations.
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Take any cospan U
pd,R,mq
ÝÝÝÝÑ W

pe,S,nq
ÐÝÝÝÝ V in SpnpE ,M q. Construct the diagram

Q Ysoooo //
j

// V

X

r

OOOO

��

i
��

Z

ē

OOOO

��

n̄
��

d̄
oooo //

m̄
// S

e

OOOO

��

n

��

U R
d

oooo //
m

//W

(4.6)

in which the bottom right square is a pullback of R � W � S, the bottom left square
is an pE ,M q-factorization of the composite Z � R � U , the top right square is an
pE ,M q-factorization of the composite Z � S � V , and the top left square is a pushout
of the span X � Z � Y .

We call the span U
pr,X,iq
ÐÝÝÝÝ Q

ps,Y,jq
ÝÝÝÝÑ V the fake pullback of the given cospan U

pd,R,mq
ÝÝÝÝÑ

W
pe,S,nq
ÐÝÝÝÝ V . We obtain the diagram (4.7) in SpnpE ,M q. The top left square comes from

a pushout in C , the bottom right square from a pullback in C , while the 2-cells come
from factorizing an M followed by an E as an E followed by an M .

Q

r�

��

s� //

J

Y

ē�

��

j�
// V

+3 e�

��

X d̄� //

i�
��

Z

ks n̄�
��
J

m̄�
// S

n�

��

U
d�

// R m�

//W

(4.7)

4.1. Remark.

a. If d is invertible, so is s. If m is invertible, so is j.

b. If pE ,M q is proper (that is, every E is an epimorphism and every M is a monomor-
phism) then every morphism r : X Ñ Y of SpnpE ,M q is a �fake monomorphism� in
the sense that the fake pullback ofX r

ÝÑ Y
r
ÐÝ X is the identity spanX 1XÐÝ X

1XÝÑ X.

5. An abstraction

A bicategory S is de�ned to be fake pullback ready when it is locally preordered and is
equipped with a factorization system pU ,L q satisfying the following conditions:

V1. bipullbacks of U s along U s exist and are in U , and bipullbacks of L s along L s
exist and are in L ;



SPAN COMPOSITION USING FAKE PULLBACKS 109

V2. given X a
ÝÑ Z

x
ÐÝ Y with a P U and x P L , there exists a square

U b //

y

��

Y

ks x

��

X a
// Z ,

(5.8)

with b P U and y P L , which is unique up to equivalence;

V3. given a diagram

X
x //

r

��
J

Y
a //

s

��

Z

ks t

��

A y
// B

b
// C ,

(5.9)

with the left square a bipullback, r, s, t, x, y P L and a, b P U , and factorizations
a � x � v � c and b � y � w � d with v, w P L and c, d P U , there exists a diagram

X
c //

r

��

I

ks

v //

q

��
J

Z

t
��

A
d
// J w

// C

(5.10)

with the right square a bipullback and q P L ;

V4. given a diagram

D u //

e

��

E

+3

h //

f
��
J

F

g

��

X x
// Y a

// Z

(5.11)

with the right square a bipullback, x, u P L and h, a, e, f, g P U , and factorizations
h � u � p � k and a � x � v � c with v, p P L and c, k P U , there exists a diagram

D
k //

e

��
J

K
p
//

j

��

F

+3 g

��

X c
// I v

// Z

(5.12)

with the left square a bipullback and j P U .

5.1. Proposition. Let pE ,M q be a suitable factorization system on the category C . The
locally preordered bicategory SpnpE ,M q is rendered fake pullback ready by the factorization
system pE �,M�q of Proposition 2.4.
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Proof. Condition V1 is provided by Proposition 2.5. Condition V2 is provided by Propo-
sition 2.3. For condition V3, consider diagram (5.9) with x�, a�, . . . replacing x, a, . . . since
L � M� and U � E � in this case. The left square amounts to the pullback shown as
the right-hand square on the left-hand side of (5.13). The right-hand square with the
2-cell amounts to the factorization s � a � b � t. Now form the pullback on the left of
the left-hand side of (5.13) and the pullback on the right of the right-hand side of (5.13).
Since btv � sav � sxc � yrc, there exists a unique q such that dq � rc and wq � tv. So
we have the equal pastings as shown in (5.13).

I //
c //

��

v

��
J

X
r // //

��

x

��
J

A��
y

��

Z // a
// Y s

// // B

� I
q
// //

��

v

��

J //
d //

��

w

��
J

A��
y

��

Z
t
// // C //

b
// B

(5.13)

It follows that the left diagram on the right-hand side of (5.13) is a pullback and, by
SFS3, that q P E . Diagram (5.10) results.

