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ABSTRACT

Overescapement of salmon is defined by the Alaska Department of Fish and Game as escapements that are above
the range of the current escapement goal. Our understanding of how overescapement affects long and short term
yields is dependent on knowledge of the production relationship and the amount of fishing power. We analyzed
brood and run information from 40 Alaska sockeye salmon Oncorhynchus nerka stocks to determine the biological
and fishery-related effects of overescapement.

For 37 of the 40 stocks we reviewed, overescapement occurred at least once in a recent 15 year period. We
examined the long term effects of overescapement on yields relative to MSY for 29 of the 40 stocks. This subset of
stocks was chosen because the observed exploitation rate is less than or equal to the exploitation rate at Maximum
Sustained Yield (MSY) allowing examination of yields at levels of escapement that would exceed the escapement
that produces MSY. Yields from these stocks decreased below MSY as escapements increased beyond that which
produces MSY. Averaged across all of these stocks, long term yields decreased and variability in yields increased
when current escapement goals were exceeded. This result is consistent with the generic theory of compensatory
production, where spawning efficiency decreases with increasing escapement levels and stocks are limited by the
carrying capacity of the habitat. Overescapement, in general, is not sustainable as it causes returns and yields to
decrease in the next generation, which also result in lower escapements. Lower escapements then result in higher
returns and yields in succeeding generations. We also found evidence of delayed density dependence in five Alaskan
sockeye salmon stocks. In three of these stocks, returns per spawner fell below replacement for 2 to 5 years
following consecutive overescapements that were greater than twice the upper bound of the escapement goal range.

In the remaining 11 of 40 stocks we were unable to examine long term yields at levels of escapement exceeding that
which produces MSY. In these cases, yields from these stocks increased above the average yield as escapements
increased beyond the upper bound of the current escapement goal. Averaged across all of these stocks, long term
yields increased and variability in yields decreased slightly when current escapement goals were exceeded. This
result is also consistent with the generic theory of compensatory production. As escapement increases, but is below
the level thought to produce MSY, returns and yields will increase even if overescapement occurs. This is due to the
high productivity of salmon across a wide range of intermediate escapements so that the long term change in yield
due to overescapement is small when exploitation rate is high.

Short term losses in yield were assessed by evaluating foregone annual harvest as a result of overescapement in the
most recent 15 years for all 40 stocks. Although foregone harvest due to overescapement was common, on average
these harvests typically represented 5% or less of the annual run. Seven of 40 stocks had losses in harvest exceeding
10% of the annual run on average. However, when we examined losses only during years that overescapement
occurred, 18 stocks exhibited foregone harvest greater than 10% of the run, and seven of these stocks exhibited
foregone harvest greater than 20% of the run. Foregone harvest due to overescapement was more prevalent for
stocks with low fishing power.

Although overescapement as defined is occurring on most of the 40 Alaskan sockeye salmon stocks we reviewed,
for some of these stocks more information is needed to understand the effect overescapement may or may not have
on production and the fishery. Alternative methods for determination of carrying capacity of sockeye salmon
watersheds should be developed and validated, especially for highly exploited stocks. Rescarch focused on
estimating carrying capacity in select watersheds should include efforts to better define the threshold juvenile
salmon densities that cause delayed density-dependent responses in rearing lake ecosystems. From a fishery
standpoint, better forecasts of salmon runs and improved inseason management could reduce the incidence of
overescapement in highly exploited stocks.

Key words: sockeye salmon, Oncorhynchus nerka, overescapement, carrying capacity, exploitation rate,
escapement goals, biological reference points, maximum sustained yield, escapement goal policy,
sustainable salmon policy

BACKGROUND

The topic of overescapement in Pacific salmon stocks is controversial and complex, especially in
regards to the management of Alaskan sockeye salmon Oncorhynchus nerka. The controversy
has many facets, but three major issues tend to recur in the debate: 1) the definition of
overescapement; 2) the effects of overescapement on the stock; and, 3) the effects of



overescapement on the fishery. This report attempts to clarify these major issues from the
perspective of the Alaska Department of Fish and Game (ADF&G). Our perspective is one that
is mandated by the imperatives of Alaskan law, guided by a very simple but useful theory of wild
salmon production, based on experience gained through the development of scientifically
defensible escapement goals for sockeye salmon stocks throughout the state, and grounded in the
sound fishery management principles we have applied to the harvest of these stocks.

