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ON THE FORMAL THEORY OF PSEUDOMONADS AND
PSEUDODISTRIBUTIVE LAWS

NICOLA GAMBINO AND GABRIELE LOBBIA

Abstract. We contribute to the formal theory of pseudomonads, i.e. the analogue for
pseudomonads of the formal theory of monads. In particular, we solve a problem posed
by Lack by proving that, for every Gray-category K, there is a Gray-category Psm(K)
of pseudomonads, pseudomonad morphisms, pseudomonad transformations and pseu-
domonad modifications in K. We then establish a triequivalence between Psm(K) and
the Gray-category of pseudomonads introduced by Marmolejo and give a simpler proof
of the equivalence between pseudodistributive laws and liftings of pseudomonads to 2-
categories of pseudoalgebras.

Introduction

Context and motivation. Monads are one of the fundamental notions of category the-
ory [Mac Lane, 1998, Chapter VI]. For example, they provide a homogeneous approach
to the study of categories of sets equipped with algebraic structure, such as groups and
monoids [Barr and Wells, 1985]. Furthermore, Beck’s theorem on distributive laws be-
tween monads [Beck, 1969] describes concisely the structure that is necessary and sufficient
in order to combine two algebraic structures, so that the operations of one distribute over
those of the other. For example, the monads for groups and for monoids can be combined
via a distributive law to define the monad for rings.

The formal theory of monads, originally introduced by Street [Street, 1972] and later
developed further by Lack and Street [Lack and Street, 2002], offers an elegant and mathe-
matically efficient account of the theory of monads, starting from the observation that the
notion of a monad can be defined within any 2-category (so that the usual notion is recov-
ered by considering the 2-category of categories, functors and natural transformations).
Among many other results, the formal theory of monads provides a characterisation of
the existence of categories of Eilenberg-Moore algebras as a completeness property and,
importantly for our purposes, a simple account of Beck’s theorem on distributive laws.

In recent years, motivation from pure mathematics, e.g. in the theory of operads [Fiore
et al., 2008, Fiore et al., 2018, Gambino and Joyal, 2017, Garner, 2008], and theoretical
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computer science, e.g. in the study of variable binding [Cattani and Winskel, 2005, Curien,
2012, Tanaka and Power, 2006b], led to significant interest in pseudomonads [Lack, 2000,
Marmolejo, 1997, Marmolejo, 2004, Walker, 2019], which are the counterparts of monads
in 2-dimensional category theory, obtained by requiring the axioms for a monad to hold
only up to coherent isomorphism rather than strictly [Bunge, 1974]. Here, one of the key
issues has been the proof of a counterpart of Beck’s theorem on distributive laws, which
requires a satisfactory axiomatisation of the notion of a pseudostributive law [Cheng et al.,
2003, Marmolejo, 1999, Marmolejo and Wood, 2008, Tanaka, 2004, Tanaka and Power,
2006a], building on early work of Kelly [Kelly, 1974] on semi-strict distributive laws.
This is a difficult question because such a notion necessarily involves complex coherence
conditions.

Given how the formal theory of monads offers a simple proof of Beck’s theorem on
distributive laws, it seems natural to attack this problem by developing a formal theory
of pseudomonads. In order to do this, however, one needs to face the challenge that, just
as the formal theory of monads is formulated within 2-dimensional category theory [Kelly
and Street, 1974], the formal theory of pseudomonads is developed within 3-dimensional
category theory [Gordon et al., 1995, Gurski, 2013], which is notoriously hard. In this
setting, it is convenient to work with Gray-categories, i.e. semistrict tricategories [Gordon
et al., 1995, Section 4.8], which are easier to handle than tricategories, but sufficiently gen-
eral for many purposes, since every tricategory is triequivalent to a Gray-category [Gordon
et al., 1995, Theorem 8.1].

In spite of significant advances in the creation of a formal theory of pseudomonads in
the works cited above, there are still fundamental questions to be addressed. In partic-
ular, there is not yet a direct counterpart of the 2-category Mnd(K) of monads, monad
morphisms and monad transformations in a 2-category K, which is the the starting point
of the formal theory of monads [Street, 1972]. Filling this gap would involve the definition,
for a Gray-category K, of a 3-dimensional category Psm(K) having pseudomonads in K
as 0-cells, pseudomonad morphisms as 1-cells, and appropriately defined pseudomonad
transformations and pseudomonad modifications as 2-cells and 3-cells, respectively.

This issue was raised by Lack in [Lack, 2000, Section 6], who suspected that defin-
ing Psm(K) in this way would give rise only to a tricategory, not a Gray-category, and
hence require lengthy verifications of the coherence conditions. For this reason, Lack
preferred to define a Gray-category of pseudomonads in K using the description of pseu-
domonads in K as suitable lax functors and developing parts of the theory using enriched
category theory. Importantly, showing that Psm(K) is a Gray-category, rather than a
tricategory, would allow us to iterate the construction, which is useful for applications to
pseudodistributive laws.

Another approach was taken earlier by Marmolejo in [Marmolejo, 1999], who intro-
duced, for a Gray-category K, a Gray-category that we denote Lift(K) to avoid con-
fusion, that has pseudomonads in K as 0-cells and liftings of 1-cells, 2-cells and 3-cells
of K to 2-categories of pseudoalgebras as 1-cells, 2-cells and 3-cells, respectively. He then
used Lift(K) to introduce the notion of a lifting of a pseudomonad and of a pseudodis-
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tributive law, proving the fundamental result that pseudodistributive laws are equivalent
liftings of pseudomonads are equivalent to [Marmolejo, 1999, Theorems 6.2, 9.3 and 10.2],
thus obtaining an analogue of Beck’s result on distributive laws. Here, Marmolejo defined
pseudodistributive laws explicitly, giving nine coherence conditions for them [Marmolejo,
1999]. Later, Marmolejo and Wood [Marmolejo and Wood, 2008] showed not only that an
additional tenth coherence condition, introduced by Tanaka [Tanaka, 2004], can be derived
from Marmolejo’s conditions, but also that one of the original nine conditions introduced
by Marmolejo is derivable from the others, thus reducing the number of coherence axioms
for a pseudodistributive law to eight.

Main results. The aim of this paper is take some further steps in the development of the
formal theory of pseudomonads. In particular, our main contributions are the following:

� Theorem 2.5, which answers the question raised in [Lack, 2000] by showing that
for every Gray-category K, there is a Gray-category Psm(K) of pseudomonads,
pseudomonad morphisms, pseudomonad transformations and pseudomonad modifi-
cations in K;

� Theorem 3.4, the analogue of a fundamental result of the formal theory of monads,
asserting that Psm(K) is equivalent, in a suitable 3-categorical sense, to the Gray-
category Lift(K);

� Proposition 4.4, recording that an object of Psm(Psm(K)) is the same thing a
pseudodistributive law in K;

� a new, simpler proof of Marmolejo’s theorem equivalence between pseudodistributive
laws and liftings of pseudomonads to 2-categories of pseudoalgebras, given as the
proof of Theorem 4.5.

Our Theorem 2.5 supports the definition of a pseudodistributive law of [Marmolejo,
1999, Marmolejo and Wood, 2008], since it allows us to show that a pseudodistributive law
is the same thing as a pseudomonad in Psm(K) (Proposition 4.4), as one would expect by
analogy with the situation in the formal theory of monads. Thanks to this observation, we
provide an interpretation of the complex coherence conditions for a pseudodistributive law
in terms of the simpler ones, namely those for a pseudomonad morphism, a pseudomonad
transformation and a pseudomonad modification (see Table 2 for details). This point of
view allows us to give a principled presentation of the conditions for pseudodistributive
laws of [Marmolejo, 1999, Tanaka, 2004], included in Appendix A, which hopefully pro-
vides a useful reference for future work in this area. For the convenience of readers, we
also describe how our formulation relates to the ones of Marmolejo and of Tanaka (see
Table 1).

Theorem 3.4, which establishes the equivalence between Psm(K) and Lift(K), does
not seem to be part of the literature (in part because its very statement requires the
introduction of the 3-dimensional category Psm(K), which is defined here for the first
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time), but extends known results. In particular, the equivalence between pseudomonad
morphisms and liftings of morphisms to categories of pseudoalgebras is proved in [Mar-
molejo and Wood, 2008]. Related results appear also in [Tanaka, 2004], but with im-
portant differences. First, the work carried out therein is developed for the particular
tricategory 2-Catpsd of 2-categories, pseudofunctors, pseudonatural transformations an
d modifications, rather than for a general tricategory or Gray-category. While that is
an important example (cf. Remark 4.7), restricting to a particular tricategory does not
allow us to exploit the various dualities that are essential to derive results in the formal
theory. Secondly, the results obtained therein focus on hom-2-categories of pseudomonad
endomorphisms, i.e. of the form Psm(K)((X,S), (X,S)), rather than on general hom-2-
categories of pseudomonad morphisms.

