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ABSTRACT / Risk assessment and environmental impact as- 
sessment have developed as separate traditions. While envi- 
ronmental impact assessment is a broad field that includes 
all activities that attempt to analyze and evaluate the effects 

of human and related actions on the environment, risk as- 
sessment has been concerned with the relatively well-defined 
regulatory problems and employs formal quantitative analysis 
of the probability of specific undesired events, such as 
cancer. Risk analytic approaches, particularly the explicit 
treatment of uncertainty, can significantly contribute to envi- 
ronmental assessments. This article discusses the type and 
sources of uncertainty in environmental assessments, tech- 
niques for their quantification, and ways to use uncertainty 
estimates to calculate probabilities of effects or probabilities 
of exceeding environmental standards and to determine the 
need for mitigation or additional research. 

Environmental impact assessment is a broad field 
that includes all activities that attempt to analyze and 
evaluate the effects of human actions on natural and 
anthropogenic environments. As is indicated in a 
number of reviews, the field considers the full range 
of human actions and includes identification and 
prioritization of issues, prediction and comparison of 
effects, consideration of acceptability, and translation 
of conclusions into policy recommendations (Munn 
1975, Beanlands and Duinker 1983, and Westman 
1985). 

Risk assessment, as it has evolved since the mid 
1970s, is much narrower and more tightly focused 
than environmental impact assessment. Risk assess- 
ments are associated with regulatory legislation such as 
the Pure Food and Drug Act and the Federal Insecti- 
cide, Fungicide and Rodenticide Act. Risk is most 
often defined as the uncertainty concerning an unde- 
sired event where uncertainty is expressed as the prob- 
ability of occurrence (Rowe 1977, Whyte and Burton 
1980, ASTM 1985). However, the term risk assessment 
is applied more generally to the process of character- 
izing the potential adverse effects of exposure to envi- 
ronmental hazards (National Research Council 1983). 
Although most risk assessments to date have ad- 
dressed human health concerns, environmental con- 
cerns must now be addressed in the same terms (Gil- 
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ford 1985). The  characterization and quantification of 
uncertainty have been identified as major components 
of  risk assessment (Ruckelshaus 1983). We believe that 
the emphasis on uncertainty in risk assessment repre- 
sents a significant conceptual advance over conven- 
tional approaches to environmental impact assessment. 
This article discusses the nature and sources of uncer- 
tainty considered in risk assessment and shows how 
the probabilistic results of risk assessments can be in- 
terpreted and used. 

T y p e s  of U n c e r t a i n t y  

The  following taxonomy of uncertainty (Figure 1), 
although original with the authors, is an adaptation of 
risk analysis terminology (for example, Rowe 1977, 
Fairley 1975) to environmental problems. Defined un- 
certainty is uncertainty about the state of the world; 
undefined uncertainty is uncertainty concerning one's 
actual level of ignorance. Undefined uncertainty is in- 
herently unknowable and cannot be explicitly incorpo- 
rated in risk assessment, but an awareness of its exis- 
tence contributes a wholesome humility. It is referred 
to in engineering as the unknown unknowns. 

The two fundamentally different types of defined 
uncertainty that can contribute to risk are identity un- 
certainty and analytical uncertainty (Figure 1). Identify 
uncertainty, the uncertainty concerning the identity of 
future victims, is the fundamental unknown in studies 
of human risks. For example, an insurance actuary 
may know rather precisely the annual probability of 
death among a particular class of people, but a new 
insurance company could be bankrupted by the un- 
timely death of'its first client, hence the uncertainty. 
Similarly, a person living adjacent to a facility that will 
cause cancer in 0.01% of the community may agree 
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Figure  1. A taxonomy of un- 
certainty. 

that the facility is acceptable to the society as a whole 
and yet move his family to another location. In con- 
trast, the identity of the victim is irrelevant in ecolog- 
ical risk analysis. Therefore, the statement that a par- 
ticular facility will kill 30% of the fish in a receiving 
river is a deterministic statement of hazard or impact 
and does not constitute a statement of risk. 

The other type of defined uncertainty in risk anal- 
ysis is analytical uncertainty (Figure 1). Because of the 
uncertainty in estimating the level or frequency of ef- 
fects, there is a risk that an effect will be greater than 
expected. The probability density function for the 
predicted level of effect can be used to calculate the 
probability (that is, risk) that a certain level of effect 
will occur, given the total uncertainty in the analysis. 
For example, due to the uncertainty in ecological risk 
analysis, a pollutant may pose a risk of 0.2 of causing a 
50% or greater reduction in gamefish biomass (an ef- 
fect that may be both measurable and significant), 
even though the expected reduction in gamefish bio- 
mass is only 10% (an unmeasurable and probably in- 
significant effect). 

