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Abstract

Uncertainties prevalent in fisheries systems result in deviations between
management targets and observed outcomes. As an example of attempting to deal with
such uncertainty, fishery managers of sockeye salmon (OUncorhynchus nerka) from the
Fraser River, British Columbia, Canada use environmentally-based "management
adjustment” (M A) models to forecast indices of in-river loss of adults as they migrate
upstream to spawn. Forecasts of losses from M A models are directly incorporated into
estimates of total allowable catch, resulting in harvest reductions that aim to increase the
probability of achieving spawning escapement targets. However, the relative forecasting
success of different MA models has not been assessed rigorously. Therefore, we used a
suite of forecasting and hindcasting metrics to rank the performance of numerous MA
models. We found that the rank of each model varied across sockeye salmon stock
aggregates (i.e., run-timing groups) and depended on the performance measures chosen
for evaluation. Although model selection in fisheries research is often determined solely
by model-fitting criteria such as R* and AIC, in our case, models with the largest mean R*
value and/or the smallest mean AIC. often ranked poorly for other measures of model
hindcast performance (i.e., mean raw error, mean absolute error, root mean square error).
Although no single model performed best across all run-timing groups, failure to apply an
MA produced the worst (in 3 of 4 run-timing groups) or second-worst (in 1 of 4)
outcomes. We provide a framework for model selection based on the relative importance
of different model selection criteria and their associated performance measures. We urge

scientists and managers to work closely together to develop appropriate metrics to assess
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model performance and objectively select forecast models that will best meet

management objectives.

Keywords: Fraser River, sockeye salmon, management ad justment, model selection,

performance measures, management objectives, retrospective analysis

Introduction

Fisheries managers are tasked with meeting society’s competing demands,
including opportunities for income, employment, cultural identification, productive
ecosystems, recreation, and sustenance. However, given the variability in natural
systems and variation in effectiveness of management efforts, there can be considerable
discrepancies between target management objectives and realized outcomes at the end of
a fishing season (Holt and Peterman 2006). Improvements to methods that quantify the
complex system dynamics contributing to these sources of outcome uncertainty can
therefore help managers meet both spawning and harvest objectives (Holt and Peterman
2008; Macdonald et al. 2010). For example, for fisheries on Fraser River sockeye salmon
(Oncorhynchus nerka) in British Columbia (BC), Canada, managers use models that
forecast in-river loss of upstream-migrating adults to help reduce one such source of

uncertainty and increase the chance of meeting spawning escapement targets.

The Fraser River sockeye salmon fishery is the largest salmon fishery in Canada,
with average annual catches of 5.5 million fish for over 50 years (Pacific Salmon
Commission-PSC). These salmon are of great importance both as a fishable product and
as a social and cultural resource to both First Nations and residents of British Columbia.

However, in the last 16 years, both population abundance and catches have declined
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(Peterman et al. 2010). In addition, there has been a recent increase in the frequency of
large in-river losses of upstream-migrating adults. Those losses correspond with an
increasing frequency of extreme environmental conditions during migration (Macdonald
et al. 2010). Specifically, in years with extremely high river temperatures or flows, large
associated in-river losses have created a challenge to fisheries managers to meet both
spawning escapement targets and harvest allocation objectives (i.e., First Nations,

commercial, and recreational catch) (Cooke et al. 2004; Patterson et al. 2007b).

Management adjustment (M A) models attempt to predict a proxy for this in-river
loss (termed escapement discrepancy), which is defined as the ratio of upper-river
escapement estimates to lower-river estimates of abundance, after accounting for in-river
catch estimates. Lower-river escapement estimates are made at a hydroacoustic facility
near Mission, BC, whereas upper-river escapement estimates are obtained from spawning
ground surveys (locations in Figure 1). In the absence of direct mortality estimates, the
estimated escapement discrepancies are used to represent a historical index of in-river
loss. During the fishing season, these discrepancies are incorporated by fisheries
managers into estimates of total allowable catch, thus potentially reducing available
harvest for regulated fisheries in years when the forecast of loss is high (Macdonald et al.
2010). Underestimates of in-river loss can lead to conservation concerns with too few fish
reaching spawning grounds due to excess catch, whereas overestimates of in-river loss
can result in foregone catch. Therefore, management of the Fraser River sockeve salmon
fishery would benefit from identifying MA models that produce the most precise and