Our proof Theorem 4.5, which asserts the equivalence between pseudodistributive laws
and liftings of pseudomonads to 2-categories of pseudoalgebras established in [Marmolejo,
1999], follows naturally combining Theorem 2.5 and Theorem 3.4. More specifically,
combining our identification of pseudodistributive laws with pseudomonads in Psm(K)
of Proposition 4.4 with the fact that a pseudomonad in Lift(K) is a lifting of a pseu-
domonad T to the 2-categories of pseudoalgebras of another pseudomonad S, we obtain
the desired equivalence between a pseudodistributive law of S over T and a lifting of T
to pseudo-S-algebras. This proof is simpler than that in [Marmolejo, 1999] since it takes
a modular, abstract, approach to the verification of the coherence conditions and avoids
completely the notion of a composite of pseudomonads with compatible structure.

As the proofs of our main results involve lengthy, subtle calculations with pasting
diagrams, we tried to strike a reasonable compromise between rigour and conciseness by
giving what we hope are the key diagrams of the proofs, and describing the additional
steps in the text. When in doubt, we preferred to err on the side of rigour, since one of
our initial goals was to answer the question raised in [Lack, 2000] about whether Psm(K)
is a Gray-category or not. We hope that this did not make the paper too long. For the
convenience of the readers, some of the diagrams are confined to the Appendices.

Outline of the paper. Section 1 provides background on Gray-categories, pseudomon-
ads and 2-categories of pseudoalgebras. Section 2 defines the Gray-category Psm(K). We
prove the equivalence of Psm(K) and Lift(K) in Section 3. We conclude the paper in
Section 4 by discussing pseudodistributive laws.

Acknowledgements. We are very grateful to Steve Lack for patiently discussing his
work on pseudomonads with us, especially during the 2019 International Conference on
Category Theory at the University of Edinburgh. We wish to thank also John Bourke,
Emily Riehl and Nick Gurski for fruitful conversations, Martin Hyland for encouraging
us to consider carefully the directions of 3-cells, and the anonymous referee for helpful
comments.
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1. Preliminaries

Gray-categories. We begin by reviewing the notion of a Gray-category and fixing
some notation. A Gray-category can be defined very succinctly in terms of enriched
category theory (see Remark 1.4). For our purposes, however, it is useful to give an
explicit definition, which we recall from [Marmolejo, 1999, Section 2] in Definition 1.1
below. The explicit definition makes it easier to see that Gray-categories are special
tricategories [Gordon et al., 1995, Proposition 3.1] in which the only non-strict operation is
horizontal composition of 2-cells [Gordon et al., 1995, Section 5.2]. Throughout this paper,
for a Gray-category K, we use X, Y, Z, . . . to denote its 0-cells, F : X → Y , G : Y → Z,
. . . for its 1-cells, f : F → F ′ , g : G→ G′ . . . for 2-cells, and α : f → f ′ , β : g → g′ . . . for
3-cells.

When stating the definition of a Gray-category below, we make use of the notion of a
cubical functor from [Gordon et al., 1995], which we unfold in Remark 1.2.

1.1. Definition. A Gray-category K consists of the the data in (G1)-(G4), subject to
axioms (G5) and (G6), as given below.

(G1) A class of objects K0. We call the elements of K0 the 0-cells of K.

(G2) For every X , Y ∈ K0, a 2-category K(X , Y ). We refer to the n-cells of these
2-categories as the (n+ 1)-cells of K.

(G3) For every X, Y, Z ∈ K0, a cubical functor

K(Y, Z)×K(X, Y )→ K(X, Z) ,

whose action on F : X → Y and G : Y → Z is written GF : X → Z, and whose
action on f : F → F ′ and g : G→ G′ gives rise to an invertible 3-cell

GF GF ′

G′F G′F ′

Gf

gF gF ′

G′f

gf

called the interchange maps of K.

(G4) For any X ∈ K0, a 1-cell 1X : X → X. We call these the identity 1-cells of K.

(G5) For every

F F ′
f

f ′

α G G′
g

g′

β K K ′
k

k′

γ

in K(X, Y ), K(Y, Z) and K(Z, W ), respectively,
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(KG)F = K(GF ) ,

(KG)f = K(Gf) , (Kg)F = K(gF ) , (kG)F = k(GF ) ,

(KG)α = K(Gα) , (Kβ)F = K(βF ) , (γG)F = γ(GF ) ,

(Kg)f = K(gf ) , (kG)f = kGf , (kg)F = k(gF ) .

(G6) For every X, the 2-functors

1X(−) : K(X, Y )→ K(X, Y ) , (−)1X : K(X, Y )→ K(X, Y )

defined by composition with 1X : X → X, are identities.

1.2. Remark. Asserting that composition in a Gray-category K is a cubical functor
means that the properties in (i)-(v) below hold, for every

F , F ′ , F ′′ : X → Y,G ,G′ , G′′ : Y → Z

and

F F ′ F ′′ ,

f

f ′

f ′′
φ G G′ G′′ .

g

g′

g′′
ψ

(i) Composition with 1-cells on either side,

(−)F : K(Y, Z)→ K(X, Z) G(−) : K(X, Y )→ K(X, Z) ,

is a strict 2-functor.

(ii) Composition with 2-cells,

(−)f : (−)F → (−)F ′ , g(−) : G(−)→ G′(−) ,

is a pseudo-natural transformation.

(iii) Composition with 3-cells,

(−)ϕ : (−)f → (−)f ′ , ψ(−) : g(−)→ g′(−) ,

is a modification,

(iv) The following coherence equations hold:

GF GF ′

G′F G′F ′

Gf

Gf ′

gFg′F gF ′

G′f ′

Gϕ

gf ′γF
=

GF GF ′

G′F G′F ′

Gf

G′f ′

gF ′g′F ′g′F

G′f

G′ϕ

g′f γF ′

(1)
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GF GF ′

G′F G′F ′

G′′F ′ G′′F ′

Gf

gF

G′f

gF ′

g′′F g′′F ′

G′′f

gf

g′′f

=

GF GF ′

G′′F ′ G′′F ′

Gf

(g′′g)F (g′′g)F ′

G′′f

(g′′g)f (2)

GF GF ′

G′F G′F ′

GF ′′

G′F ′′

Gf

gF

G′f

gF ′

Gf ′′

G′f ′′

gF ′′gf gf ′′ =

GF GF ′′

G′F G′F ′′

G(f ′′f)

gF gF ′′

G′(f ′′f)

g(f ′′f) (3)

(v) The interchange map gf is the identity 3-cell when either f or g is the identity.

1.3. Remark. When working with a Gray-category, we sometimes write G ◦ F instead
of GF for cubical composition of 1-cells. For 2-cells, we write g′ · g (or g′ g) for the
vertical composition and g ◦ f for cubical composition. For 3-cells, we write β ◦ α for
cubical composition, α′ ∗ α for vertical composition in K(X, Y ) and ᾱ · α for horizontal
composition in K(X, Y ), where α′ : f ′ → f ′′ and ᾱ ∈ K(X, Y )[F ′, F ′′].

1.4. Remark. We write Gray for the category of 2-categories and 2-functors. For 2-
categories X and Y , let [X, Y ] be the 2-category of 2-functors from X to Y , pseudonatural
transformations, and modifications [Kelly and Street, 1974]. This definition equips the
category Gray with the structure of a closed category [Eilenberg and Kelly, 1966]. The
closed structure of Gray is part of symmetric monoidal structure, whose the tensor prod-
uct is known as the Gray tensor product [Gordon et al., 1995, Section 4.8]. We will
write X ⊗ Y for the Gray tensor product of 2-categories X and Y . A Gray-category
can then be defined equivalently as a Gray-enriched category [Gordon et al., 1995, Sec-
tion 5.1]. Since Gray is a monoidal closed category, it is enriched over itself. Therefore,
it can be viewed as a Gray-category, as we will do from now on. More explicitly, Gray
is the Gray-category having 2-categories as 0-cells, 2-functors as 1-cells, pseudonatural
transformations as 2-cells, and modifications as 3-cells.

The notions of a Gray-functor and of a Gray-natural transformation are instances of
the general notions of enriched functor and enriched natural transformation [Kelly, 1982,
Section 1.2]. We will use the terminology of Gray-modification and Gray-perturbation to
denote the strict counterparts of the corresponding tricategorical notions [Gordon et al.,
1995, Section 3.3].
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When working with the Yoneda embedding for Gray-categories, which is just an in-
stance of the Yoneda embedding for enriched categories [Kelly, 1982, Section 2.4], we
often identify an object X ∈ K with K(−, X) : Kop → Gray the representable Gray-
functor associated to it. Analogous conventions will be used also for the n-cells of K,
where n = 1, 2, 3. For further information on Gray-categories and tricategories, we invite
the reader to refer to [Garner and Gurski, 2009, Gordon et al., 1995, Gurski, 2013, Lack,
2007].

Pseudomonads and their pseudoalgebras. Let K be a Gray-category, to be con-
sidered fixed for the rest of this section. We recall the definition of a pseudomonad.