The objectives of this report are to: 1) provide definitions of key terms relevant to the issue of
overescapement; 2) describe and clarify the process of escapement goal development that is
central to the issue of overescapement; 3) discuss the biological and fishery-related aspects of
overescapement; and, 4) provide recommendations to address the issue of overescapement in
Alaskan sockeye salmon. To aid in clarifying and discussing overescapement, we provide the
results from a set of basic, consistent analyses of 40 Alaskan sockeye salmon stocks from
fisheries ranging from southeast Alaska to the Kuskokwim Bay region (Figure 1). We also
review hypotheses concerning density dependence and present five case studies of delayed-
density dependence in sockeye salmon.

RELEVANT POLICIES

From the ADF&G perspective, any discussion of overescapement in salmon stocks must be
grounded in the constitutional mandates to provide for sustained yield of fish. Article VIIL
section 4 of the Alaska Constitution states that:

“Fish, forests, wildlife, grasslands, and all other replenishable resources belonging
to the State shall be utilized, developed, and maintained on the sustained yield
principle, subject to preferences among beneficial uses.”

This mandate for sustainable management of Pacific salmon provided the impetus for
development of a scientifically defensible escapement goal policy in Alaska. Along with the
statutory functions, powers and duties of the Commissioner of ADF&G (Alaska Statutes
16.05.020 and 16.05.050) and relevant management plans for salmon stocks (Title 5 of the
Alaska Administrative Code, various chapters), the development of escapement goals is
regulated by the policy for the management of sustainable salmon fisheries and the policy for
statewide salmon escapement goals (Title 5 of the Alaska Administrative Code, Chapter 39).

These two regulatory policies define four types of escapement goals, two of which are routinely
developed by ADF&G and are most important to sustained yield management of salmon stocks.
The biological escapement goal (BEG) is defined as: the escapement that provides the greatest
potential for maximum sustained yield (MSY). As an alternative to management for MSY, the
sustainable escapement goal (SEG) is defined as: the escapement that is known to provide for
sustained yield. Both of these escapement goals must be described as ranges that take into
account our uncertainty in the data and variation in stock productivity. The two regulatory
policies also stipulate that BEGs and SEGs for Pacific salmon be developed from the best
available data and be scientifically defensible.

DEFINITIONS

Some of the confusion and controversy surrounding the effects of overescapement is caused by
the lack of a common set of definitions from which to discuss the issue. Basic definitions of
salmon population biology are offered here, some of which come directly from statute or
regulation, others come from basic texts on fisheries science or from our own experience.



Salmon stock. A locally interbreeding group of salmon that is distinguished by a distinct
combination of genetic, phenotypic, life history, and habitat characteristics or an aggregation of
two or more interbreeding groups, which occur in the same geographic area and is managed as a
unit (from 5 AAC 39.222(f)).

Escapement (or Spawning Abundance or Spawners). The annual estimated size of the spawning
salmon stock; quality of escapement may be determined not only by numbers of spawners, but
also by factors such as sex ratio, age composition, temporal entry into the system, and spatial
distribution within the salmon spawning habitat (from 5 AAC 39.222(f)).

Brood (year). All salmon in a stock spawned in a specific year.

Run. The total number of salmon in a stock surviving to adulthood and returning to the vicinity
of the natal stream in any calendar year, composed of both the harvest of adult salmon plus the
escapement; the annual run in any calendar year, except for pink salmon is composed of several
age classes of mature fish from the stock, derived from the spawning of a number of previous
brood years (from 5 AAC 39.222(f)).

Harvest. The number or weight of salmon taken of an annual run from a specific stock.
Harvest rate. The fraction of an annual run from a stock taken in a fishery.