unbiased predictions of in-river loss.
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For management purposes, returning Fraser River sockeye salmon stocks are
assigned to four major management groups (run-timing groups) based on their historical
return times to the river: (1) Early Stuart, (2) Early Summer, (3) Summer and (4) Late-
run (Gable and Cox-Rogers 1993). Models specific to each run-timing group are used to
predict appropriate harvest or management adjustments (i.e., MAs), which are then used
by managers to account for in-river losses (Hague and Patterson 2007; Macdonald et al.
2010). The larger the predicted escapement discrepancy, the larger the associated MA
value required (i.e., reduction in catch) to meet a given spawning escapement target.
Forecasting appropriate M As is difficult because estimates of in-river loss are not only
affected by natural mortality resulting from extreme environmental conditions, but also
by potential measurement errors in adult salmon abundance in both lower-river and
spawning-ground escapement estimates, uncertain catch estimates, and unreported

harvest (Macdonald et al. 2010).

Several MA models have been applied historically by biologists at the two
relevant agencies responsible for Fraser River sockeye salmon management, Fisheries
and Oceans Canada (DFO) and the PSC (Macdonald et al. 2010). The simplest model
assumes that the MA should equal the average of historical annual escapement
discrepancies between the lower-river (Mission) and up-river (spawning ground)
abundances. In 2001, DFO and PSC biologists adopted MA models that were based on
environmental conditions to better reflect the association between extreme freshwater
migration conditions and in-river loss estimates; these models are supported by well-
documented biological rationale (Macdonald et al. 2010). These models forecast

escapement discrepancies for each run-timing group, both pre-season and in-season, as a
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function of (a) predicted Fraser River environmental conditions (water temperature and
flow) for Early Stuart, Early Summer, and Summer runs, and (b) fish behavior (river
entry timing) for the Late-run (Hague and Patterson 2007; Macdonald et al. 2010).
However, despite the wide variety of these MA models that have either been proposed or
applied in the past, there has been little comprehensive analysis that quantitatively

compares their statistical performance.

Here we compare the performance of a suite of MA models using retrospective
analysis, which 1s a cross-validation technique (Shao 1993) that uses historical data up to
a given year to fit various forecasting models, and then iteratively re-fits the model with
each additional year of data and compares annual forecasts to subsequently observed
annual values. The performance of each model is then averaged over the entire period of
analysis. In fisheries research, such retrospective methods have been previously applied
to evaluate a variety of forecasting methods, such as models predicting salmon
abundance (Wood et al. 1997, Peters et al. 2001; Holt and Peterman 2004; Haeseker et al.
2005; Haeseker et al. 2008) and annual harvests of Atlantic menhaden (Brevoorfia

tyrannus) (Hanson et al. 2006).

Our research objective was to develop a standardized framework to quantitatively
evaluate new and existing MA models and, more generally, to explore how different
model performance measures can influence the rank-order of model selection. Our
framework, in the form of a retrospective analysis, will help to streamline the planning
process for Fraser River sockeye salmon fisheries with respect to selecting MA models
and will also quantify the influence of competing performance indicators on model

choice. Specifically, we examined the efficacy of five MA models, plus a model-
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combining technique, using five performance measures that reflect different management

objectives.

Methods

Data

Fisheries and Oceans Canada provided historical spawning escapement estimates
for sockeye salmon (T. Cone, personal communication, DFO Stock Assessment, Annacis
Island, BC), and the PSC provided sockeve salmon abundance estimates at Mission and
estimates of sockeye salmon catch upriver of Mission. Spawning ground abundance
estimates were obtained through a variety of methods outlined in Schubert (2007), and
Mission abundance and run-timing estimates were obtained using hydroacoustic sonar
(Xie and Hsieh 1989; Xie 2000). Lower Fraser River temperatures (near Qualark, 165
km upstream from the river delta) were provided by the DFO Environmental Watch
Program (Patterson et al. 2007a), and flow data (near Hope, 150 km upstream from the
river delta) were from Environment Canada’s Water Survey of Canada

(http://www.wateroffice.ec.gc.ca/index_html).

