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SIMPLICIAL SETS INSIDE CUBICAL SETS

THOMAS STREICHER AND JONATHAN WEINBERGER

Abstract. As observed recently by various people the topos sSet of simplicial sets
appears as an essential subtopos of a topos cSet of cubical sets, namely presheaves
over the category FL of finite lattices and monotone maps between them. The latter
is a variant of the cubical model of type theory due to Cohen et al. for the purpose of
providing a model for a variant of type theory which validates Voevodsky’s Univalence
Axiom and has computational meaning.

Our contribution consists in constructing in cSet a fibrant univalent universe for those
types that are sheaves. This makes it possible to consider sSet as a submodel of cSet
for univalent Martin-Löf type theory.

Furthermore, we address the question whether the type-theoretic Cisinski model struc-
ture considered on cSet coincides with the test model structure, the latter of which
models the homotopy theory of spaces. We do not provide an answer to this open
problem, but instead give a reformulation in terms of the adjoint functors at hand.

1. Introduction

As observed in [HS94] intensional Martin-Löf type theory should have a natural inter-
pretation in weak ∞-groupoids. In the first decade of this millennium it was observed
that simplicial sets are a possible implementation of this idea and around 2006 Voevodsky
proved that the universe in question validates the so-called Univalence Axiom (UA) which
roughly speaking states that isomorphic types are propositionally equal, see [KL12] for a
detailed proof.

But adding a constant inhabiting the type expressing UA gives rise to a type theory
lacking computational meaning. To overcome this problem Coquand et al. [CCHM18]
have developed a so-called Cubical Type Theory based on explicit box filling operations
from which UA can be derived. Cubes are finite powers of an interval object I which
itself is not a proper type. In [CCHM18] this type theory is interpreted in the topos of
covariant presheaves over the category of finitely presented free de Morgan algebras. It is
clear that (at least) the standard intensional Martin-Löf type theory fragment together
with the Univalence Axiom can be interpreted in the presheaf category cSet over the site
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2 which is the full subcategory of Poset on finite powers of the 2 element lattice I. This
site is op-equivalent to the algebraic theory of distributive lattices as observed in [Spi16].

As observed independently in [KV20] the topos sSet appears as a subtopos of cSet
and actually as an essential subtopos, cf. [Sat18].

Starting from a universe of fibrant cubical sets within cSet we will construct a universe
for fibrant simplicial sets within cSet. As it turns out, this universe is itself fibrant and
univalent.

2. Simplicial sets inside cubical sets

We write ∆ for the full subcategory of Poset on finite ordinals greater 0 and we write 2

for the full subcategory of Poset on finite powers of I, the 2 element lattice. Presheaves
over ∆ are called simplicial sets and presheaves over 2 are called cubical sets. We write
sSet and cSet for the toposes of simplicial and cubical sets, respectively.

Kapulkin and Voevodsky have observed in [KV20] that one may obtain sSet as a
subtopos of cSet in the following way. The nerve functor Nv : Cat → sSet is known
to be full and faithful and so is its restriction u : 2 → sSet to the full subcategory 2

of Cat. This functor u induces an adjunction u! a u∗ : sSet → cSet where u∗(X) =
sSet(u(−), X) and u! is the left Kan extension of u along Y2 : 2→ cSet. It follows from
general topos theoretic results that u! a u∗ exhibits sSet as a subtopos of cSet induced
by the Grothendieck topology J consisting of those sieves in 2 which are sent by u to
jointly epic families in sSet.

A more direct proof of a stronger result has been found by Sattler in [Sat18] and
independently by the authors of this paper based on the well known fact that splitting
idempotents in 2 gives rise to the category of finite lattices and monotone maps between
them. E.g. by restricting to subobjects of objects in 2 one obtains an equivalent small
full subcategory FL of Poset. Thus cSet is equivalent to F̂L = SetFLop

for which reason
we write cSet for F̂L.