1.5. Definition. Let X ∈ K. A pseudomonad on X in K consists of:

� a 1-cell S : X → X in K;

� two 2-cells m : S2 → and s : 1X → S in K;

� three invertible 3-cells in K of the following form:

S3 S2

S2 S

Sm

mS m

m

µ

S S2

S

S
Ss

1S

m
1S

sS

λ ρ

satisfying the coherence axioms in (4) and (5) below:

S4 S3

S3 S2

S3

S2 S

S2m //

mS2

��
Sm //

m

��

SmS

��

Sm

��

mS

��
mS

��

m
//

Sµ
��

µ
��

µS��

=

S4 S3

S2

mm��

S3

S2 S

S2

µ � 

S2m //

mS

��

m

��

mS2

��
Sm //

m

��

Sm

��

mS
��

m //

µ��
(4)

S2

S3 S2

S2 S

1S2

""

1S2

��

m

��

Sm

��

SsS

��
Sm //

m
//

µ
��

Sρ��

λS��

= S2 S
m // (5)
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For brevity, we will refer to an object X ∈ K and a pseudomonad (S,m, s, µ, λ, ρ)
on X simply as a pseudomonad in K and write simply (X,S) to denote it.

Note that the notion of a pseudomonad is self-dual, in the sense that a pseudomonad
in K is the same thing as a pseudomonad in Kop , where Kop is the Gray-category obtained
from K by reversing the direction of the 1-cells, but not that of the 2-cells and 3-cells. As
in the formal theory of monads, this is important to obtain results by duality.

Let (X,S) be a pseudomonad in K. For I ∈ K, there is a 2-category Ps-S-Alg(I) of
I-indexed pseudo-S-algebras, pseudoalgebra morphisms, and pseudoalgebra 2-cells, whose
definitions we recall below. An I-indexed pseudoalgebra for S consists of a 1-cell A : I →
X, called the underlying 1-cell of the pseudoalgebra, a 2-cell a : SA → A, called the
structure map of the pseudoalgebra, and invertible 3-cells

S2A

SA

SA

A ,

Sa //

a
//

mA

��

a

��
ā��

A SA

A ,
1A %%

sA //

a

��

ã +3

called the associativity and unit of the pseudoalgebra, satisfying the coherence axioms (6)
and (7) stated below.

S3A S2A

S2A SA
S2A

SA A

S2a //

mSA

��
Sa //

a

��

SmA

��

Sa

��

mA

��
mA

��
a

//

Sā
�#

ā��

αA��
=

S3A S2A

SA

ma
��

S2A

SA A .

SA
ā
� 

S2a //

mA

��

a
��

mSA

��
Sa //

a

��

Sa

��

mA
��

a
//

ā ��

(6)

SA

S2A SA

SA A

1SA

""

1SA

��

a

��

mA

��

SsA

��
Sa //

a
//

ā��

ã��

λA��

= SA A .
a // (7)

As usual, we refer to a pseudoalgebra by the name of its underlying 1-cell, leaving the
rest of its data implicit. Similar conventions will be implicitly assumed for other kinds of
structures.
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1.6. Proposition. [Marmolejo] Let (X,S) be a pseudomonad in K, I ∈ K and A an
I-indexed pseudoalgebra for S. Then, the coherence condition

SA A

S2A

SA

sa��

A

SA
ā
� 

a //

sA

��

a
��

sSA

��
Sa //

1SA




mA

��
a

//

ã ��

=

SA

S2A

SA A

sSA

��

mA
��

a
//

1SA





ρA��

(8)

is derivable.

Proof. See [Marmolejo, 1997, Lemma 9.1].

Given pseudoalgebras A and B, a pseudoalgebra morphism f : A → B consists of a
2-cell f : A→ B and an invertible 3-cell

SA

A

SB

B

Sf //

f
//

a

��
b

��
f̄��

satisfying the coherence conditions (9) and (10) stated below.

S2A S2B

SA SB
SA

A B

S2f //

mA

��
Sf //

b

��

Sa

��

Sb

��

a

��
a

��

f
//

Sf̄
�#

f̄��

ā��
=

S2A SB

SB
SA

A B .

mf

��

SB
f̄
� 

S2f //

mB

��

b

��

mA

�� Sf //

b

��

Sb

��

a
��

f
//

b̄��
(9)

A

SA

A B

sA

��

a
��

f
//

1A

��

ã ��

=

A B

SA

A

sf��

B .

SB
f̄
� 

f //

sB

��

b
��

sA

�� Sf //
1B

��
a

��

f
//

b̃ ��

(10)
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Given pseudoalgebra morphisms f : A → B and g : A → B, a pseudoalgebra 2-cell
consists of a 3-cell α : f → g satisfying the coherence condition (11).

SA

A

SB

B

Sf
((

Sg

66

g

88

a

��

b

��
ḡ
��

Sα��

=

SA

A

SB

B .

Sf
((

f

''

g

77

a

��

b

��

f̄
��

α��

(11)

There is a forgetful 2-functor UI : Ps-S-Alg(I)→ K(I,X), defined by mapping a pseudo-
S-algebra to its underlying 1-cell, which has a left pseudoadjoint, defined by mapping a 1-
cell A : I → X to the free pseudoalgebra on it, given by the composite 1-cell SA : I → X.
Attentive readers will have observed that the directions of the structural 3-cells µ and λ
for a pseudomonad as in Definition 1.5 match those of the 3-cells necessary to make SA
into a pseudoalgebra.

The function mapping an object I ∈ K to the 2-category Ps-S-Alg(I) extends to a
Gray-functor Ps-S-Alg : Kop → Gray. We also have a Gray-transformation

U : Ps-S-Alg→ X , (12)

with components given by the forgetful 2-functors UI : Ps-S-Alg(I) → K(I,X), for
I ∈ K. Note the use of our convention on the Yoneda lemma in (12). Note that the
structure of pseudo-S-algebra on a 1-cell A : I → X can be viewed as a left S-action on
A, associative and unital up to coherent isomorphism. For this reason, we sometimes refer
to pseudoalgebras as left pseudomodules. This terminology is convenient when we discuss
dualities in Section 4.

2. The Gray-category of pseudomonads

The aim of this section is to introduce the 3-dimensional category Psm(K) of pseudomon-
ads in a Gray-category K and prove that it is a Gray-category. In order to do so, we review
the notion of a pseudomonad morphism from [Marmolejo and Wood, 2008] and introduce
the notions of a pseudomonad transformation and modification. Again, we fix a Gray-
category K. When working with two pseudomonads (X,S) and (Y, T ), we use m and s
for the multiplication and unit of S, n and t for the multiplication and unit of T , but we
use the same letters µ, λ, ρ for the structural 3-cells of both monads to simplify notation,
as the context makes it always clear to which we are referring.

2.1. Definition. Let (X,S) and (Y, T ) be two pseudomonads in K. A pseudomonad
morphism (F, φ) : (X, S)→ (Y, T ) consists of a 1-cell F : X → Y , a 2-cell φ : TF → FS
and two invertible 3-cells
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T 2F TFS

FS2

TF FS

Tφ

nF

φS

Fm

φ

φ̄

F TF

FS.

tF

Fs
φ

φ̃

These data are required to satisfy the coherence axioms in (13) and (14).

T 3F T 2FS

TFS2

T 2F T 2F TFS

TF FS

FS2

T 2φ //

nTF

��

TnF

""

TφS

!!

nF

��

TFm

""

Tφ
//

nF

��

φS��

Fm

��

h
//

⇓ T φ̄

⇓ φ̄

⇓ µF =

T 3F T 2FS

T 2F TFS

TFS2

FS2

FS3 TFS

TF FS

FS2

T 2φ //

nTF

��

nFS

��

TφS

""

Tφ //

nF

""

φS ""

φS2

��

FmS

��

FSm

""

TFm

""

Fm !!

φS

��

Fm

��

φ
//

⇓ nφ

⇓ φ̄S

⇓ φm

⇓ φ̄ ⇓ Fµ

(13)
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TF

T 2F TFS

FS2

TF FS

⇓λH

TFs

""

1TF

��

φS

��

Fm

��

nF

��

TtF

�� Tφ //

φ
//

⇓T φ̃

⇓ φ̄

=

TF

FS
TFS

FS2

FS

TFs

""
φ

��

FSs

))

φS

��

Fm

��

1FS

((

⇓φs

⇓Fλ

(14)

2.2. Proposition. [Marmolejo and Wood] Let (F, φ) : (X,S) → (Y, T ) be a pseu-
domonad morphism. The coherence condition

TF FS

TF FS

T 2F TFS

FS2

φ
//

φ //

tTF

��

nF

''

Fm

%%

φS

&&

tFS

��Tφ //

FsS

��

1FS

��

⇓ tφ

⇓ φ̄

⇓FρS

⇓ φ̃S

=

TF FS

TF

T 2F

φ
//

tTF

��

nF

��

1TF





ρTF��

is derivable.

Proof. See [Marmolejo and Wood, 2008, Theorem 2.3].