While the availability of actuarial and epidemiolog- 
ical data makes analytical uncertainty a minor compo- 
nent of some human risk analysis, such uncertainty is 
invariably large in ecological analysis. There are no 
coroner's records for fish or birds. In addition; the 
millions of species of nonhuman biota exist in a web of 
food chain and competitive relationships that deter- 
mine population sizes and affect toxic responses in 
largely unknown ways. Absolute predictions of the fu- 
ture state of ecological systems are not credible (Gold- 
stein and Ricci 1981). The consideration of analytical 
uncertainty, which has been treated as an option in 
human risk analyses (for example, Hamilton 1980, 

Feagans and Biller 1981), is a necessity in ecological 
risk analyses. 

Sources of Uncertainty 

The analytical uncertainty associated with pre- 
dicting environmental effects of stress has indepen- 
dent components that affect the calculation of risk in 
qualitatively different ways. These components also 
vary in the extent to which they can be reduced by 
additional information. We distinguish three sources 
of uncertainty: errors resulting from our conceptual- 
izations (models) of the world, stochasticity in the nat- 
ural world, and uncertainties associated with mea- 
suring model parameters. Model error corresponds to 
Rowe's (1977) descriptive uncertainty, and stochasticity 
and parameter uncertainty correspond to Rowe's mea- 
surement uncertainty, but the definitions used here 
are broader. 

Model Error 

Computing a risk estimate necessarily involves the 
use of some sort of mathematical or statistical model. 
A reducible source of uncertainty is the lack of corre- 
spondence between the model and reality. Major types 
of model error that have been studied are (a) using a 
small number of variables to represent a large number 
of complex phenomena [defined as aggregation error, 
(O'Neill 1973)], (b) choosing incorrect functional 
forms for interactions among variables, and (c) setting 
inappropriate boundaries for the components of the 
world to be included in the model. Because the com- 
plexity of the natural world greatly exceeds our ability 
to model it, model errors can never be completely 
eliminated. The most serious problem associated with 
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model error is that the errors frequently involve biases 
whose magnitudes and directions may be difficult to 
determine. 

Natural Stochasticity 

Although philosophers may argue whether the nat- 
ural world is ultimately deterministic or stochastic, the 
question is of little practical interest. At all scales of 
resolution, spatial heterogeneity and temporal vari- 
ability are characteristic of natural systems. For ex- 
ample, the concentration of a contaminant in air or 
water varies unpredictably in space and time because 
of essentially unpredictable variations in meteorolog- 
ical parameters such as precipitation and wind direc- 
tion. The spatial and temporal distributions and the 
sensitivities to stress of organisms in nature are simi- 
larly variable. Limits on the precision with which vari- 
able properties of the environment can be quantified 
define the upper limit of the precision with which it is 
possible to predict the ecological effects of a stressor. 
Out of the universe of similar environmental systems, 
a given percentage would be expected to show an ef- 
fect. This percentage translates directly into an esti- 
mate of risk. 

Parameter Uncertainty 

Errors in parameter estimates introduce additional 
uncertainties into ecological risk estimates. Laboratory 
measurements of both the chemical and biological 
properties of hazardous chemicals are subject to fre- 
quently unreported errors. Many ecological variables 
are extraordinarily difficult to measure and can be es- 
timated to only order-of-magnitude precision. Param- 
eter values of interest may have to be estimated from 
structure-activity relationships (regression models 
that relate an often unknown parameter to one that is 
usually known, for example, Kenaga and Goring 
1980, Veith and others 1983) or taxonomic correla- 
tions (for example, Suter and others 1983 and 1986, 
Calabrese 1984). 

Quantifying Uncertainty 

To varying degrees, it is possible to quantify all 
three types of uncertainty. Since stochasticity can be 
estimated from historic frequencies, it can be quanti- 
fied for many characteristics of the physical environ- 
ment. Long-term meteorological and hydrological 
records can be used to estimate probability distribu- 
tions of wind speeds, streamflow rates, and so on. 
Other variable aspects of the environment, including 
distributions, abundances, and sensitivities of or- 
ganisms, are in principle quantifiable, although the 

necessary data are difficult and expensive to collect. As 
in all risk analyses, expert opinion can be employed 
where data are insufficient. 