The inclusion functor i : ∆→ FL induces an essential geometric morphism i! a i∗ a i∗
which, moreover, is injective, i.e. i∗ and thus also i! is full and faithful. The inverse image
part i∗ restricts presheaves over FL to presheaves over ∆ (by precomposition with iop).
The direct image part i∗ is given by i∗(X) = sSet(Nv(−), X) since Nv restricted to FL is
given by i∗ ◦ YFL. The cocontinuous functor i! is the left Kan extension of YFL ◦ i along

Y∆. It sends X ∈ sSet to the colimit of ∆↓X ∂0→ ∆
i→ FL

YFL−→ cSet.
Although not needed in full detail later on, we now give a rather explicit description

of the Grothendieck topology corresponding to the injective geometric morphism i∗ a i∗:
S ⊆ YFL(L) is a cover iff i∗S = i∗YFL(L), i.e. S contains all chains in L, i.e. all monotone
maps c : [n]→ L.1 Obviously, such an S contains all monotone maps to In whose image is

1Thus, a sieve S ⊆ YFL(In) covers iff for every maximal chain C ⊆ In there is an idempotent r ∈ S
whose image is C. As mentioned earlier, recall that finite lattices are the idempotent completion of the
cube category 2.
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contained in C. Thus the collection of all monotone maps to In whose image is contained
in a (maximal) chain in In is the least covering sieve for In.

3. Type-theoretic model structures on simplicial and cubical sets

The representable object I in cSet and sSet induces a Cisinski model structure on these
presheaf toposes which is generated by open box inclusions as described in the following
definition. For a general account cf. [Cis19], Sec. 2.4., Thm. 2.4.19.

3.1. Definition. [Type-theoretic model structure on sSet and cSet] Let E be cSet or
sSet. The interval I is given by YFL(I) and Y∆(I), respectively. The type-theoretic model
structure on E is defined by taking as cofibrations the monomorphisms and as fibrations
those maps which are weakly right orthogonal to all open box inclusions ({ε}×X)∪ (I×
Y ) ↪→ I×X where Y ↪→ X and ε ∈ {0, 1},

In fact, this Cisinski model structure on simplicial sets coincides with the well known
Kan model structure since by [GJ09], Ch. I, Prop. 4.2, open box inclusions and horn
inclusions generate the same class of anodyne extensions.

Furthermore, it is obtained just by restricting the type-theoretic model structure on
cubical sets defined above to simplicial sets.

In this section, we present a proof of this fact. All of the results have previously
been established by Sattler in [Sat18], cf. Prop. 3.3 and Sec. 3.3. We recall them here for
clarification of context for the later sections, in particular for direct use in the universe
construction of Sec. 4.

3.2. Proposition. The inclusion i∗ : sSet→ cSet preserves and reflects fibrations.

Proof. From the preservation properties of the sheafification functor i∗ it follows im-
mediately that open box inclusions in sSet are precisely the sheafifications of open box
inclusions in cSet.

Since both in cSet and sSet fibrations are those maps which are weakly right orthog-
onal to all open box inclusions a map f in sSet is a fibration iff i∗f is a fibration in cSet.

Writing F for the class of fibrations in cSet the class of Kan fibrations in sSet is given
by F ∩ sSet (considering sSet as full subcategory of cSet via i∗).

Sattler has pointed out to us an elegant argument that i∗ preserves and reflects weak
equivalences between fibrant objects.

3.3. Proposition. For fibrant objects A,B ∈ sSet a map f : A→ B is a weak equiva-
lence in sSet iff i∗f is a weak equivalence in cSet.

Proof. By [Cis19], Prop. 2.4.26, since both sSet and cSet are Cisinski model categories
weak equivalences between fibrant objects are just homotopy equivalences and these are
preserved by i∗ and i∗ since these functors preserve I and finite products.
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3.4. Theorem. The adjunction i∗ a i∗ is a Quillen adjunction. Moreover, i∗ preserves
weak equivalences between arbitrary objects.