2.3. Definition. Let (F, φ), (F ′, φ′) : (X, S)→ (Y, T ) be pseudomonad morphisms. A
pseudomonad transformation (p, p̄) : (F, φ) → (F ′, φ′) consists of a 2-cell p : F → F ′

and an invertible 3-cell

TF TF ′

FS F ′S

Tp

φ φ′

pS

p̄
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satisfying the coherence conditions in (15) and (16) below:

T 2F T 2F ′

TF

TFS TF ′S

FS2 F ′S2

FS F ′S

T 2p //

nF

��

Tφ

��

Tφ′

��

φ

��

TpS //

φS

��
φ′S

��pS2
//

Fm

��
F ′m

��

pS
//

⇓T p̄

⇓ φ̄
⇓ p̄S

⇓ p−1
m

=

T 2F T 2F ′

TF TF ′

TF ′S

F ′S2

FS F ′S

T 2p //

nF

��

nF ′

��

Tφ′

��

Tp //

φ

��

φ′

��

φ′S

��

F ′m

��

pS
//

⇓np

⇓ φ̄′

⇓ p̄

(15)

F F ′

TF

FS F ′S

tF

��

p //

F ′s

��φ
##

pS
//

Fs

��

φ̃��
p−1
s��

=

F F ′

TF

FS F ′S

TF ′

p̄
�%

p //

tF ′

��

φ′ ##

tF

�� Tp //
F ′s

��φ
##

pS
//

φ̃′��

tp��

(16)

2.4. Definition. Let (p, p̃), (p′, p̃′) : (F, φ)→ (F ′, φ′) be pseudomonad transformations.
A pseudomonad modification α : (p, p̃) → (p′, p̃′) is a 3-cell α : p → p′ satisfying the
coherence condition

TF

FS

TF ′

F ′S

Tp
((

Tp′

66

p′S

66

φ

��

φ′

��
p̄′��

Tα��

=

TF

FS

TF ′

F ′S

Tp
((

pS
((

p′S

66

φ

��

φ′

��

p̄
��

α��

(17)

The following is our first main result, which solves the problem raised in [Lack, 2000,
Section 6].

2.5. Theorem. Let K be a Gray-category. Then there is a Gray-category Psm(K),
called the Gray-category of pseudomonads in K, having pseudomonads in K as 0-cells,
pseudomonad morphisms as 1-cells, pseudomonad transformations as 2-cells, and pseu-
domonad modifications as 3-cells.
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The rest of this section is devoted to the proof of Theorem 2.5, which will be obtained
by combining Lemmas 2.6, 2.8, 2.9 and 2.10 below. We begin by giving the definition
of the hom-2-categories of Psm(K).

2.6. Lemma. Let (X, S) and (Y, T ) be two pseudomonads in K. Then there is a 2-
category Psm(K)( (X, S), (Y, T ) ) having pseudomonad morphisms from (X,S) to (Y, T )
as 0-cells, pseudomonad transformations as 1-cells and and pseudomonad modifications
as 2-cells.

Proof. First of all, for any pair of composable 1-cells (p0, p̃0) : (F0, φ0) → (F1, φ1) and
(p1, p̃1) : (F1, φ1) → (F2, φ2) we define their composition as (p1p0, p̃1p0) where p̃1p0 is
defined as the pasting of

TF0 TF1

F0S F1S F2S.

TF2
Tp0

φ0 φ1

p0S

Tp1

φ2

p1S

p̃0 p̃1

We want to show that composition is strictly associative. So let us consider three com-
posable 1-cells

(F0, φ0)
(p0, p̃0)−−−−→ (F1, φ1)

(p1, p̃1)−−−−→ (F2, φ2)
(p2, p̃2)−−−−→ (F3, φ3)

By definition, the two possible composites are

(p2, p̃2) ·
(
(p1, p̃1) · (p0, p̃0)

)
= (p2(p1p0), ˜p2(p1p0)) ,(

(p2, p̃2) · (p1, p̃1)
)
· (p0, p̃0) = ((p2p1)p0, ˜(p2p1)p0) .

We want to show that these are equal. Since K is a Gray-category, p2(p1p0) = (p2p1)p0.

Moreover, ˜p2(p1p0) = ˜(p2p1)p0 since they are both the pasting of

TF0 TF1

F0S F1S F2S

TF2 TF3

F3S.

Tp0

φ0 φ1

p0S

Tp1

φ2

p1S

Tp2

φ3

p2S

p̃0 p̃1 p̃2

It remains to define the identity 1-cells of Psm(K)( (X, S), (Y, T ) ). For a pseu-
domonad morphism (F, φ) : (X,S)→ (Y, T ), we define the identity on it to be

(1F , 1φ) : (F, φ)→ (F, φ) .

This is allowed since T1F = 1TF and 1FS = 1FS. These can be shown to be a strict
identities, using that K is a Gray-category and in particular Axiom (G6).
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We proceed by defining the composition of 1-cells in Psm(K) and proving that is
strictly associative, as required to have a Gray-category. Since a pseudomonad morphism
is a tuple of the form (F, φ, φ̄, φ̃), where F is a 1-cell, φ is a 2-cell while φ̄ and φ̃ are 3-cells,
we will need to check equalities at three levels. The key level of the verification is that of
2-cells. Indeed, strict associativity at the level of 1-cells will follow easily from the strict
associativity of composition of 1-cells in K. The key issue are the equalities at the level of
2-cells, since 2-cells could be isomorphic (by means of an invertible 3-cell), but not equal.
Instead, equalities of 3-cells will be quite straightforward. In fact, the required equations
for 3-cells either hold strictly or they fail completely, since there are no 4-cells that could
make these equations hold only up to isomorphism.

In the following, for a pseudomonad morphism F = (F, φ, φ̄, φ̃), we define

F ¯:= φ̄ , F˜:= φ̃ .

Let (F, φ) : (X, S) → (Y, T ) and (G, ψ) : (Y, T ) → (Z, Q) be two pseudomonad
morphisms. We define their composition as

(G, ψ,G ,̄G˜) ◦ (F, φ, F ,̄ F˜) :=
(
GF, Gφ · ψF ,G ◦ F ,̄G ◦ F˜) (18)

where the invertible 3-cells are defined by the following pasting diagrams:

Q2GF QGTF

GT 2F

QGF GTF

QGFS

GTFS

GFS2

GFS

G ◦ F ¯:=

QψF

mQGF

ψTF

ψF

GnF

QGφ

ψFS

GTφ

GφS

GFm

Gφ

ψ̄F

Gφ̄

ψφ

GF GFS

QGF

GTFG ◦ F˜:=

GFs

GtF
Gφ

qGF

ψF

Gφ̃

ψ̃F

The proof that this definition gives a pseudomonad morphism is in Appendix B.



30 N. GAMBINO AND G. LOBBIA

2.7. Remark. We did not consider any parenthesis in the diagrams above thanks to
axiom (G5) for a Gray-category. Moreover since Q(−) is a strict 2-functor we have
Q(Gφ · ψF ) = QGφ ·QψF (and similarly for other compositions in the diagrams).

2.8. Lemma. The composition of pseudomonad morphisms defined in (18) is strictly as-
sociative.

Proof. From now on, let us consider three pseudomonad morphisms in K:

(X, S)
(F, φ)−−−→ (Y, T )

(G,ψ)−−−→ (Z, Q)
(H, ξ)−−−→ (V, R)

In order to prove this statement we have to prove that the equation for associativity holds
for the respective 1-, 2- and 3-cell components. For 1-cells, since K is a Gray-category,
then H(GF ) = (HG)F .

For 2-cells, the idea is to reduce both composites to HGφ ·HψF · ξGF . On the one
hand,

H(Gφ · ψF ) · ξGF = [H(Gφ) ·H(ψF )] · ξGF (because H(−) is strict)

= [HGφ ·HψF ] · ξGF (by (G5))

= HGφ ·HψF · ξGF (since K(X, V ) is a 2-category).

On the other hand,

HGφ · (Hψ · ξG)F = HGφ · [(Hψ)F · (ξG)F ] (because (−)F is strict)

= HGφ · [HψF · ξGF ] (by (G5))

= HGφ ·HψF · ξGF (since K(X, V ) is a 2-category).

For 3-cells, to prove that
(
H(GF )

)˜=
(
(HG)F

)˜we just need to notice that, using the
fact that H(−) and (−)F are strict 2-functors, both of them are pasting of:

HGF HGFS

HGTF

HQGF

RHGF .

HGFs

HqGF

HGtF
HGφ

rHGF

ξGF

HψF

HGφ̃

Hψ̃F

ξ̃GF

We get the required equality by the pasting theorem for 2-categories[Power, 1990]. Finally,
let us prove the equality on the other 3-cell component. By definition,
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R2HGF RHQGF RHGFS

HQ2GF HQGFS

RHGF HQGF HGFS .

H(GF )¯ = ξ̄GF

ξ(Gφ·ψF )

H(GF )̄

Using the definition of GF ¯and (3), the right-hand side pasting becomes

R2HGF RHQGF RHGTF RHGFS

RHGF

HQ2GF HGTFS HQGFS

HGT 2F HGTFS

HQGF HGTF HGFS .