Return (or Total Return or Recruitment or Production). The total number of salmon in a stock
from a single brood (spawning) year surviving to adulthood; because the ages of adult salmon
(except pink salmon) returning to spawn varies, the total return from a brood year will occur over
several calendar years; the total return generally includes those mature salmon from a single
brood year that are harvested in fisheries plus those that comprise the salmon stock’s spawning
escapement; “return” does not include a run, which is the number of mature salmon in a stock
during a single calendar year (from 5 AAC 39.222(%)).

Yield Defined in regulation as the number or weight of salmon harvested in a particular year or
season from a stock (from 5 AAC 39.222(f). However, in this report yield is defined as the return
minus the escapement for a particular brood year. This quantity is also known as the surplus
production or expected yield. Note that yield is defined in terms of a single brood year, while
harvest is defined in terms of the annual run that is composed of components from multiple
brood years.

Exploitation rate. Fraction of the return by stock taken in a fishery (specific to a brood year).

Carrying Capacity (or Sgg). Biological reference point that is the highest escapement where the
return is expected to equal escapement. This is the point where escapements at or larger than this
are expected to produce no yields in the future.

Intrinsic Rate of Increase. Expected number of mature salmon produced per spawner when
escapement is close to zero.

Density Dependent Survival. A survival rate affected by abundance of young at the start of a time
period or by escapement of their parents.

Density Independent Survival. A survival rate unaffected by abundance of young or by
escapement of their parents.

Process Error. Deviations in actual return from expected return given a specific escapement.



Compensatory Mortality. A mortality rate that increases as the initial abundance increases. For
example, when the return-per-spawner of a stock decreases as the spawner abundance of that
stock increases.

Depensatory Mortality. A mortality rate that decreases as the initial abundance increases.

Sustained Yield. The average annual yield that results from a level of escapement that can be
maintained on a continuing basis; a wide range of average annual yield levels is sustainable; a
wide range of escapement levels can produce sustained yields (from 5 AAC 39.222(f)).

Sustainable Escapement Goal (or SEG). A level of escapement, indicated by an index or an
escapement estimate, that is known to provide for sustained yield over a 5 to 10 year period, used
in situations where a BEG cannot be estimated due to the absence of a stock specific catch
estimate; the SEG is the primary management objective for the escapement, unless an optimal
escapement goal or inriver run goal has been adopted by the board, and will be developed from
the best biological information; the SEG will be determined by the department and will be stated
as a range that takes into account data uncertainty; the department will seek to maintain
escapements within the bounds of the SEG (from 5 AAC 39.222(%)).

Maximum Sustained Yield (or MSY). The greatest average annual yield from a salmon stock; in
practice, MSY is achieved when a level of escapement is maintained within a specific range on
an annual basis, regardless of annual run strength; the achievement of MSY requires a high
degree of management precision and scientific information regarding the relationship between
salmon escapement and subsequent return; the concept of MSY should be interpreted in a broad
ecosystem context to take into account species interactions, environmental changes, an array of
ecosystem goods and services, and scientific uncertainty (from 5 AAC 39.222(f)).

Biological Escapement Goal (or BEG). The escapement that provides the greatest potential for
maximum sustained yield, BEG will be the primary management objective for the escapement
unless an optimal escapement goal or inriver run goal has been adopted; BEG will be developed
from the best biological information, and should be scientifically defensible on the basis of
available biological information, BEG will be determined by the department and will be
expressed as a range based on factors such as salmon stock productivity and data uncertainty; the
department will seek to maintain evenly distributed salmon escapements within the bounds of the
BEG (from 5 AAC 39.222(f)).

Susy. Biological reference point that is the escapement that produces the greatest expected yields
(i.e., MSY). The BEG range should be based on this reference point.

Lusy. The exploitation rate for a stock that would on average produce MSY.
Overescapement. Escapements that are above the range of the current escapement goal.

Scientifically Defensible. Relative to an escapement goal for a stock of Pacific salmon, when
there is evidence confirming the expectation of sustainable yields from that stock for that
escapement goal. Evidence can be empirical (an observed history of yields from the stock),
model-based (a model validated with data from one or many stocks), or theoretically-based (a
theory validated with experiments from one or many stocks).