MA Models

Because there is no long-term record of directly estimated in-river mortality for
upstream-migrating Fraser River sockeye salmon, we indexed in-river loss using the ratio
of estimates of up-river spawning escapement abundance (5) to lower-river potential
spawning escapement abundance estimates (Sp). The latter, potential spawning
escapement, estimates the number of fish escaping from lower-river fisheries by

subtracting estimates of catch above Mission from the Mission escapement estimates.
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The closer the ratio of S'to Sp1s to one, the smaller the associated discrepancy or in-river
loss. Inthe MA models, the index of the escapement discrepancy response variable is

log(D), where D = /.5, (Hague and Patterson 2007, Macdonald et al. 2010).

Our study evaluated M A models that contained four predictor variables: (1)

Fraser River temperature (7) in degrees Celsius measured at Qualark, British Columbia,
(2) Fraser River flow ({J) in cubic meters per second measured at Hope, British
Columbia, (3) migration timing (R) in terms of the Hells Gate 50% date (the date by
which 50% of the run-timing group has passed Hells Gate, 35 km upstream of Qualark),
and (4) the average of the historically observed discrepancies (1 ) (Macdonald et al.
2010). Five MA models were evaluated and are denoted using their respective predictor
variables (Equations 1 — 5 in Table 1): (1) temperature-only (T), (2) discharge-only (Q),
(3) temperature and discharge (T+Q), (4) up-stream migration timing of the run (R), (5)
average historical escapement discrepancy (D). These models were all compared to

each other and to the outcome from applying no management adjustment (NMA; i.e., the
forecasted escapement discrepancy, loge(b), is 0, Eq. 6 in Table 1). Parameters for each

run-timing group were estimated for each of the six candidate models by fitting time-
series of loge(/2) to time-series of environmental and run-timing conditions using

equations in Table 1.

Retrospective Analysis

Retrospective predictions were made for 1995 — 2007. For example, @ and b
parameters for a given model in Table 1 were initially estimated using data from 1977 -

1994 and the resulting model was then used to forecast log.(D) in 1995. The observed

CAN285112_0008



187  loge(/>) was later compared with that forecasted value. In the next iteration, the observed
188 1995 environmental and escapement discrepancy data were added to the time series,

189  model parameters were re-fit, and log.(D>) was forecasted for 1996. These iterations were
190  repeated for all remaining years of available data (up through 2007) and for all run-timing
191  groups. The degree to which each model could correctly forecast the observed log (1))
192 over the entire time series was then calculated using performance measures as described
193 below. This process was repeated for each of the six management adjustment models and
194  each run-timing group. Due to logistical problems with Mission escapement estimates for
195 several years (Macdonald et al. 2010), Late-run MA models were initialized using data
196  from 1977 — 1999, and were evaluated from 2000 — 2007. Models were fit using the

197  linear modeling function Im() in the statistical software package R, version 2.6.0 (R

198  Development Core Team 2009).

199 Model performance measures. -- As defined with equations shown later, we used five

200  performance measures to rank the suite of MA models listed above: (1) mean raw error
201  (MRE) in forecasts of loge(/2), (2) mean absolute error (MAE), (3) root mean square error
202 (RMSE), (4) mean small-sample size Akaike information criterion (AIC.), and (3) mean
203 adjusted R? (R?). These measures were selected to provide an assessment of model

204  forecast skill (i.e., model bias (MRE) and accuracy (MAE, RMSE)), and hindeast skill
205 (i.e., model fit (R?, AIC,)) (Burnham and Anderson 2002; Willmott and Matsuura 2005).
206  These measures have been used in previous studies to evaluate performance of pre-season
207  abundance forecasting models for sockeye, chum (. kefa), and pink (O. gorbuscha)

208  salmon (Wood et al. 1997; Haeseker et al. 2005; Haeseker et al. 2008).
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209 To facilitate interpretation of results, we converted model error, the difference
210 between the predicted and observed values of log.(2)) based on equations 1-6 in Table 1,

211 to "raw error” (K) measured on a linear scale using:

212 (7) Eyy=Dy; =Dy

213 where E),; is the raw error in year 7 of model i, bn,z‘ is the forecasted discrepancy, and D,

214  is the observed discrepancy in year #. By converting discrepancy to the linear scale, a
215  positive error has the same absolute value as a negative error of the same magnitude.