Hψ̄F

H(ψφ)

HGφ̄

ξ̄GF

ξψF ξGφ

Let us notice that, by (G5), H(ψφ) = Hψφ, ξψF = (ξψ)F and ξGφ = ξGφ. Moreover,
using the definition of HG¯and (2), the diagram above is equal to

R2HGF RHGTF RHGFS

HGT 2FS HGTFS

RHGF HGTF HGFS,

(HG )̄F

(Hψ · ξG)φ

HGφ̄

which is exactly the definition of H(GF ) .̄

For brevity, we sometimes write PK instead of Psm(K), so for any pair of pseudomon-
ads (X, S) and (Y, T ) the 2-category of pseudomonads morphisms from (X, S) to (Y, T )
can be written as PK

(
(X, S), (Y, T )

)
.
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2.9. Lemma. The definition of composition of pseudomonad morphisms extends to a
cubical functor

− ◦ − : PK( (Y, T ), (Z, Q) )× PK( (X, S), (Y, T ) ) −→ PK( (X, S), (Z, Q) )

for (X,S) , (Y, T ) , (Z,Q) ∈ Psm(K).

Proof. This is a just a long verification, but we spell it out in some detail. By the
definition of a cubical functor, for any 1-cells (F, φ) : (X, S) → (Y, T ) and (G, ψ) :
(Y, T )→ (Z, Q) in Psm(K), we need to define strict 2-functors

Fφ : PK( (Y, T ), (Z, Q) )→ PK( (X, S), (Z, Q) ) , (19)

Gψ : PK( (X, S), (Y, T ) )→ PK( (X, S), (Z, Q) ) (20)

such that
Fφ( (G, ψ) ) = Gψ( (F, φ) ) = (G, ψ) ◦ (F, φ) , (21)

plus, for 2-cells (p, p̃) : (F, φ) → (F ′, φ′) and (q, q̃) : (G, ψ) → (G′, ψ′), an invertible
3-cell in Psm(K)

(G, ψ) ◦ (F, φ) (G, ψ) ◦ (F ′, φ′)

(G′, ψ′) ◦ (F, φ) (G′, ψ′) ◦ (F ′, φ′)

(q, q̃) ◦ (F, φ)

(G, ψ) ◦ (p, p̃)

(G′, ψ′) ◦ (p, p̃)

(q, q̃) ◦ (F ′, φ′)Σ(p, p̃), (q, q̃) (22)

satisfying axioms (1), (2) and (3).
We begin by defining Fφ in (19). Its action on objects is determined by (21). For

its action on 1-cells, we send (q, q̃) : (G,ψ) → (G′, ψ) to the pseudomonad modifica-

tion (qF, q̃F ) : (GF,Gφ · ψF ) → (G′F,G′φ · ψ′F ), where q̃F is defined as the following
pasting:

QGF QG′F

GTF G′TF

GFS G′FS.

QqF

ψF

qTF

ψ′F

Gφ G′φ

qFS

q̃F

qφ
−1
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The action of Fφ on 3-cells β : (q, q̃)→ (q′, q̃′) is defined by letting β ◦ (F, φ) := βF in K.
The proof that this is a pseudomonad modification, and therefore a 3-cells in Psm(K), is
in Appendix B.

We now show that Fφ is a 2-functor. For this, we use extensively the notation of
Remark 1.3 to avoid writing some diagrams. To prove that composition is preserved
strictly, we show that

Fφ( (q′, q̃′) · (q, q̃) ) = Fφ(q′, q̃′) · Fφ(q, q̃) (23)

for any

(G, ψ)
(q, q̃)−−→ (G′, ψ′)

(q′, q̃′)−−−→ (G′, ψ′)

in PK( (Y, T ), (Z, Q) ). The composition (q′, q̃′) · (q, q̃) is defined as (q′q, q̃′q) where q̃′q
is defined as the pasting of

QG QG′

GT G′T G′T .

QG′

q̃ q̃′

Using the equation (3) we can see that the 3-cells components of Fφ( (q′, q̃′) · (q, q̃) )

and Fφ(q′, q̃′)· Fφ(q, q̃) are two pasting of the diagram below

QG QG′

GT G′T G′T

QG′

GF G′F G′F .

q̃ q̃′

qφ
−1 q′φ

−1

Moreover, (q′ ·q)F = q′F ·qF since (−)F is a strict 2-functor (since K is a Gray category).
Hence, the required equality in (23) holds. Let us also verify that Fφ preserves identities
strictly. Recall from Lemma 2.6 that 1(G,ψ) := (1G, 1ψ) in PK( (Y, T ), (Z, Q) ). Therefore,

Fφ(1G, 1ψ) = (1GF, 1̃GF )

and moreover

(1GF, 1̃GF ) = (1GF , ( (1G)φ · 1ψF ) ∗ (1Gφ · 1ψF ) ) (by definition ofFφ)

= (1GF , (1Gφ · 1ψF ) ∗ (1Gφ · 1ψF ) ) (by Remark 1.2)

= (1GF , (1Gφ·ψF ) ∗ (1Gφ·ψF ) ) (since · preserves identities)

= (1GF , 1Gφ·ψF ) (by (G2))

= 1(GF,Gφ·ψF )

= 1Fφ(G,ψ) ,
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as required.
We now define the 2-functor Gφ of (20). Again, its action on objects is determined

by (21). On morphisms, it sends (p, p̃) : (F, φ)→ (F ′, φ′) to

(Gp, G̃p) : (GF,Gφ · ψF )→ (GF ′, Gφ′ · ψF ′) ,

where G̃p is defined as the following pasting:

QGF QGF ′

GTF GTF ′

GFS GF ′S .

QGp

ψF

GTp

ψF ′

Gφ Gφ′

GpS

ψp

Gp̃

On 3-cells α : (p, p̃)→ (p′, p̃′) we let (G, φ) ◦ α := Gα, which is a 3-cell in Psm(K) by a
similar argument to the one used for Fφ. The proof that this is a 2-functor is completely
analogous to the one for Fφ and hence omitted.

To conclude the proof, we need to define the 3-cell Σ(p, p̃), (q, q̃) in (22). We take this to
be qp, which is shown to be a pseudomonad modification in Appendix B. The required
axioms for Σ(p, p̃), (q, q̃), as in (1), (2) and (3), hold as they are instances of the ones for qp
for K.

2.10. Lemma. The cubical functor providing composition in Psm(K) satisfies the coher-
ence conditions of Axiom (G5).

Proof. The first one is just Lemma 2.8. Since the definitions on 3-cells coincide with
the ones in K, all the equations regarding them hold directly. Therefore, we only need to
prove the ones for 2-cells. Let us consider the following diagram in Psm(K):

(X, S) (Y, T ) (Z, Q) (V, R)

(F, φ)

(F ′, φ′)

(p, p̃)

(G, ψ)

(G′, ψ′)

(q, q̃)

(H, ξ)

(H ′, ξ′)

(r, r̃)

We need to prove:

(i) (Hξ ◦Gψ) (p, p̃) = Hξ(Gψ (p, p̃) ),

(ii) (Hξ (q, q̃) )Fφ = Hξ( (q, q̃)Fφ ),
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(iii) ( (r, r̃)Gψ )Fφ = (r, r̃) (Gψ ◦ Fφ ).

At the 2-cells level we have (HG)p = H(Gp) because K is a Gray-category. The same
happens in (ii) and (iii) so we will just prove that the associated 3-cells are equal in each
case. Let us start with part (i). On the one hand, by definition,

(̃HG)p = H̃G̃p ,

and therefore

RHGF RHGF ′

RHGF RHGF ′

HGFS

HQGF HQGF ′

HQGF HQGF ′

HGTF HGTF ′

HGF ′S

HGFS HGF ′S.

= Hψp

HGp̃

ξGp

HG̃p

ξGp

On the other hand Hξ(Gψ (p, p̃) ) = (HG, Hψ · ξG) (p, p̃) so the associated 3-cell is, using
(2),

RHGF RHGF ′

RHGF RHGF ′

HGFS

HGTF HGTF ′

HQGF HQGF ′

HGTF HGTF ′

HGF ′S

HGFS HGF ′S.

=

(Hψ · ξG)p

HGp̃

ξGp

Hψp

HGp̃

But ξGp = ξGp, since K is a Gray-category, and so the required equality holds.
For part (ii), by definition, the 3-cell component of Hξ (q, q̃) )Fφ is:
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RHGF RHG′F

HGTF HG′TF

HGFS HG′FS

=

RHGF RHGF ′

HQGF HQG′F

HGTF HG′TF

HGFS HG′FS

=

RHGF RHGF ′

HQGF HQG′F

HGFS HG′FS.

H̃qF

Hqφ
−1

(ξq)F

Hq̃F

Hqφ
−1

ξqF

H(q̃F )

Finally, part (iii) is completely analogous to the first one using the inverse of 3 instead of
2.

The combination of Lemmas 2.6, 2.8, 2.9 and 2.10 proves Theorem 2.5.

3. Liftings to pseudoalgebras

We now recall from [Marmolejo, 1999, Section 7] and [Lack, 2000, Section 6] the definition
of the Gray-category Lift(K) of pseudomonads in K and liftings to pseudoalgebras. In
[Marmolejo, 1999] this was written as Psm(K), but we prefer to use that notation for
the Gray-category introduced in Section 2, since it seems the natural generalization of
the 2-category of monads defined by Street in [Street, 1972]. We will then show that
Lift(K) is equivalent to Psm(K), which will be used in Section 4 for our results on
pseudodistributive laws.