Proof. By Proposition 3.2 the functor i∗ preserves fibrations. As i∗ is in turn a right
adjoint it preserves monomorphisms. Thus i∗ a i∗ is a Quillen adjunction.

As every cubical set is cofibrant, by Ken Brown’s Lemma i∗ preserves weak equiva-
lences.

Even more is true, namely i! a i∗ is a Quillen adjunction as well, as shown by Sattler
in [Sat18], Sec. 3.3. Hence, in particular i∗ also preserves fibrations.

3.5. Theorem. The adjunction i! a i∗ is a Quillen adjunction.

Alas, it is not known whether i∗ a i∗ is a Quillen equivalence. For that purpose one
would have to show that for fibrant B ∈ sSet and arbitrary A ∈ cSet a map f : i∗A→ B
is a weak equivalence in sSet iff the transpose f̌ : A→ i∗B is a weak equivalence in cSet.

4. Universes in cubical sets

In general, given a finite limit category C small full subfibrations of the fundamental
(codomain) fibration PC : C2 → C are given by pullback-stable classes S of morphisms
in C admitting a generic family, i.e. a map π ∈ S s.t. every map f ∈ S arises as pullback
of π, cf. [Str20].

Given a Grothendieck universe U this induces a universe à la Yoneda π : E → U in
F̂L which is generic for the class of U -small maps in F̂L [Str05].

Now, as described in [GS17, Sect. 9] there is a universe πc : Ec → Uc generic2 for
U -small fibrations in cSet such that Uc is fibrant. Moreover, the universe πc indeed arises
as a subuniverse of π via a map uc : Uc → U . Note that as described in [GS17] Uc(L) does
not simply consist of U -small fibrations over YFL(L) but rather such fibrations together
with a functorial choice of fillers which are forgotten by uc.

Recall from [KL12], Def. 3.2.10, the definition of a univalent universe. By Kripke–
Joyal translation, this amounts to the following. A universe π : E → U is univalent if and
only if for any f, g : I → U from f ∗π ∼ g∗π it follows that f ∼ g, i.e. classifying maps
are unique up to homotopy.

We now give the construction of a fibrant univalent universe in cubical sets which is
generic for small fibrations which are families of sheaves. Recall from [Str05] that a map
a : A→ I is a family of sheaves iff the naturality square

A
ηA- i∗i

∗A

I

a
?

ηI
- i∗i

∗I

i∗i
∗a

?

2i.e. all U-small fibrations can be obtained as pullback of the generic one in a typically non-unique
way
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is a pullback. As follows from [Str05] i∗i
∗πc is a generic family for maps in cSet which

are small fibrations and families of sheaves but, alas, this universe is not univalent. In
the rest of this section we construct a univalent universe from this making, however, use
of the univalent universe πs : Es → Us in sSet as constructed in [KL12].

4.1. Theorem. A univalent small fibration generic for small fibrations which are also
families of sheaves can be obtained by pulling back i∗i

∗πc along the homotopy equalizer of
i∗e ◦ i∗p and idi∗Us where e and p are maps such that both squares in

Es
- i∗Ec i∗Ec

- Es

Us

πs

?

e
- i∗Uc

i∗πc

?

i∗Uc

i∗πc

?

p
- Us

πs

?

are pullbacks.

Proof. We start with two universal fibrations, namely πs : Es → Us in sSet classifying
for small Kan fibrations, and πc : Ec → Uc in cSet classifying for small fibrations in the
type-theoretic model structure.

By Thm. 3.5 the functor i∗ preserves fibrations for which reason i∗πc is a fibration.
Thus, there is a map p : i∗Uc → Us fitting into a pullback square:

i∗Ec
- Es

i∗Uc

i∗πc

?

p
- Us

πs

?