216  Thus, E,; is a unitless measure of the extent to which the forecasted ratio of spawning
217  ground abundance to Mission abundance reflects the actual ratio of S/S, realized at the

218  end of the season. Across all years, F; measures the bias of a given MA model, 7.

219 The three performance measures (MRE, MAE, RMSE) are all derived from

220  annual E values. First, the MRE is the average bias for each model:

ZEn,i

221 (8) MRE; = ”ZlN

222 where MRE; is the mean raw error for MA model 7 across all N evaluated years starting
223 with n =1 for 1995 (except for Late-run models, where it starts in 2000), and §

224 corresponds to MA models 1-6 in Table 1.

225 An unbiased model (MRE = 0), in which positive raw errors exactly offset

226  negative E over the entire time series, provides no indication of forecast precision.

10
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227  Therefore, MAE (Eq. 9) and RMSE (Eq. 10) were also calculated to reflect the average
228  magnitude of MA model residuals. Values of MAE or RMSE approaching zero are
229  considered optimal. The MAE is the average absolute magnitude of MA model error,

230  regardless of sign:

N
ZlEn1|

231 (9) MAE; =22
N

232 The RMSE weights large errors more heavily than MAE. The model with the

233 smallest RMSE results in the lowest variance in residuals:

234 (10) RMSE; =

235 Finally, we calculated two measures of goodness of fit to assess how well models
236 fit observed data: adjusted R* (Zar 2006) and AIC, (Burnham and Anderson 2002).

237  Because models were refit for each iteration of the retrospective analysis, a mean

238  adjusted R’ and a mean AIC, across years were used for retrospective evaluation of each

239  model i

11
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N
2
Z Rn,z’

240 (11) sz%

N
> AIC,
241 (12) AIC, =n:1T

242 In addition to AIC,, for each model we report the number of parameters (K),

243  difference between the AIC. of a given model and that of the best model (A AIC,), and
244 AIC. weight (w, the relative degree of support assigned to an individual model within
245  each model set, calculated from the standard formula in Burnham and Anderson 2002).
246 Models with R” and w values closest to one were considered top-ranked for these

247  performance measures. We also calculated AIC,fit to the entire dataset (including 2007),

248  because this is the more commonly applied use of the statistic.

249 On the basis of these performance measures, a rank was given to each MA model

250  for each run-timing group and each measure, where 1 = "best" and 6 = "worst". In
251  addition, we averaged the ranks of a given model for all five performance measures for

252 each sockeye salmon run-timing group to calculate an average rank as a measure of

253 overall model performance.

254 Model Averaging

255 It can be useful to combine forecasting models to make a single. potentially more
256  precise and less biased prediction by using all of the information contained in various
257  candidate models (Link and Barker 2006). Thus, in addition to a retrospective analysis of

258  individual MA models, we also explored the viability of applying a model-combining

12
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259  procedure. Model averaging has been proposed as a means of setting rebuilding targets
260  for New England groundfish stocks (Brodziak and Legault 2005), estimating vessel
261  impacts on Mississippi River fisheries (Gutreuter et al. 2006), and making hydrological

262 predictions (Duan et al. 2007).

263 One option for combining models is to use model averaging based on information
264  theoretic criteria (Burnham and Anderson 2004; Brodziak and Legault 2005; Gutreuter et
265  al. 2006). We therefore also weighted annual forecasts produced by each model by the

266  retrospective annual AIC; weights (Eq. 14) to produce a single combined MA forecast for

267  each year.

N [
268 (14) log (D, ) =3 [w,, «1og, (D), ]
i=1

269  where w,; is the AIC, weight in vear n for model 7 (summing to 1 over all models), and

~

270 D, 1s the new forecasted weighted discrepancy in year 7 for model 7.

271 The AIC~weighted models were evaluated using MRE, MAE, and RMSE and
272  were then ranked against the six individual models for each run-timing group from the
273  retrospective analysis using each performance measure. Here, model ranks ranged from

274 1 (best)to 7 (worst) for each performance measure.

275 Jack-knife analysis

276 We also conducted a jack-knife analysis (Shao and Dongsheng 1995) to
277  determine the sensitivity of model rankings and performance to removal of each year's

278  forecast. Raw errors from single years of the 13-year retrospective evaluation period (8

13
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279  years for the Late run-timing group) were sequentially removed with subsequent

280  replacement, and performance measures were re-estimated, eventually producing 13 (8
281  for Late-run) replicates of model ranking. We then compared the top-ranked model for
282  each performance measure from the retrospective analysis to the top-ranked model for
283  each performance measure from each jack-knife replicate, recording the number of jack-

284  knife replicates that selected a different top-ranked model.