The 0-cells of Lift(K) are pseudomonads (X,S) in K. For 0-cells (X,S) and (Y, T ),
a 1-cell (F, F̂ ) : (X,S) → (Y, T ) consists of a 1-cell F : X → Y in K and a Gray-
transformation F̂ : Ps-S-Alg→ Ps-T -Alg making the following diagram commute

Ps-S-Alg F̂ //

U
��

Ps-T -Alg

U
��

X
F

// Y

where, using implicitly the Yoneda lemma for Gray-categories, we write X and Y instead
of K(X, −) and K(Y, −). We refer to F̂ as a lifting of F to pseudoalgebras. Analogous
terminology will be used for the 2- and 3-cells introduced below.

3.1. Lemma. Let (F, φ) : (X,S) → (Y, T ) be a pseudomonad morphism. Then, there
exists a lifting F̂ : Ps-S-Alg→ Ps-T -Alg of F : X → Y .



ON THE FORMAL THEORY OF PSEUDOMONADS 37

Proof. Let us consider a fixed I ∈ K. First, let us observe that if A is an I-indexed
pseudo-S-algebra, then FA is naturally an I-indexed pseudo-T -algebra, with structure
map given by the composite

TFA
φA // FSA Fa // FA

and associativity and unit 3-cells provided by the pasting diagrams

T 2FA

TFA

TFSA

FSA

FS2A

TFA

FSA

FA ,

TφA //

φA
//

n(FA)

��

φSA

��

FmA

��

TFa //

FSa
//

Fa
//

φA

��

Fa

��

φa��

F ā��

φ̄A��

FA TFA

FA .

FSA
FsA ,,

1FA

**

sFA //

φA

��

Fa

��

φ̃A +3

F ã +3

The coherence condition (6) for FA follows by an application of the coherence condi-
tion (13) for F and the coherence condition (6) for A. The coherence condition (7) for
FA follows by applying the coherence condition (14) for F and the coherence condition (7)
for A. Secondly, we observe that if f : A → B is a pseudo-S-algebra morphism, then
Ff : FA → FB is naturally a pseudo-T -algebra morphism, as we have the following
pasting diagram:

TFA

FA

FSA

TFB

FSB

FB .

φA

��

Fa

��

TFf //

FSf
//

Ff
//

φB

��

Fb

��

φf��

F f̄��

The coherence conditions (9) and (10) follow immediately by the axioms for a Gray-
category. Finally, if α : f → g is a pseudo-S-algebra 2-cell, the required pseudo-T -algebra
2-cell is given by Fα : Ff → Fg. We have thus defined the components of a Gray-natural
transformation F̂ : Ps-S-Alg→ Ps-T -Alg, which is clearly a lifting of F : X → Y .

Given 1-cells (F, F̂ ) : (X,S) → (Y, T ) and (F ′, F̂ ′) : (X,S) → (Y, T ), a 2-cell (p, p̂) :
(F, F̂ )→ (F ′, F̂ ′) in Lift(K) consists of a 2-cell p : F → F ′ in K and a Gray-modification
p̂ : F̂ → F̂ ′ such that the following diagram commutes

UF̂
Up̂ // UF̂ ′

FU
pU

// F ′U.
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The vertical arrows are the identities, which hold by the assumption that F̂ and F̂ ′ are
liftings of F and F ′, respectively.

3.2. Lemma. Let (p, p̃) : (F, φ)→ (F ′, φ′) be a pseudomonad transformation. Then, there
exists a lifting p̂ : F̂ → F̂ ′ of p : F → F ′, where F̂ and F̂ ′ are the liftings of F and F ′

associated to the pseudomonad morphisms (F, φ) and (F ′, φ′), respectively, defined as in
Lemma 3.1.

Proof. Let I ∈ K. We need to define a pseudonatural transformation p̂ : F̂I → F̂ ′I . We
define the component of p̂ associated to an I-indexed pseudo-S-algebra A to be the I-
indexed pseudo-T -algebra morphism given by pA : FA→ F ′A and the 2-cell

TFA

FA

FSA

TF ′A

F ′SA

F ′A .

φA

��

Fa

��

TpA //

pSA
//

pA
//

φ′A
��

F ′a

��

p̄A��

p−1
a��

To prove the condition (9) for the pseudoalgebra morphism pA, we apply the axioms
for a Gray-category and then condition (15) for the pseudomonad transformation p. To
establish condition (10), it is sufficient to apply the coherence condition (16) for the
pseudomonad transformation p, and then the axioms for a Gray-category. By definition,
p̂ is a lifting of p as required.

Finally, for 2-cells (p, p̂) and (q, q̂), a 3-cell α : (p, p̂) → (q, q̂) consists of a 3-cell and
α : p→ q and a Gray-perturbation α̂ : p̂→ q̂ making the following diagram commute

Up̂
Uα̂ // Uq̂

pU
αU

// qU .

As before, the vertical arrows are the identities that are part of the assumption that p̂
and q̂ are liftings of p and q, respectively. Composition and identities of Lift(K) are
defined in the evident way, using those of K and Gray.

3.3. Lemma. Given a pseudomonad modification α : (p, p̃)→ (q, q̃) we can define a lifting
α̂ : p̂→ q̂ of α as the Gray-perturbation whose components are the 3-cells αA : pA → qA,
for a pseudo-S-algebra A.

Proof. It suffices to check that, these 3-cells are a pseudo-T -algebra 2-cells. To prove
this, apply the axioms for a Gray-category and the coherence axiom (17).
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We use these results to define a Gray-functor

Φ : Psm(K)→ Lift(K) .

On objects, Φ acts as the identity. For two pseudomonads (X,S) and (Y, T ) in K, the
hom-2-functors

Φ(X,S), (Y,T ) : Psm(K)( (X,S), (Y, T ) ) −→ Lift(K)( (X,S), (Y, T ) )

are defined sending a pseudomonad morphism, pseudomonad transformation and pseu-
domonad modification to the associated liftings, using Lemmas 3.1, 3.2 and 3.3, respec-
tively, Here, the Gray-functoriality of Φ is standard verification, which we omit for brevity,
limiting ourselves to highlight that this includes checking that Φ preserves composition
strictly, i.e. that the lifting associated to the composite of two pseudomonad morphisms
is equal (rather than just equivalent by invertible 2-cells) to the composite of the liftings
obtained from the pseudomonad morphisms. Theorem 3.4 states that the construction of
Psm(K) given in Section 2 is equivalent to the one by Marmolejo in [Marmolejo, 1999].

3.4. Theorem. The Gray-functor Φ: Psm(K)→ Lift(K) is a triequivalence.

Proof. Since Φ is clearly bijective on objects, it suffices to prove that locally it is a
biequivalence. Let us begin by considering a lifting F̂ : Ps-S-Alg → Ps-T -Alg of a 1-cell
F : X → Y . By the definition of a lifting, the following diagram of 2-categories and
2-functors commutes:

Ps-S-Alg(X)
F̂X //

UX
��

Ps-T -Alg(X)

UX
��

K(X,X)
K(X,F )

// K(X, Y ) .

(24)

Let us now observe that S : X → X can be regarded as an X-indexed pseudo-S-algebra,
with structure map given by the 2-cell m : S2 → S. By the commutativity of the
diagram (24), this pseudo-S-algebra is mapped by the 2-functor F̂X into a pseudo-T -
algebra with underlying 1-cell FS : X → Y , with structure map a 2-cell of the form
φ0 : TFS → FS, and invertible 3-cells fitting in the diagrams

T 2FS

TFS

TFS

FS

Tφ0 //

h′
//

nFS

��

φ0

��
φ̄0��

FS TFS

FS .
1FS ((

tFS //

h′

��

φ̃0 +3

The desired pseudomonad morphism (F, φ) : (X,S)→ (Y, T ) is then obtained by letting
φ : TF → FS be the composite

TF
TFs // TFS

φ0 //// FS.
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The appropriate 3-cells are provided by the following pasting diagrams

TFS

T 2FS

TF

T 2F TFS

FS

TFS2

FS2

T 2Fs //

TFs
//

nF

��

nFS

��

Tφ0 //

φ0
//

φ0

%%

TFsS //

φ0S

��

Fm

��

φ̄0��nFs��

γ ��

F

FS

TF

FS ,

TFS

Fs

��

tF //

1FS //

tFS //

TFs

��

φ0
��

tFs +3

φ̃0 +3

where γ is the inverse to the 2-cell obtained from the following pasting of invertible 2-cells:

TFS

TFS2 TFS

FS2 FS .