It is V4 which requires suitable factorization condition SFS5. Consider diagram (5.11).
We have the pushout on the right of the left-hand side of (5.14) and the factorization
fx � ue. Form the pullback of a and x and note, using one direction of SFS5, that it
gives the pushout on the left of the left-hand side of (5.14). Next, factorize gv � pj
through K with p P M and j P E . Using functoriality of factorization FS1, we obtain a
unique k : K Ñ D with kj � ec and uk � hp.

I // v //

c
����

R

Z
g
// //

a
����
R

F

h
����

X // x
// Y

f
// // E

� I
j
// //

c
����

K //
p
//

k
����

F

h
����

X e
// // D // u

// E

(5.14)

By the dual of Lemma 1.4, it follows that both squares on the right-hand side of (5.14)
are pushouts. Diagram (5.12) results using the other direction of SFS5 to see that the
right square on the right-hand side of (5.14) is a pullback and hence p�k� � h�u�.

Let S be fake pullback ready. The fake pullback of a cospan U r
ÝÑ W

s
ÐÝ V in S is

constructed as follows. Factorize r � x � a and s � y � b with a, b P U and x, y P L .
Using half of V1, take the bipullback of x and y as shown in the bottom right square of
(5.15). Now construct the bottom left and top right squares of (5.15) using V2. Using
the other half of V1, we obtain the top left bipullback.

Q

b1

��

a1 //

J

Y

b̄
��

x̄ // V

+3 b
��

X ā //

ȳ

��

Z

ks y1

��
J

x1 // S

y

��

U a
// R x

//W

(5.15)
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The span U ȳb1
ÐÝ Q

x̄a1
ÝÝÑ V is our fake pullback of U r

ÝÑ W
s
ÐÝ V .

5.2. Proposition. Fake pullbacks are symmetric. That is, if U
s̄
ÐÝ Q

r̄
ÝÑ V is a fake

pullback of U
r
ÝÑ W

s
ÐÝ V then V

r̄
ÐÝ Q

s̄
ÝÑ U is a fake pullback of V

s
ÝÑ W

r
ÐÝ U .

Proof. In (5.15), the bipullbacks are symmetric and both 2-cells point to the boundary
of the diagram. So the diagram is symmetric about its main diagonal.

Note that, should a bipullback

U
b //

y

��

Y

�
ks x

��

X a
// Z ,

of X a
ÝÑ Z

x
ÐÝ Y exist with y P L and b P U , it would provide the square for V2. This

happens for example when a is an identity, b is an identity, and y � x. Consequently:

5.3. Proposition. An identity morphism provides a fake pullback of an identity mor-
phism along any morphism.

P t̄ //

¯̄s
��

fakepb

Q r̄ //

s̄
��

fakepb

V

s

��

X
t
// U r

//W

P r̄t̄ //

¯̄s
��

fakepb

V

s

��

X
rt
//W

(5.16)

5.4. Proposition. Fake pullbacks stack. That is, if the two squares on the left of (5.16)
are fake pullbacks then so is the pasted square on the right of (5.16).

Proof. Faced with a diagram like

Q

u
��

u //

J

Y

u

��

` // V

+3 u

��

u //

J

A

u

��

` // D

+3 u

��

X u //

`
��

Z

ks `
��

J

` // S u //

`
��

B

ks `
��
J

` // E

`
��

U u // R ` //W u // C ` // F

in which the arrows marked u are in U and those marked ` are in L , we apply condition
V3 to the middle bottom two squares and condition V4 to the middle top two squares to
obtain

Q

u
��

u //

J

Y

u

��

u //

J

I

u

��

` // A

+3 u

��

` // D

+3 u

��

X u //

`
��

Z

ks `
��

u // P

J
ks

` //

`
��

B

`
��
J

` // E

`
��

U u // R u // P 1
` // C ` // F
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which is again a fake pullback.

As a corollary of all this we have:

5.5. Theorem. Let S be a fake pullback ready bicategory. There is a category SpnrS s
whose objects are those of S , whose morphisms are equivalence classes of spans in S ,
and whose composition is de�ned by fake pullback.

Applying this theorem to the bicategory S � SpnpE ,M q of Proposition 5.1, we obtain
our category SpnrS s � RelpE ,M q of relations in C for the factorization system pE ,M q.

5.6. Remark.Given Remark 4.1, we might call S proper when the identity span provides
a fake pullback of each morphism with itself. In this case, each morphism X

r
ÝÑ Y in

SpnrS s satis�es rr�r � r where r� : Y Ñ X is the reverse span of r.

6. A distributive law formalism and the PROP example

The referee of this paper suggested explaining more about how the PROP for monoids �ts
into the fake pullback format and mentioned the Rosebrugh-Wood paper [25]. That paper
showed the connection between factorizations and distributive laws (in the sense of Beck
[2]), and showed that pullbacks are generalized distributive laws. The referee thought it
likely that fake pullbacks would provide distributive laws too. This section goes some way
towards addressing these points.