On the other hand, small fibrations which are families of sheaves are in the essential image
of i∗ when restricted to fibrations in cSet. Thus, we obtain that in turn πs arises as a
pullback of i∗πc, i.e. there is a map e : Us → i∗Uc such that we have a pullback square:

Es
- i∗Ec

Us

πs

?

e
- i∗Uc

i∗πc

?

Since the universe πs is univalent, it is classifying up to homotopy, rather than merely
generic. Thus, pasting the two pullback squares together we obtain that Us classifies itself
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through the composite p ◦ e : Us → Us. By uniqueness up to homotopy, p ◦ e must then
be homotopic to idUs :

Es
- i∗Ec

- Es

Us

πs

?

e
- i∗Uc

i∗πc

?

p
- Us

πs

?

Since i∗ preserves fibrations by Prop. 3.2, pullbacks and ∼ (homotopy) for maps be-
tween fibrant objects we have

i∗Es
- i∗i

∗Ec
- i∗Es

i∗Us

i∗πs

?

i∗e
- i∗i

∗Uc

i∗i
∗πc

?

i∗p
- i∗Us

i∗πs

?

with i∗p ◦ i∗e = i∗(p ◦ e) ∼ i∗(idUs) = idi∗Us . We want to argue that i∗πs is a univalent
universe for small fibrations that are families of sheaves.

For this purpose, consider a small fibration p : A→ I together with a diagram:

A
a

-

b
- i∗Es

(1)

I

p

? f
-

g
- i∗Us

i∗πs

?

This factors as follows:

A
ηA - i∗i

∗A
a′

-

b′
- i∗Es

(2) (3)

I

p

?

ηI
- i∗i

∗I

i∗i
∗p

? f ′
-

g′
- i∗Us

i∗πs

?

Square (3) is the image of Square (1) under the reflection i∗i
∗, so it is indeed a pullback.



282 THOMAS STREICHER AND JONATHAN WEINBERGER

By the Pullback Lemma, then Square (2) is a pullback, too:

A
ηA - i∗i

∗A

I

p

?

ηI
- i∗i

∗I

i∗i
∗πs

?

This means, p : A → I is a family of sheaves, proving one part of the claim. Now, the
functor i∗ preserves pullbacks, thus it maps Square (3) to

i∗A
i∗a′

-

i∗b′
- Es

i∗I

i∗p

? i∗f ′
-

i∗g′
- Us

πs

?

where we assume for sake of simplicity that i∗i∗ is the identity functor.
Univalence of πs implies i∗f ′ ∼ i∗g′. Since sSet arises as a full subcategory of cSet,

there exist maps f̃ and g̃ in sSet such that f ′ = i∗f̃ and g′ = i∗g̃, hence f̃ ∼ g̃. Since i∗
preserves homotopy between maps, f ′ = i∗f̃ ∼ i∗g̃ = g′. Finally, this implies f ∼ g.

Thus, i∗πs is a fibrant univalent universe for small fibrations that are families of
sheaves.

Now, considering the diagram

i∗i
∗Ec

- i∗Es
- i∗i

∗Ec

i∗i
∗Uc

i∗i
∗πc

?

i∗p
- i∗Us

i∗πs

?

i∗e
- i∗i

∗Uc

i∗i
∗πc

?

we find that i∗i
∗πc is generic for small fibrations which are families of sheaves since i∗πs

is a classifying fibration and the right-hand square commutes.
As argued before, the maps i∗e and i∗p form a homotopy section-retraction pair.

Hence, i∗e is a homotopy equalizer of i∗e ◦ i∗p and idUs . Pulling back i∗i
∗πc along this

homotopy equalizer yields a univalent subuniverse of the constructive universe i∗i
∗πc in a

constructive way. But as shown above i∗i∗πc is nonconstructively equivalent to i∗πc which
is a universe in a nonconstructive way.
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5. Does the type-theoretic model structure on cSet coincide with the test
model structure?