1TFS

��

φ0

��

φ0S

��

TFsS

��
TFm //

Fm
//

Fα��

TFρ��

Let us now consider a lifting (p, p̂) : (F, F̂ ) → (F ′, F̂ ′) of a 2-cell p : F → F ′. We can
define a pseudomonad transformation p : (F, φ) → (F ′, φ′) by considering the following
pasting diagram:

TF

FS

TFS

TF ′

TF ′S

F ′S ,

TFs

��

φo

��

Tp //

TpS
//

pS
//

TF ′s

��

φ′0
��

Tp−1
u��

p̄S��

in which the bottom 3-cell is part of the structure making pS : FS → F ′S into a pseu-
doalgebra morphism. Finally, if (α, α̂) : (p, p̂) → (q, q̂) is a lifting of a 3-cell α : p → q,
then α : p→ q is a pseudomonad modification. These definitions determine a 2-functor

Ψ(X,S),(Y,T ) : Lift(K)
(
(X,S), (Y, T )

)
−→ Psm(K)

(
(X,S), (Y, T )

)
which provides the required quasi-inverse to Φ(X,S),(Y,T ). We omit the construction of the
required invertible pseudonatural transformations η : 1→ ΨΦ and ε : ΦΨ→ 1, since this
is not difficult.
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4. Pseudodistributive laws

4.1. Definition. Let (X,S) and (X,T ) be pseudomonads in K. A pseudodistributive
law of T over S consists of a 2-cell d : ST → TS and invertible 3-cells

S2T

ST

STS

TS

TS2

Sd //

d
//

mT

��

dS

��

Tm

��

m̄��

T ST

TS

Ts

��

sT //

d

��

s̄ +3

ST 2

T 2S

ST

TS

TST

Sn //

nS
//

dT

��
d

��
Td

��

n̄��

S

ST

TS
tS
//

St

BB

d

��

t̄
��

satisfying the coherence conditions (C1)-(C8) stated in Appendix A.

4.2. Remark. For the convenience of the reader, Table 1 describes the correspondence
between the presentation of the coherence conditions for pseudodistributive laws here and
in [Marmolejo, 1999, Tanaka, 2004]. In the table, each row lists different formulations of
the same axiom.

Appendix A Marmolejo [Marmolejo, 1999] Tanaka [Tanaka, 2004]
(C1) (coh 4) (T6)
(C2) (coh 2) (T2)
(C3) (coh 5) (T9)
(C4) (coh 3) (T8)
(C5) (coh 1) (T1)
(C6) (coh 6) (T10)
(C7) (coh 9) (T7)
(C8) (coh 7) (T5)
(C9) - (T3)
(C10) (coh 8) (T4)

Table 1: Comparison of coherence conditions.
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Axiom Coherence condition
(C1) and (C2) (T, d) : (X,S)→ (X,S) is a pseudomonad morphism
(C3) and (C4) (n, n̄) : (T, d)2 → (T, d) is a pseudomonad transformation
(C5) and (C6) (t, t̄) : (X, 1X)→ (T, d) is a pseudomonad transformation

(C7) α is pseudomonad modification
(C8) ρ is a pseudomonad modification
(C9) λ is a pseudomonad modification

Table 2: Coherence axioms for pseudodistributive laws.

4.3. Remark. Our development in Section 3 allows us to give a clear explanation for the
coherence conditions for pseudodistributive laws, summarised in Table 2.

The coherence axioms, (C9) and (C10) of Appendix A have been shown to be derivable
from the others in [Marmolejo and Wood, 2008, Theorem 2.3 and Proposition 4.2]. Indeed,
axiom (C9) is a particular case of a provable coherence condition for a pseudomonad
morphism and follows from (C1) and (C2) (cf. Proposition 2.2). By duality, one can see
that axiom (C10) is a particular case of a provable coherence condition for a pseudomonad
op-morphism and follows from (C7) and (C8).

The explanation of the axioms for a pseudodistributive law in Remark 4.3 proves the
following straightforward, but important, proposition.

4.4. Proposition. The objects of Psm(Psm(K)) are exactly pseudodistributive laws
in K.

Proof. An object of Psm(Psm(K)) consists of an object (X,S) of Psm(K), i.e. a pseu-
domonad in K, together with a pseudomonad (T, d) : (X,S) → (X,S) on it in Psm(K),
which is exactly a pseudodistributive law by Remark 4.3.

We can now give a new simple proof of Marmolejo’s fundamental result asserting the
equivalence between a pseudodistributive law of a pseudomonad T over a pseudomonad S
and a lifting of the pseudomonad T to the 2-categories of pseudoalgebras for S [Marmolejo,
1999].

4.5. Theorem. Let K be a Gray-category, (X,S) and (X,T ) be pseudomonads in K. A
pseudodistributive law d : ST → TS is equivalent to a lifting of T to pseudo-S-algebras.

Proof. By Theorem 2.5, Psm(K) is a Gray-category and therefore we can consider the
Gray-category Psm(Psm(K)).

Next, observe that that Psm(−) preserves triequivalences between Gray-categories,
i.e. given a triequivalence of Gray-categories Φ: K → K′, then it is possible to define a
triequivalence Psm(Φ) : Psm(K) → Psm(K′). The construction of Psm(Φ) is evident,
and the verification that it is a triequivalence is a long, but routine, calculation. For exam-
ple, to prove essential surjectivity, we need to show that for every pseudomonad (X ′, T ′)
in K′, there is a pseudomonad (X,T ) in K that is mapped by Psm(Φ) to a pseudomonad
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that is biequivalent to (X ′, T ′) in Psm(K′). For this, one defines (X,T ) using the essential
surjectivity of Φ, carefully inserting coherence isomorphisms that are part of the given
triequivalence where appropriate.

Applying this fact to the triequivalence of Theorem 3.4, we get a triequivalence:

Psm(Psm(K)) ' Psm(Lift(K)) .

An object on the left hand side is exactly a pseudodistributive law by Proposition 4.4.
Similarly, an object on the right hand side consists exactly of a pseudomonad (X,S) in K
and a pseudomonad T : X → X with a lifting T̂ : Ps-S-Alg→ Ps-S-Alg.

We conclude the paper by outlining how duality can be applied as in [Street, 1972,
Section 4] to obtain an equivalence between pseudodistributive laws and extensions to
Kleisli objects. Fix a Gray-category K and let (X,T ) be a pseudomonad in it. By
definition, a right pseudo-T -module in K is a left T -module in Kop . We then have a
Gray-functor

ModT : Kop → Gray . (25)

Assuming the evident definition of a lifting to 2-categories of right pseudomodules, we
have the following corollary of Theorem 4.5.

4.6. Corollary. Let (X,S) and (X,T ) be pseudomonads in K. A pseudodistributive
law d : ST → TS is equivalent to a lifting of S to right pseudo-T -modules.

The equivalence of Corollary 4.6 becomes more familiar under the assumption that K
has Kleisli objects. Recall that a Kleisli object for a pseudomonad (X,T ) in K is an 0-cell
XT ∈ K and a right pseudo-T -module JT : X → XT , which is universal in the sense that
the 2-functor

K(XT , I)→ ModT (I) ,

induced by composition with JT , is an equivalence of 2-categories, thus making the Gray-
functor in (25) representable. Now, a pseudodistributive law d : ST → TS is equivalent
to a lifting of S to right pseudo-T -modules, as in

ModTModT

K(−, X) .K(−, X)

Ŝ

U

S ◦ −

U

This, in turn, is equivalent to
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XTXT

X ,X

Ŝ

JT

S

JT

which describes an extension of S to the Kleisli object of T .

4.7. Remark. We conclude the paper by briefly discussing the question of whether
the Gray-category Gray has Kleisli objects. Given a 2-category X and pseudomonad
T : X → X, there are two reasonable options to be the Kleisli object for T , mirroring
the one-dimensional situation. In both cases, the objects are the same objects as those
of X, but they have different hom-categories of morphisms. The first option is to define
the hom-category between two objects x, y ∈ X to be X(x, Ty). With this definition we
only get a bicategory, not a 2-category, and so we step outside Gray. The second option
(which we will call XT ), is to take the hom-category of morphisms between x and y to con-
sist of pseudoalgebras morphisms from Tx to Ty (considered as free algebras). This is a
2-category and so one could try to show that it is a Kleisli object for Gray. In order to do
this, one should prove that, for any 2-category I, there is an equivalence as in (25). How-
ever, the construction taking a I-indexed right pseudo-T -module to a 2-functor XT → I
is only a pseudofunctor and not a strict 2-functor, thus leading again outside Gray. The
reason for this is that we need to use the pseudonaturality of the module action λ and
other coherence isomorphisms. Because of this, it seems that Gray does not have Kleisli
objects. We suspect that, once it is defined what it means for a tricategory to have Kleisli
objects, it should be possible to show that the tricategory 2-Catpsd of 2-categories, pseud-
ofunctors, pseudonatural transformations and modifications has Kleisli objects. The same
should hold also for Bicat, the tricategory of bicategories, pseudofunctors, pseudonatural
transformation and modifications. We leave the investigation of these problems to future
research.

A. Coherence conditions for pseudodistributive laws

We limit ourselves to drawing the boundaries of these diagrams and explain in text which
3-cells should be inserted in them, except for the 3-cells coming from the structure of a
Gray-category of K.
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S3T S2TS

STS2

S2T
S2T STS

ST TS

TS2

S2d //

mST

��

SmT

��

SdS

��

mT

��

STm

��
Sd //

mT

��

dS

��

Tm

��

d
//

=

S3T S2TS

S2T STS

S2T

TS2

TS3 STS

ST TS

TS2

S2d //

mST

��

mTS

��

SdS

��

Sd //

mT

��

dS ��

dS2

��

TmS

��

TSm

��

STm

��

Tm

��

dS

��

Tm

��

d
//

(C1)

In (C1), the left-hand side pasting is obtained using Sm̄, m̄, and the associativity 3-cell of
the pseudomonad S; the right-hand side pasting is obtained using the associativity 3-cell
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of the pseudomonad S and m̄.