We work in any monoidal category V . For any monoidM we will denote the multipli-
cation by µ : M bM Ñ M and the unit by η : I Ñ M . Let V rM s denote the monoidal
category with objects pX,φq whereX and φ : MbX Ñ XbM are in V , where a morphism
f : pX,φq Ñ pY, ψq is a morphism f : X Ñ Y in V such that pfb1Mqφ � ψp1M bfq, and
tensor product is de�ned by pX,φq b pX 1, φ1q � pX bX 1, p1X b ψqpφ b 1X 1q. A distribu-
tive law in the monoidal category V of a monoid M around a monoid E is a morphism
λ : E bM ÑM bE satisfying the four conditions as in (6.17) and (6.18). This amounts
to saying that pE, λq is a monoid in V rM s.

E b E bM
1bλ
//

µb1

��

E bM b E
λb1
//M b E b E

1bµ

��

E bM
λ

//M b E

M
1η

&&

η1

��

E bM
λ
//M b E

(6.17)

E bM bM
λb1
//

1bµ

��

M b E bM
1bλ
//M bM b E

µb1

��

E bM
λ

//M b E

E
η1

&&

1η

��

E bM
λ
//M b E

(6.18)
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Then we obtain a monoid S �M b E, with multiplication

M b E bM b E
1bλb1
ÝÝÝÝÑM bM b E b E

µbµ
ÝÝÑM b E

and unit I ηbη
ÝÝÑM b E, called the wreath product of M and E (after [20]).

In Proposition 6.1 we describe distributive laws in the monoidal category V rM srpE, λqs.
Further iteration of this process is also of interest as studied by Cheng [9].

6.1. Proposition. Given four monoids E, M , E 1 and M 1, and six distributive laws

E bM
λ
ÝÑM b E M 1 b E 1 λ1

ÝÑ E 1 bM 1 E 1 b E
π
ÝÑ E b E 1

M 1 bM
κ
ÝÑM bM 1 M 1 b E

ν
ÝÑ E bM 1 E 1 bM

ν1
ÝÑM b E 1

(6.19)

satisfying the four hexagonal conditions (6.20), (6.21), (6.22), (6.23) (in which the symbol
b is omitted to save space), let S � M b E and S 1 � E 1 bM 1 be the wreath product
monoids for λ and λ1. Then the composite

σ � pE 1M 1ME
1bκb1
ÝÝÝÝÑ E 1MM 1E

ν1bν
ÝÝÝÑME 1EM 1 1bπb1

ÝÝÝÝÑMEE 1M 1q

is a distributive law of S around S 1.

M 1EM ν1 //

1λ
��

EM 1M 1κ // EMM 1

λ1
��

M 1ME
κ1
//MM 1E

1ν
//MEM 1

(6.20)

E 1EM
1λ //

π1
��

E 1ME
ν11 //ME 1E

1π
��

EE 1M
1ν1
// EME 1

λ1
//MEE 1

(6.21)

M 1E 1E
λ11 //

1π
��

E 1M 1E
1ν // E 1EM 1

π1
��

M 1EE 1
ν1
// EM 1E 1

1λ1
// EE 1M 1

(6.22)

M 1E 1M
1ν1 //

λ11
��

M 1ME
κ1 //MM 1E 1

1λ1

��

E 1M 1M
1κ
// E 1MM 1

ν11
//ME 1M 1

(6.23)
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Proof. We must prove that σ satis�es conditions (6.17), (6.18) while remaining aware
that the multiplications for S and S 1 involve λ and λ1. To my mind the best way to do this
is using string diagrams for monoidal categories as per [17]. Multiplications of monoids
are depicted as �Y�-shaped string diagrams while units are lollipops. The distributive
laws are depicted by two strings crossing left over right. Diagrams (6.20), (6.21), (6.22),
(6.23) appear as Reidemeister moves of Type III (or, equally as Yang-Baxter or braid
equations). The diagram for σ is four strings with the �rst two crossed over the second
two. With this, we leave the string calculations to the reader.

The particular monoidal category V to which we wish to apply this proposition is the
category rΩ � Ω, Sets of families A � pApx, yqqx,yPΩ of sets doubly indexed by the set Ω,
with tensor product de�ned by

pB b Aqpx, zq �
¸

zPΩ

Bpy, zq � Apx, yq .

Monoids M in this V are categories with Ω as set of objects. This V also has a tensor-
product-reversing involution p�q1 : V rev Ñ V given by the transpose A1px, yq � Apy, xq.
For a monoid M , the monoid M 1 is the opposite of M as categories.