285 Results

286  Retrospective Model Performance

287 Interannual variability in retrospective forecasts of escapement discrepancies for
288  each MA model differed from the observed discrepancies for each sockeye salmon run-
289  timing group (Figure 2). Forthe Early Stuart and Summer run-timing groups, the historic
290  model (D) was least biased (see MRE in Figure 3), but did a poor job of tracking

291  interannual variability (Figure 2). That is, the historic model, D, tended to underestimate
292 the loss when it was large and overestimate it when it was small. In contrast, the

293  environmental models, temperature (T), discharge (QQ), and temperature-plus-discharge
294 (T+Q), displayed temporal variation more similar to the observed discrepancies (Figure

295 2), but produced a positive bias on average (i.e., underestimated the true discrepancies by

296  forecasting D to be closer to 1 than the realized D at the end of the season) (Figure 2 and

297  MRE in Figure 3).

298 Examination of values of each performance measure provides additional insight
299  into the magnitude of differences across models within each run-timing group (Figure 3).

300  In many instances, differences between model ranks were due to only minor disparities in

14
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301  actual values of performance measures (Figure 3). For example, for the Early Stuart, the
302  difference between the second-worst and best-ranked MA models was less than 0.04

303  using MAE.

304 There was considerable variation across adjusted R values for fop-ranked models
305 in each run-timing group, ranging from a mean R? of 84% for the R model for the Late
306  run-timing group to a mean R?of only 22% for the D model for the Early Summer run-
307  timing group (Figure 3). Interestingly, the models with the highest mean R* value and/or
308  highest AIC. weight (Figure 3; Table 2) often ranked poorly based on MRE, MAE, or
309  RMSE performance measures (Figure 3). Due to trends in model performance across the
310 years evaluated for the retrospective analysis for Early Stuart sockeye, the top-ranked
311  model using the mean retrospective AIC. was different than the top-ranked model using

312 the AIC,fit to the entire data set (D versus T+Q) (Table 2).

313 Based on the average model rank across performance measures, no single model
314  performed best across all run-timing groups (Figure 4). However, one clear result was
315  that failure to apply a management adjustment, the "No MA" (NMA) model, had the

316  worst average rank (lowest mean rank) in three of the four run-timing groups, and the

317  second-worst rank in the fourth group, the Summer run (Figure 4). This result is also

318  evident from individual performance measures shown by model (Figure 3). The D model
319  ranked best for the Early Stuart run, the D and T+Q models tied for highest rank for the
320  Early Summer run, the T and T+Q models tied for best for the Summer run, and the Q

321  model was best for the Late run (Figure 4).

322 For the Early-Summer, Summer, and Late run-timing groups, the top-ranked

323  model varied across performance measures (Figure 5B, C, D). In contrast, the top-ranked

13
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324  model was consistent across most performance measures for the Early Stuart run-timing
325  group (Figure 5A). For example, for the Early Summer run (Figure 5B), the D model
326  best explained the observed variance (R* and AIC,), but the T+Q model ranked best for
327 MAE and RMSE, and the Q model ranked first for MRE. For the Summer run-timing
328  group (Figure 5C), the T+() model had the best MAF and RMSE ranks. However, likely
329  Dbecause of the T+() model’s additional parameters relative to the T model, the T model
330  performed best for adjusted R and AIC.. The Q model in the Late run-timing group

331  ranked best for the hindcast performance measures (MRE, MAE, RMSE), but the R

332 model ranked best using forecast criteria (R* and AIC,) (Figure 5D). In contrast, the

333 Early Stuart D model consistently ranked first for four performance measures (MRE,

334 MAE, RMSE, AIC,), while the T model consistently ranked second (Figure 5A).

335 There was considerable interannual variability in model performance based on the
336  frequency (number of years) that an individual model ranked first in terms of yearly raw
337  error for a given run-timing group (¥ from Eq. 7) (Figure 6). Using the Early Stuart run-
338  timing group as an example, although the D model ranked best overall (average rank =
339  1.4; Figures 4 and 5A), it produced the smallest raw error in only 2 of the 13 years of the
340  retrospective evaluation (Figure 6A). In contrast, the T+Q model, which was ranked

341  third overall (average rank = 3.4; Figure 4), had the smallest raw error in 4 of 13 years

342 (Figure 6A).