Parameter uncertainties are also relatively easy to 
address. Parameter errors usually take the form of sta- 
tistical distributions rather than biases. The param- 
eters of these distributions can frequently be either di- 
rectly calculated or realistically bounded, if proper 
data collection and reporting procedures have been 
followed. For experimentally measured parameters, 
such as median lethal concentrations (LC~os) and deg- 
radation rates, a complete accounting of measurement 
error would include the variance between replications 
of an experiment within a laboratory, between labora- 
tories using the same protocol, and, if appropriate, be- 
tween protocols. Information concerning the magni- 
tudes of these variances is increasingly available from 
the protocol development and evaluation activities of 
the US Environmental Protection Agency, the Organi- 
zation of Economic Cooperation and Development, 
and the American Society for Testing and Materials 
(for example, Lemke 1981). This information has 
been incorporated in risk analysis methods (Suter and 
others 1986). 

Parameter uncertainty also results from the use of 
regressions to extrapolate between available data and 
needed parameter values. Suter and others (1983 and 
1986) used a regression analysis to estimate the errors 
associated with the extrapolation of acute LCso values 
between species of fish and invertebrates and extrapo- 
lation of chronic toxic effects threshold levels from 
LC~os. Similar analyses are possible for extrapolations 
among chemicals based on structure-activity relation- 
ships. 

Model errors constitute the least tractable source of 
uncertainty in risk analysis. The most straightforward 
method is to test the model against independent field 
data (Miller and Little 1982). However, the data neces- 
sary to perform such tests are exceedingly difficult to 
collect, and when collected, are difficult to interpret. 
No matter how well a model performs for one set of 
environmental conditions, it is never possible to deter- 
mine with certainty its applicability to a new set of con- 
ditions. 

Although crucial in the long run for improving the 
models used in risk analysis (Mankin and others 1975, 
National Research Council 1981), empirical testing is 
clearly unsuitable as a routine method of assessing 
model errors. However, it is possible to assess how as- 
sumptions alter model output by comparing models 
that utilize different sets of assumptions (Gardner and 
others 1980). Although this procedure does not en- 
sure that model results will correspond to effects in the 
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field, it can be used to distinguish between predictions 
that are robust to model assumptions and predictions 
that are highly sensitive to model assumptions and 
hence susceptible to serious model errors (Gardner 
and others 1980, Levins 1966). 

Implications of Uncertainty 
Relationships among the components of  risk are il- 

lustrated in Figure 2. Suppose we are interested in es- 
timating the risk that the environmental concentration 
of a toxic contaminant will cause a valued species to 
fall below a specified threshold abundance. The  
dashed curve (Figure 2a) is the true density function, 
determined on the basis of  the intrinsic hazard of the 
contaminant and the stochasticity of  the environment. 
The  solid curve is the density function, estimated 
using a risk model. The  curve shifts and its variance 
increases because of model and parameter  error. 

Figure 2b presents the cumulative risk distributions 
for the density functions in Figure 2a. When the 
model distributions is shifted to the left, as shown in 
the figure, the model is conservative, predicting higher 
probabilities of  risk than does the true density func- 
tion. Unfortunately, it is often difficult or impossible to 
guarantee that the model distribution will be shift to 
the left rather than the right. In Figure 2c we show the 
cumulative risk distributions when the risk model is 
conservative but the parameter  error is very large. In 
this case, the risk model overestimates risk at low con- 
centrations and underestimates risk at high concentra- 
tions. This result has real practical importance because 
increasing the complexity of  a model is often viewed as 
a desirable goal. However, both disaggregating the 
variables and increasing the complexity of  process 
functions increase the number  of  model parameters 
and the potential for parameter  error. Therefore,  in- 
creasing model complexity may increase the chance 
that the model will underestimate the risk associated 
with high contaminant concentrations. 