Having discussed how the type-theoretic model structure coincides with the standard Kan
model structure on simplicial sets the following question arises: Does the type-theoretic
model structure on cubical sets also present the (standard) homotopy theory of spaces? To
this date, the question remains unanswered. In the section at hand, we give a formulation
of this problem in terms of test model structures, using the Quillen adjunctions discussed
previously.

Introduced by Grothendieck [Gro83], test categories admit a certain model structure on
their presheaf category whose homotopy category is equivalent to the standard homotopy
category of spaces. A general comprehensive theory of test model structures has been
developed by Cisinski in his thesis [Cis06]. Further accounts are given in Jardine [Jar06]
and Maltsiniotis [Mal05].

In particular the simplex category ∆ is a test category ([Mal05], Prop. 1.5.13), as are
most of the familiar cube categories, cf. [Cis06], Ch. 8, [Jar06], Sec. 8, and [BM17].

For a concise recollection of the notions of test category and test model structure
cf. [Jar06], Sec. 2.

In our setting, we can ask if the type-theoretic model structure on cubical sets coincides
with the test model structure. Since this is still an open problem, we are not providing
an answer, but rather an interesting reformulation of the problem. Namely, the type-
theoretic model structure on cSet coincides with the test model structure if and only if
all the components of the counit of i! a i∗ are weak equivalences.

We begin our discussion by noting that the inclusion functor i : ∆ ↪→ FL is aspherical
in the sense of [Mal05], Sec. Def. 1.1.2, i.e. Nv(i ↓ L) is contractible in the Kan model
structure on sSet, for all L ∈ FL. This follows since every comma category i ↓ L is
connected. Thus by [Mal05, Th. 1.2.9] the functor i∗ : cSet → sSet preserves and
reflects weak equivalences of the respective test model structures. Since i∗ also preserves
monos the adjunction i∗ a i∗ is a Quillen equivalence between cSet and sSet endowed
the respective test model structures.

Let εX : i!i
∗X → X be the counit of i! a i∗ and ηX : X → i∗i

∗X be the unit of i∗ a i∗.
Both maps are sent to isos by i∗ and thus are weak equivalences w.r.t. the test model
structure on cSet.

We know that both i! a i∗ and i∗ a i∗ are Quillen pairs when cSet is endowed with
the type-theoretic model structure. Thus, if the type-theoretic model structure on cSet
coincides with the test model structure then all ηX : X → i∗i

∗X and εX : i!i
∗X → X

are weak equivalences w.r.t. the type-theoretic model structure on cSet. But if all εX
are weak equivalences w.r.t. the type-theoretic model structure then it coincides with the
test model structure which can be seen as follows. Suppose m : Y → X in cSet is an
anodyne cofibration w.r.t. the test model structure then i∗m is an anodyne cofibration in
sSet from which it follows that i!i

∗m is an anodyne cofibration w.r.t. the type-theoretic
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model structure on cSet. But since

i!i
∗Y

εY- Y

i!i
∗X

i!i
∗m

?

εX
- X

m
?

commutes it follows by the 2-out-of-3 property for weak equivalences that m is a weak
equivalence and thus an anodyne cofibration w.r.t. the type-theoretic model structure on
cSet.

Thus, summarizing the above considerations we conclude that the type-theoretic and
the test model structure on cSet coincide if and only if all εX : i!i

∗X → X are weak
equivalences in the type-theoretic model structure on cSet. Alas, we do not know whether
this is the case in general.

6. Conclusion

Using the fact that sSet is an essential subtopos of cSet we have constructed a fibrant
univalent universe inside cSet which is generic for small families of sheaves, i.e. simplicial
sets.

However, this construction makes use of the univalent universe inside sSet. Formally
speaking this universe can be constructed in the internal language of cSet but only at
the price of importing the inconstructive universe πs from sSet via i∗.

Nevertheless, this may still model an extension of the cubical type theory of [CCHM18]
providing a univalent universe for small simplicial sets the precise formulation of which
we leave for future work.
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