343  AIC-Weighted Model
344 None of the AIC, weighted average models ranked higher than any of the other

345  candidate models when rank was averaged across the MRE, MAE and RMSE

16
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346  performance measures. The AIC.-weighted MA model was ranked 3" for the Early
347  Summer and Late run-timing group, 4™ for Early Stuart group, and 5™ for the Summer

348  group. The AICweighted model was never top-ranked for any performance measure.

349 Jack-knife analysis

350 The jack-knife analysis showed that overall model performance based on our

351  retrospective analysis was relatively insensitive to variability in year-to-year performance
352  (Table 3). The top-ranked models across each performance measure remained generally
353  consistent for the Farly Summer, Summer, and Late run-timing groups. In the one group
354  in which the top-ranked model was sensitive to removal of particular years of data (Early
355  Stuart), the MAE and RMSE performance measures selected different top-ranked models
356  in 46% and 54% of the jack-knife replicates, respectively. This sensitivity of ranks of
357  Early Stuart MA models to individual years of data was likely due to the similarity in
358  wvalues of MAE and RMSE among five top-ranked models for this group, as shown in

359  Figure 3.

360 Discussion

361 Our retrospective analysis provides a framework for evaluating alternative

362  forecasting models across a range of hindcasting and forecasting performance measures.
363  Because model rankings sometimes varied considerably as a function of the performance
364  measures selected, our results emphasize the importance of carefully choosing the

365  measures to be used in model selection. Model performance measures should not be
366  chosen simply on the basis of statistical tradition, but instead should be consistent with

367  the stated management objectives. For example, use of model rankings based only on

17
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368  AIC. or R* fit to the entire datasct (as is often the case) for management of the Early

369  Summer run would result in the selection of the D model, (i.e., the historical average

370  discrepancy model). However, for managers who place high priority on objectives that
371  specifically aim to avoid extreme errors in achieving escapement targets, a model that
372  minimizes MAE or RMSE, i.c., the T+Q (temperature and flow) model, would be

373  preferred. We emphasize that both scientists and managers should carefully work

374  together to determine which performance measures should be used for model selection.
375  Eventhe apparently subtle difference between using a measure of long-term bias (MRE)
376  to rank models instead of a measure of year-to-year deviation (MAE) can lead to different

377  model choices.

378 Although the best management-adjustment (MA) models varied among run-

379  timing groups and performance measures, one key finding from our study is the strong
380  evidence that MA forecasts made from some combination of environmental or biological
381  data out-performed the approach of applying no adjustment at all; i.e., the "No MA"

382  model was consistently ranked low across all run-timing groups. This result further

383  walidates the decision to apply environmentally-based MA forecasts to inform the

384 management of Fraser River sockeye salmon fisheries. This result is also consistent with
385  the biological rationale linking escapement discrepancies to river conditions that

386 contribute to natural mortality along the freshwater migration route (Macdonald et al.

387  2010).

388 In the model selection field, where model rank is sensitive to interannual variation
389  and/or where there are multiple competing candidate models, a weighted-average

390  approach, which combines forecasts from the entire model suite, is thought to yield better

18
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391  results (Raftery and Zheng 2003). Such model averaging minimizes the influence of any
392  individual forecast, and therefore reduces the effect of large rare errors associated with a
393  single model by averaging errors across multiple forecasts; this could reduce the RMSE
394  (Raftery and Zheng 2003). In other words, AIC.-weighted models may tend to be more
395  robust to interannual variability. However, in the case of the MA models for Fraser River
396  sockeye salmon, model averaging rarely improved model performance assessed using

397  forecast criteria (i.e. MRE, MAE, RMSE).

398 This result emphasizes the differences in model selection that can arise from using
399  hindcast vs. forecast performance measures. An alternative model-combining technique
400  that we did not explore, which includes a moving time window, may vield improved

401  results over the AIC, weighted averaging. Such approaches are often used in

402  meteorological forecasting by selecting models that perform best based on observed

403  climatic conditions over a specified period (e.g., Eckel and Mass 2005). This approach
404  would also be suitable if there are observed time trends in model performance. While our
405  jack-knife analysis demonstrated that MA model selection was relatively insensitive to
406  individual years used in the analysis, this does not discount the possibility of non-

407  stationarity in model performance over time.