The  relationship between model complexity and 
uncertainty is referred to by Rowe (1977) as the infor- 
mation paradox. The more complex one's model be- 
comes (that is, the more one knows about the structure 
of  the world), the greater one's uncertainty will be, be- 
cause of  the greater number  of  parameters to be esti- 
mated and because of the greater number  of stochastic 
processes and model functions that must be included. 
In general, the number  of model parameters will in- 
crease exponentially with the number  of  environ- 
mental components explicitly included in the model. 
As model complexity increases, either the costs of  
testing and parameter  measurement or the total un- 
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Figure 2. Relationships between true risk ( - - - )  and esti- 
mated risk ( ), as functions of concentration, for a hypo- 
thetical environmental contaminant. Relative to true risk, the 
estimated risk density function a is shifted and its variance is 
increased because of model biases and parameter errors. De- 
pending on the relative magnitudes of biases and errors, the 
cumulative estimated risk function corresponding to the den- 
sity function in a may either overestimate true risk at all con- 
centrations b or may overestimate true risk at low concentra- 
tions and underestimate it at high concentrations c. 

certainty will quickly become excessive (Suter and 
others 1985). 

One conclusion that can be drawn from this is that 
assessment models should be as simple as possible 
while also including the critical components and pro- 
cesses (Barnthouse and others 1984). When a simplifi- 
cation that biases the results is necessary, it should be 
designed to be conservative. Assessments should not 
be conservative simply for the sake of being cautious 
or describing a worst case. Rather, if one cannot de- 
scribe the full set of  components and interactions with 
a reasonable degree of uncertainty, then reduce the 
scope of the model in a way that will still protect the 
assessment endpoints. For example, models used to 
assess effects of  power plants on fish populations typi- 
cally ignore density-dependent mortality that may 
compensate for power-plant-induced mortality (Barn- 
thouse and others 1986). The  degree of compensation 
may be substantial or negligible, and no practical 
methods exist for measuring it. 

Similarly, most simplifications of  chemical fate 
models are conservative because they ignore removal 
processes, such as biodegradation or photodegrada- 
tion, for which rates are typically unknown. However, 
it is not always possible to simplify assessment models 
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in such a way as to be conservative. For example, 
models of  acid rain effects on fish cannot ignore cation 
leaching f rom watersheds. In any case, these simpli- 
fied models must be recognized for what they are: 
models of  a reduced world. For example, output from 
a chemical fate model without removal processes 
should be explicitly described as "concentration due to 
dilution." 

Uses of Risk Analysis 

It  is not usually possible to accurately predict the 
levels of  environmental effects caused by human ac- 
tions. However, even without predicting absolute mag- 
nitudes of  effects, application of the concept of  risk 
can lead to substantial improvements in environmental 
assessment and protection. Risk analysis can provide a 
more rational basis for decisions that may otherwise be 
highly subjective, by (a) emphasizing probabilities and 
frequencies of  events and (b) explicitly quantifying un- 
certainty. For example, frequency distributions of  am- 
bient contaminant concentrations can be used to fore- 
cast impacts on water quality or compliance with stan- 
dards. 

For any given benchmark concentration (for ex- 
ample, an ambient-air or water-quality criterion) the 
probability of  exceeding the benchmark can be read 
f rom the cumulative distribution function in Figure 
3a. The  presentation of such functions would enhance 
the quality of  environmental impact assessments, 
which frequently are based on worst-case analyses in 
which the probability of  occurrence of the worst case is 
not considered. Alternatively, the benchmark concen- 
tration might be the level above which contaminant 
discharge would not be permitted. In this case, some- 
thing like Figure 3a might be used to estimate the fre- 
quency of  days on which action would have to be 
taken. Probabilistic models would be used to generate 
the curves (Parkhurst and others 1981, Di Toro 1986, 
Barnthouse 1986). The  models should include esti- 
mates of  both variability in relevant environmental pa- 
rameters and uncertainty in contaminant-specific pa- 
rameters such as partition coefficients and degrada- 
tion rates. 

Risk analysis can also be used to set standards based 
on probabilities of  exceeding effects thresholds. Suter 
and others (1983 and 1986) described a method for 
calculating probability distributions for toxicological 
benchmarks such as LCbo s and chronic-effects thresh- 
olds. Such a distribution, plotted as a cumulative prob- 
ability function, is presented in Figure 3b. The  allow- 
able ambient concentration might be set using this 
curve so that the risk of  exceeding the threshold level 
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Figure 3. Four applications of ecological risk functions. (a) A 
cumulative frequency function is used to estimate the fre- 
quency with which the environmental concentration of a con- 
taminant will exceed an "action" concentration. 0a) A cumula- 
tive probability function for the effects threshold concentra- 
tion of a hypothetical organism is used to select an action 
concentration with an X% chance of exceeding the true-ef- 
fects threshold. (e) Probability density functions for two com- 
ponents of a risk estimate are compared to identify the com- 
ponent with the greater uncertainty. (d) The risks of adverse 
effects of different magnitudes are compared for two alter- 
native facility designs. The expected effects of the two alter- 
natives are the same, but alternative B presents greater risks 
of severe adverse effects. 

is 5%. Figure 3b could also be used to decide whether 
the uncertainty is sufficient to justify additional testing 
when tiered testing schemes are used in hazard assess- 
ment. 