ST

S2T STS

TS2

ST TS

STs

""

1ST

��

dS

��

Tm

��

mT

��

SsT

��
Sd //

d
//

=

ST

TS
STS

TS2

TS

STs

""
d

��

TSs

))

dS

��

Tm

��

Id

((

(C2)

In (C2), the left-hand side pasting is obtained using Ss̄, m̄, and the left unit 3-cell of the
pseudomonad S; the right-hand side pasting is obtained using the left unit 3-cell of the
pseudomonad S.

S2 S2T

S

STS

TS2

TS

S2t //

m

��

Sd

��
StS ..

tS2

++

tS ..

Tm

��

dS

��

=

S2 S2T

S

STS

TS2

TS

ST

S2t //

Sd

��

dS

��

Tm

��

d

��

m

��
St //

mT

��

tS ..

(C3)

For (C3), the left-hand side pasting is obtained using St̄, t̄S; the right-hand side is ob-
tained using m̄ and m̄.

1X T

S ST

TS

t //

sT

��

d
��

s

��
St //

Ts

��tS ,,

=

1X T

S

TS

t //

Ts

��

s

��

tS ,,

(C4)

For (C4), the left-hand side pasting is obtained using s̄ and t̄; the right-hand side is
obtained from pseudonaturality of t.
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S2T 2 S2T

TS2T

STST

ST 2S STS

T 2S2 TS2

TSTS

ST 2

TST

T 2S TS

S2n //

mT 2

��

SdT

��

STd

��

Sd

��
SnS //

dTS

��

TdS

��

dS

��
nS2

//

dST

��

TmT

��

TSd ��

T 2m

��
Tm

��

dT ��

Td ��

nS
//

=

S2T 2 S2T

ST
STS

TS2

ST 2

T 2S TS

TST

S2n //

Sd

��

dS
��

Tm

��

mT 2

��

dT ��

Sn //

Td ��

nS
//

mT

��

d

��

(C5)
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For (C5), the left-hand side pasting is obtained using Sn̄, n̄S and m̄T ; the right-hand
side pasting is obtained using m̄ and n̄.

T 2 T

ST 2 ST

TST

T 2S TS

n //

Sn //

nS //

sT 2

��

sT

��

dT
��

Td

��

d

��

Ts





=

T 2 T

ST 2

TST

T 2S TS

sT 2

��

Td
��

n //

Ts





T 2s





dT
��

nS
//

TsT

��

(C6)

In (C6), the left-hand side pasting is obtained using s̄ and n̄; the right-hand side pasting
is obtained using s̄T .

ST 3 ST

TST 2

T 2ST

T 3S TS

ST 2

S2T

TST

T 2S

dT 2

��

TdT

��

T 2d

��

d

��

dT

��

Td

��

STn 22 Sn

##

SnT ,,

nST
,,

nTS ,,

Sn

::

nS

;;

=

ST 3 ST

TST 2

T 2ST

T 3S TS

ST 2

TST

T 2S

T 2S

dT 2

��

TdT

��

T 2d

��

d

��

dT

��

Td

��

STn 22 Sn

##

TSn 22

TnS 22

nTS ,,

nS

$$

nS

;;

(C7)

For (C7), the left-hand side pasting is obtained using the associativity 3-cell of the pseu-
domonad T , n̄ and n̄T ; the right-hand side pasting is obtained using T n̄, n̄ and the
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associativity 3-cell of the pseudomonad T .

ST ST

TS TS

ST 2

TST

T 2S

d

��

d

��

dT

��

Td

��

1ST

$$

StT
,,

tST

��

tTS ,,

Sn
::

nS

;;

=

ST

TS TS

T 2S

d

��

1TS

$$

tTS ,, nS

;;

(C8)

For (C8), the left-hand side pasting is obtained using the right unit 3-cell of the pseu-
domonad T , n̄, t̄S; the right-hand side pasting is the right unit 3-cell of the pseu-
domonad T .

ST TS

ST TS

S2T STS

TS2

d
//

d //

sST

��

mT

''

Tm

%%

dS
&&

sTS

��
Sd //

TsS

��

1TS

��

=

ST TS

ST

S2T

d
//

sST

��

mT

��

1ST

��

(C9)

For (C9), the left-hand side pasting is obtained using the right unit 3-cell of the pseu-
domonad S, s̄S and m̄; the right-hand side pasting is obtained using the right unit 3-cell
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of the pseudomonad S.

ST ST

TS

ST 2

d

��

STt 22 Sn

##

1ST

::

=

ST ST

TS TS

ST 2

TST

T 2S

d

��

d

��

dT

��

Td

��

STt 22 Sn

##

TSt

@@

TtS

22

1TS

::

nS $$

(C10)

For (C10), the left-hand side pasting uses the left unit 3-cell of the pseudomonad T . The
right-hand side pasting is obtained using n̄ and the left unit 3-cell of the pseudomonad T .

B. Some technical proofs

Coherence diagrams for (GF, Gφ · ψF ). We show only equation in (14). Using the
coherence diagram (14) for (G, ψ) and for (F, φ), it suffices to prove that the following
two diagrams are equal:

QGTF

GT 2F

GTF

QGFS

GTFS

GFS2

GFS

QGF

GTF

QGtF

QGFs

ψF

1GTF

GTtF
ψTF

GnF

QGφ

ψFS

GTφ

GφS

GFm

Gφ

Gφ̄

ψφ

ψtF

GηTF

QGφ̃
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QGF

GTF

QGFS

GTFS

GFS2

GFS.

GT 2F

GTF

QGFs

ψF

GTFs

1GTF

GTtF

Gψ

ψFS

GφS

GTφ

GnF

GFm

ψFs

GTφ̃

Gφ̄

GηTF

This equality holds using (1) and (2).

Fφ is well-defined. Given a pseudomonad transformation (q, q̄) : (G,ψ) → (G′, ψ′) in
PK( (Y, T ), (Z, Q) ) we want to show that (qF, qF ) is a pseudomonad transformation as
well. We will show just equation (15), since (16) can be proved similarly. The required
equality follows from equation (15) for q and the equation below, which can be proved
using (1) twice.
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=

QGTF

GT 2F

GTF

QGFS

GTFS

GFS2

GFS

QG′TF

QG′FS

G′TFS

G′FS2

G′FS

ψTF

GnF

QGφ

ψFS

GTφ

GφS

GFm

Gφ

QqTF

QG′φ

QqFS

ψ′FS

qTFS

G′φS

qFS2

G′Fm

qFS

Gφ̄

ψφ

Qqφ
−1

q̄FS

qφS
−1

qFm
−1

=

QG′TF

G′T 2F

G′TF

QG′FS

G′TFS

G′FS2

G′FS

GTF

GFS

QG′TF

GT 2F

ψ′TF

G′nF

QG′φ

ψ′FS

G′Tφ

G′φS

G′FmG′φ

QqTF

ψTF

qT 2F

GnF

qTF

Gφ

qFS

G′φ̄

ψ′φ

qφ
−1

q̄TF

qnF
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Let
(q, q̄), (q′, q̄′) : (G, ψ)→ (G′, ψ′)

be pseudomonads transformations in PK( (Y, T ), (Z, Q) ). Given a pseudomonad modifi-
cation β : (q, q̄)→ (q′, q̄′) we want to show that βF is a pseudomonad modification from
(qF, ¯qF ) to (q′F, ¯q′F ). So we need to show the following equation

QGF QG′F

GTF G′TF

GFS G′FS

QqF

ψF

Qq′F

ψ′F

q′TF

Gφ G′φ

q′FS

QβF

q̄′F

q′φ
−1

=

QGF QG′F

GTF G′TF

GFS G′FS.

QqF

ψF ψ′F

qTF

Gφ G′φ

q′FS

qFS

βFS

q̄F

qφ
−1

This can be shown to hold using the coherence axiom for β and (3).

Coherence for qp. Given (p, p̄) : (F, φ) → (F ′, φ′) and (q, q̄) : (G,ψ) → (G′, ψ′) two
2-cells in PK we want to prove that qp : G′p · qF → qF ′ ·Gp is a 3-cell in PK. First of all,
it is useful to note that

=

GFS

GTF

GF ′S

G′FS

G′TF

G′F ′S

G′TF ′

GpS

qFS

qTF

Gφ

qF ′S

G′Tp

G′φ

G′φ′

G′pS

qpS
−1

qφ
−1 G′p̄

GFS

GTF

GF ′S

GTF ′

G′TF

G′F ′S.

G′TF ′

GpS

qTF

GTp

Gφ

qF ′S

qTF ′

Gφ′

G′Tp

G′φ′

qTp
−1 = (qT )p

−1

Gp̄ qφ′
−1

This equality is true since both diagrams are equal to the following one, using (3) for
the one on the left-hand side and (1) for the one on the right-hand side.
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GTF G′TF

GF ′S G′F ′S

qTF

G(pS · φ) G′(φ′ · Tp)

G′(pS · φ)

g′F

q(pS·φ)
−1

G′p̄

The proof can be concluded using the invertibility of the 3-cells involved and (1).
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