408 Additional improvements in forecasts could come from examining models beyond
409  the suite of models considered in this analysis and from examining different approaches
410  to quantifying uncertainties in forecast errors. For example, our treatment of forecast

411  errors assumes that outcome uncertainty, which reflects the degree to which spawning
412  targets are achieved in practice (Holt and Peterman 2006), is independent of forecasts by

413  MA models. However, if instead the sign and magnitude of deviation from such targets is
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414 correlated with forecasting error, then a future model that accounted for such an

415  association could be an improvement. There is also a potentially wide range of additional
416  MA models that could explain some of the historical variation in past escapement

417  discrepancies or better account for changing discrepancies that result from different

418  future environmental conditions. For instance, new MA models might have different
419  structural forms, environmental predictor variables, and/or explicit consideration of

420  observation errors in the latter variables. Furthermore, the absolute and relative

421  performance of the existing suite of models may also be subject to change over time. For
422  example, summer river temperatures have been increasing since the 1950s (Patterson et
423  al. 2007b) and the temperature and flow regimes of the Fraser River are expected to

424  continue to change with warming climate (Morrison et al. 2002; Ferrari et al. 2007).

425  Changes in MA model fits and their predictive power may occur as a result of these

426  shifting environmental baselines. One benefit of the retrospective evaluation approach
427  used here is that as scientists or managers identify new modeling approaches, an

428  expanded and/or updated list of models can easily be evaluated using this same

429  framework.

430 Quantifying uncertainty in Mission escapement estimates is another critical area
431  for research, and salmon biologists have attempted to estimate it in various ways for
432 years, but without success. Nevertheless, by definition, the escapement discrepancies
433  forecasted by the MA models inherently include uncertainties in lower- and upper-river
434  escapement estimates. However, because these measurement errors have not been

435  explicitly quantified (and likely vary in size and direction due to differences in run size,

436  environmental conditions, and survey techniques applied to different systems), managers
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437  have accepted current discrepancy estimates as "true" for the purpose of managing the
438  fishery. This is why we have clearly referred to the MA forecasts as "escapement

439  discrepancies"” rather than "in-river mortality".

440 Many studies use only one or two performance measures to rank models (e.g.,
441  Willmott 1982; Willmott and Matsuura 2005). More specifically, most studies in

442  ecology, including past studies of MA models for Fraser River sockeye salmon, select
443 models from a large set based only on R* and/or AIC performance criteria (Keefer et al.
444 2008; Buhle et al. 2009; McGowan and Ryan 2009; Macdonald et al. 2010). Such studies
445 are a useful first step in the identification of candidate models reflecting biological

446  relevance and good agreement with historical data, but as we show here, this practice
447  only captures certain characteristics of model performance that are relevant to fisheries
448  management choices. Clearly, multiple performance measures need to be considered in
449  fisheries analyses (e.g., Haeseker et al. 2005; Adkison 2009) because of the competing
450  management objectives typically faced by fisheries managers (de la Mare 1998; Hilborn
451  2007). When clear objectives are combined with appropriate affiliated performance

452  measures, model selection through retrospective analysis can be used to provide scientific
453  advice to managers to help increase the probability of achieving fishery management

454  objectives. Future research should explore methods for also incorporating into the model
455  gelection process available information from multiple, unequally weighted management

456  objectives and utility functions (Keeney 1977).
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594

595

396

597

398

Table 1. Description of predictor variables and structures of management adjustment

models that were used to produce the forecast of logged escapement discrepancies

(log, (15)) for each major Fraser River sockeye salmon run-timing group. The rationale

behind variable selection and structure of these models is described in detail in

Macdonald et al. (2010). Environmental variables for each model are used as an

abbreviation for the full model name within the text.

Environmental

Variable

Description

MA model equation

T

S

NMA

Mean 31-day water temperature
(°C) measured near Qualark, BC
centered on the date that 50% of a
run-timing group has passed Hells
Gate, BC.