A third major application of risk analysis is in allo- 
cating research efforts to maximize the uncertainty re- 
duction per  dollar invested in research related to eco- 
logical hazards. I f  the contributions to total uncer- 
tainty of  several different components of  a risk 
estimate can be compared, then research efforts can 
be concentrated on the component(s) contributing the 
greatest uncertainty. For example, in Figure 3c, un- 
certainty about the environmental concentration of a 
toxic contaminant is compared with uncertainty about 
its effects threshold. The  relative variances of  the two 
distributions correspond roughly to the variances esti- 
mated by Suter and others (1983) for largemouth bass 
exposed to mercury released f rom a hypothetical indi- 
rect coal liquefaction plant. Additional relevant data 
would decrease the spread of these curves. The  pre- 
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dicted reduction in overlap between the curves could 
be used as a measure of the value of the data. 

Decisions concerning alternative plant sites and mi- 
tigating technologies can be facilitated using risk 
curves such as those shown in Figure 3d. Such curves 
provide information about both the expected effects 
of an action (such as building a plant or licensing a 
chemical) and about the risk of extremely large effects. 

More sophisticated applications of risk analysis to 
environmental decision making are also possible. For 
example, Figure 4 presents a decision tree comparing 
two alternative courses of  action for a decision maker 
confronted with a potential environmental problem. It 
has been estimated, using a risk model, that the proba- 
bility is p that the environmental impact of some indus- 
trial facility is serious enough to require mitigation. 
The decision maker has a choice of ordering imme- 
diate mitigation, at cost X, or of delaying mitigation 
while a research program is performed, at cost Y, to 
eliminate the uncertainty about whether mitigation is 
necessary. Whether or not it would be economical to 
delay mitigation would depend on the cost of the re- 
search relative to the cost of  mitigating and on the a 
priori probability p that, following research, mitigation 
would still be necessary. 

Examples 

Industrial Effluents 

The effluents from the proposed synfuels industry 
present a particular challenge to environmental assess- 
ment because their composition is only roughly pre- 
dictable but is expected to be highly complex. The US 
Environmental Protection Agency's Synfuels Risk 
Analysis Program developed risk assessment methods 
and applied them to the problem of setting research 
priorities for the anticipated industry (Barnthouse and 
others 1985, Suter and others 1984). Effluent streams 
and components were identified as needing additional 
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Figure 4. A risk estimate is 
used as a component of a de- 
cision analysis regarding a po- 
tential environmental impact. 
Whether or not it is economical 
to delay mitigation while per- 
forming research concerning 
the potential impact depends on 
the a priori probability (p), esti- 
mated using a risk model, that 
research will show mitigation to 
be necessary. 

research if they appeared to pose a significant hazard 
but their environmental behavior was in some way 
poorly specified. Risk assessment provided a means of 
simultaneously identifying the relative hazard and un- 
certainty associated with the effluent components. 

Effluent compositions were defined in terms of 
chemical classes so as to minimize the effluent charac- 
terization problem and to reduce the assessment task 
to a manageable scale. The need to consider the ef- 
f luent toxicities was established by using an additivity 
model to estimate the acute toxicity of the whole ef- 
fluents based on the toxicities of their component 
chemical classes. Only one of  the effluents was pre- 
dicted to be acutely toxic, but all effluents had suffi- 
ciently high toxicity and uncertainty concerning their 
actual effects to justify additional research. Some spe- 
cific research needs were immediately identifiable be- 
cause no environmental toxicity data were available for 
certain classes of chemicals, such as nitroaromatics, 
which were expected to occur in the effluents. Some 
classes, such as ammonia and cadmium, contributed 
significantly to aquatic toxicity; but because these 
classes are well studied and narrowly defined, the un- 
certainty concerning their effects is relatively small. Of  
the classes for which there are some aquatic toxicity 
data, only the phenolics had both high apparent 
hazard and high uncertainty, which would justify ad- 
ditional research. 