Now, to have the data for Proposition 6.1, we only require two monoids M and E, the
other two obtained by applying the involution, and four distributive laws λ, π, κ and ν,
the other two obtained by applying the involution to λ and ν, subject to the conditions
π1 � π, κ1 � κ, (6.20) and (6.21).

From [25] we know that monoids E and M with a distributive law E bM
λ
ÝÑM b E

amount to a �strict factorization system� pE,Mq on the category C � M b E given by
the wreath product. As pointed out in [25], this terminology from [18] is not perfect
since strict factorization systems need not be factorization systems; neither E nor M is
required to contain all the isomorphisms. Adaptations of �distributive law� required to
obtain factorization systems themselves are provided in [25] and [20]; possibly [27] would
also be of interest in this connection.

Moreover, Rosebrugh-Wood [25] observe that pullbacks in a category C also provide an
example of their generalized distributive laws. In our present notation, for a monoid C in
V � rΩ�Ω, Sets, chosen pullback in the category C would be a morphism C 1bC Ñ CbC 1.
Any generalized distributive law of the form C 1bC Ñ CbC 1 could be considered a formal
fake pullback which turns the formal wreath product C b C 1 into a category of spans in
C.

To accommodate the setting of Section 5 we need a generalized form of distributive
law. Then, su�ce it to say here that λ comes from the factorization system pU ,L q on
S , that π and κ come from condition V1, that ν comes from condition V2, while the
hexagons (6.20) and (6.21) amount to conditions V3 and V4; and of course σ is the fake
pullback.

Let us now look at the PROP for monoids; for background see [22, 23, 24]. Take Ω to
be the set N of natural numbers n ¥ 0. Write xny for the set t1, 2, . . . , nu. Write P for the
permutation category; that is, its set of objects is N while the homset Ppm,nq is empty
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unless m � n and Ppn, nq is the set of bijective functions α : xny Ñ xny. Write ∆ for the
algebraists' simplicial category; the set of objects is again N while the homset ∆pm,nq is
the set of order-preserving functions ξ : xmy Ñ xny.

A distributive law λ : P b ∆ Ñ ∆ b P is described, for example, in Section 4 of [10]
where the notation is:

λpn
α
ÝÑ n,m

ξ
ÝÑ nq � pm

ξαÝÑ n,m
αξ
ÝÑ mq .

Actually, the distributive law is described explicitly there, both categorically and geomet-
rically1, for the braid category B rather than P. The wreath product M � ∆ b P is the
category underlying the PROP for monoids. Here we are not discussing the symmetric
monoidal structure on M; however, see Section 5 of Lack [19].

A morphism of M is a pair pξ, αq : mÑ n. However, we can identify such morphisms
with functions f : xmy Ñ xny equipped with a linear order on each �bre f�1pjq. For, the
composite function f � ξα has a linear order on each �bre f�1pjq de�ned by i ¤j i

1 if
and only if αpiq ¤ αpi1q in xmy. Conversely, each function f : xmy Ñ xny equipped with a
linear order ¤j on each �bre arises in that way from a unique pair pξ, αq with ξ : mÑ n
in ∆ and α : m Ñ m in P. The composition of M using the distributive law λ above
reinterprets as composition of functions xmy f

ÝÑ xny
g
ÝÑ xpy with linear order on each �bre

pgfq�1pkq �
¸

jPg�1pkq

f�1pjq

de�ned by the usual ordered sum of ordered sets.
While M does not have pullbacks, we do have a distributive law σ : M1bMÑMbM1.

It does not come from component distributive laws as in Proposition 6.1. To de�ne this

σ, take the pullback span xmy ḡ
ÐÝ xqy

f̄
ÝÑ xpy of the cospan xmy f

ÝÑ xny
g
ÐÝ xpy in the skeletal

category of �nite sets. We use the canonical isomorphisms

f̄�1pkq � f�1pgpkqq , ḡ�1piq � g�1pfpiqq

to transport linear orders of the �bres of f and g to those of f̄ and ḡ. In this way, we

have σpn
pζ,βq
ÐÝÝÝ p,m

pξ,αq
ÝÝÝÑ nq � pq

pξ̄,ᾱq
ÝÝÝÑ p,m

pζ̄,β̄q
ÐÝÝÝ qq such that the square

q
pξ̄,ᾱq

//

pζ̄,β̄q
��

p

pζ,βq
��

m
pξ,αq

// n

commutes in M. The wreath product MbM1 for σ is the category underlying the PROP
for bimonoids (also called �bialgebras�); see Pirashvili [24].

�������������������
1In the diagram on top of page 59 of [10] there is an isolated dot missing on the left of the codomain

on the right-hand side.
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