Mean 31-day water discharge
(m®s™") measured near Hope, BC
centered on the date that 50% of a
run-timing group has passed Hells
Gate, BC.

Combined 31-day temperature
and discharge.

Julian date at which 50% of a run-
timing group has passed Hells
Gate, BC.

The average historical
escapement discrepancy.

No management adjustment, i.e.,
zero escapement discrepancy.

(1) a+ b7 +bsT>

2) a+b0+b,0>

3) a+BT +b,T7% +b30+ by0?

4) a+hR

Y

S
5y X221
) v

® 0

28

CAN285112_0028



599

600

601

602

Table 2. AIC. values and their components for each run-timing-specific MA model
averaged over all years of the retrospective analysis. K = number of parameters; AIC, =
mean small-sample Akaike information criterion; A AIC; = mean delta AIC; w = mean

AIC, weight, AIC.a1r = AIC fit to all years, including 2007.

Run group Model K AlC, A AIC, w AlC L
Early Stuart T 39.01 0.49 0.33 52.21
Q 42.84 4.31 0.05 57.97
T+Q 40.85 2.33 0.13 51.27
R 42.71 4.19 0.05 58.72
D 38.52 0.00 0.43 52.59
NMA 47.69 9.16 0 71.05
Early Summer T 28.57 6.10 0.04 41.02
Q 27.50 5.03 0.07 37.41
T+Q 30.64 8.16 0.01 35.99
R 29.12 6.65 0.04 43.99
D 22.47 0.00 0.85 35.49
NMA 38.89 16.42 0 60.48
Summer T 9.80 0.00 0.72 8.35
Q 19.02 9.22 0.01 26.71
T+Q 15.92 6.12 0.03 11.49
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603

Late

ol

NMA

T+Q

wl|

NMA

17.95

13.75

1317

41.34

26.62

45.23

17.11

31.65

40.28

8.15

3.96

3.37

24.36

9.64

28.25

0.13

14.66

23.29

0.01

0.10

0.13

0.12

0.03

0.85

0.01

29.91

22.59

26.09

41.34

28.62

45.23

17.12

31.65

40.28
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605

606

607

Table 3. Percentage of years from the jack-knife analysis in which a model other than

the top-ranked model from the retrospective analysis was ranked first, by performance

measure and by run-timing group of Fraser River sockeye salmon.

Performance Early Stuart  Early Summer Late
measure Summer

MRE 15 23 17 13
MAE 46 & 0 0
RMSE 54 23 8 13
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627

Figure captions

Figure 1. Map of the Fraser River watershed in British Columbia, Canada. Locations of
key spawning areas for each sockeye salmon run-timing group are indicated, along with

the Mission sampling location in the lower river.

Figure 2. Time-series of observed (12, bold solid line) and retrospectively forecasted
(D) escapement discrepancies for each Fraser River sockeye salmon run-timing group,
by model. Table 1 defines the symbols for the five management adjustment models that
were used to create these forecast time series. /0 = 1 indicates no in-river loss of

upstream-migrating adult sockeye salmon, whereas 10 = () indicates 100% in-river loss.

Figure 3. Values of performance measures (X axis) for each run-timing group (A-D) for
cach management adjustment model defined in the legend and Table 1, averaged over the
13-year retrospective evaluation period. Table 1 describes each management adjustment
model used to create the forecasts. MRE = mean raw error, MAE = mean absolute error,
RMSE = root mean square error, R? is the coefficient of determination, and w is the AIC,
weight. Negative adjusted R? values can result from models that fit the data so poorly
that, "on average, the residual error variance is larger than the variance of the data”

(Gelman and Hill 2007).

Figure 4. Mean rank of management adjustment models for each run-timing group,
averaged over individual rankings calculated for each of the five performance measures.

Best = 1, worst = 6. Models are defined in Table 1.
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629

630

631

632

633

634

635

Figure 5. Ranks of management adjustment models within each run-timing group for
each performance measure. Best = 1, worst = 6. These ranks were averaged across all

performance measures to produce the average ranks in Figure 4.

Figure 6. Frequency of best performance, shown as the number of years for which each
management adjustment model was best, i.e., produced the smallest absolute raw error
(£, equation 7) relative to the F of other models. For comparison, the number above each

bar is the average model rank from Figure 4, with best = 1 and worst = 6.
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