Acid Deposition 

The issue of acid deposition involves a variety of 
complex processes operating at scales ranging from 
the organismal to the continental. The  following ex- 
ample shows how, by broadly defining the problems 
and emphasizing uncertainty, the issue can be made 
more manageable. 

Morgan and others (1985) considered the problem 
of  health effects of sulfate aerosols. They indepen- 
dently elicited models and judgments concerning pa- 
rameterization and uncertainty from experts on atmo- 
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spheric processes and health effects. From these they 
generated probability density functions on estimated 
sulfate exposure and effects. They found that the un- 
certainty concerning exposure was relatively small, be- 
cause atmospheric scientists have relatively well-devel- 
oped models which were well supported. In contrast 
the health effects experts agreed little about models or 
assumptions. The results of this exercise provide esti- 
mates of  effects from a single coal-fired plant that 
range from zero to a few thousand excess deaths per 
annum. More clearly, they indicate that further re- 
search in atmospheric science would contribute little to 
improving the estimates of health effects. 

Genetically Engineered Organisms 

Engineered organisms potentially constitute the 
most difficult problem facing environmental assess- 
ment. While some of the techniques developed for as- 
sessing toxic chemicals are also applicable to novel or- 
ganisms, the fact that organisms reproduce, evolve, 
and have specific habitat requirements considerably 
complicates the problem of predicting their fate and 
effects. Because the field is new and the number of 
organisms to be assessed is small, assessments have not 
used risk analysis. Rather, they have relied on the in- 
formal judgments of expert panels. However, because 
of the overconfidence of experts (Fischhoff and others 
1981), the inconsistency in ad hoc procedures, and the 
eventual need to assess hundreds or thousands of new 
organisms per year, formal assessment procedures 
must eventually be developed. Because of the less pre- 
dictable behavior of organisms and the fact that their 
reproductive capability allows them to persist indefi- 
nitely, it is particularly important that assessments of 
organisms include the explicit treatment of uncer- 
tainty. 

Suter (1985) has presented a conceptual framework 
for environmental risk analysis of engineered or- 
ganisms. Major sources of uncertainty include the 
probabilities of movement between habitats, coloniza- 
tion of new habitats, pathogenicity by a nominally 
free-living organism, extension of a pathogen's host 
range to nontarget species, disruption of ecosystem 
processes, exchange of genetic material between or- 
ganisms, and evolution that reduces constraints on the 
organisms' behavior. Because of the specificity of hab- 
itat requirements, it is difficult to generalize from tests 
of the persistence or effects of an organism in a partic- 
ular system. A bacterium that goes extinct in one soil 
may proliferate in a soil 1 m away. Therefore, it would 
be naive to accept test results as being predictors of the 
environmental behavior of organisms, as is usually 

done for chemicals. A risk-based assessment strategy 
will provide a means to deal appropriately with these 
uncertainties. 

Conclusions 

Risk analysis, because of its explicit treatment of 
uncertainty, provides two significant benefits for envi- 
ronmental impact assessment. The first is that it elimi- 
nates the need for worst-case scenarios and analyses by 
providing probability densities on the expected effect 
that can be used to estimate the probability of any 
worse effect. Worst-case analyses are often unrealistic, 
and because there is no absolute worst case and no 
scale of badness, they should not be used to compare 
alternative actions. The second advantage is that it 
provides an objective means of deciding, based on re- 
duction in uncertainty, which research would most im- 
prove the assessment. 

Regardless of its intellectual appeal, environmental 
risk analysis will soon be forgotten unless the concepts 
can be translated into operational techniques. Steps in 
this direction have already been taken (Barnthouse 
and Suter 1986). Most of  the necessary components of 
operational risk analysis methodologies (such as, air/ 
water quality models, ecological effects models, and 
toxicological data bases) already exist. The only con- 
straints on the usefulness of existing models and data 
are that (a) the models must be modified so that 
output can be expressed in probabilistic terms, and (b) 
error variances in experimental studies and in data ex- 
trapolations must be reported so that parameter un- 
certainties can be quantified. 

As in other types of risk analyses, the most difficult 
problem facing the environmental risk analyst is that 
of demonstrating that his risk model provides reason- 
able estimates of ecological risks in the real world. At 
least for environmental contaminants, many of the 
same physical, chemical, and biological processes un- 
derlie both ecological and human health risks. Thus, 
progress made in one field can directly benefit the 
other. 
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