GENERIC THEORY OF SALMON PRODUCTION

Any generic theory of salmon production must include the two main ecological processes of an
intrinsic rate of increase and a carrying capacity. Similar information can be found in basic texts
of fisheries science (Ricker 1975, Hilborn and Walters 1992, Quinn and Deriso 1999).

The intrinsic rate of increase describes the density independent survival of a salmon stock, where
survival of the stock is unrelated to size of the escapement. In this case, competition between
spawning salmon or juveniles is low so that the survival is not related to the density of the
spawners or their offspring. This process is thought to occur when the salmon stock is small
relative to its carrying capacity and therefore is described from the left side of the population
model where escapements are small (Figure 2).

The intrinsic rate of increase is thought to be specific to species and region. Species-specific
influences on salmon productivity include fecundity, maturation schedule, longevity, and growth
rate. Regionally specific influences include locally similar freshwater and marine climate,
predators, and fisheries.

The intrinsic rate of increase causes a salmon stock to grow indefinitely, but there must be a limit
to this growth. The carrying capacity describes the density dependent survival of a salmon stock,
where the survival of the stock is directly related to the size of the escapement. In this case,
competition between spawning salmon or juveniles increases, consequently survival rate
decreases as abundance of spawning adults or juveniles increases. This process is also called
compensation and increases as the salmon stock approaches and possibly exceeds its carrying
capacity on the right hand side of the production model (Figure 2). Empirically, carrying
capacity can be defined as the average size of a salmon stock when it is not being fished.

The carrying capacity of a salmon stock is thought to be watershed and stock specific. There are
several potential mechanisms for carrying capacity, including a limitation of rearing or limitation
of the spawning grounds. For sockeye salmon, rearing limitation or competition among juveniles
can occur through trophic production in lakes by affecting the size, age at smoltification, and
survival of fry and smolt (Kyle et al. 1988, Schmidt et al. 1993, Koenings and Kyle 1997).
Spawning limitation can also occur in sockeye salmon, with increased competitive interactions
among spawning adults causing increased aggressive behavior on the spawning grounds, egg
retention, and death prior to spawning (Semenchenko 1988).

More specific but fairly simple models of salmon production result from the generic model. In
general, differences among models are due to differences in the relationship between density
dependent survival and escapement with the asymptotic (Beverton and Holt 1957), exponential
(Ricker 1975), and piece-wise (e.g., hockey stick model of Bradford et al. 2000) forms most
commonly used. Although we used the Ricker form of the production model in this report, each
of these simple models can be used to estimate parameters that correspond to the intrinsic rate of
increase and carrying capacity from a data set composed of escapements and subsequent returns.
Once these two quantities are estimated, the biological reference points Susy, Sk, and Humsy can
be calculated (see example in Figure 3) and provide information important to development of an
escapement goal.

One last consideration in a generic theory of salmon production is the concept of process error.
As defined, process error is the variation we observe in the return at any fixed level of
escapement. Process error is due to annual variation in survival from spawning adults to



returning adults from factors that can change from year-to-year. For example, changes in the
fraction of female spawners in the escapement or fecundity of individual spawners, size
composition, age composition, the occurrence of floods, drought, freezing, and changes in
temperature. Furthermore, errors in estimating the true escapement and return, if not accounted
for in our stock assessments end up as process error although they are actually measurement
error.

Process error is generally thought of as random through time, but can also be serially correlated
(e.g., several years of high survival are grouped together followed by several years of low
survival) or correlated with another variable that we may have measured (e.g., escapement in
prior years, marine survival rate, environmental variables). Process error is also thought to be
distributed log-normally (Peterman 1981) as can be seen in the example in Figure 4. In Figure 4,
we see a large amount of variation in returns at any particular level of escapement that obscures
the underlying production curve. It is also easy to see why we might observe a large return from
a particular escapement in one year and a low return from the same magnitude of escapement in
another year. Explanation and prediction of process error in the upcoming year is crucial to
forecasting salmon abundance, but is of lesser importance to the development of an escapement
goal.

The occurrence of process error in salmon production necessitates a statistical approach to
developing reference points for the recommendation of escapement goals. Statistical approaches
allow us to view the production curve estimated from the escapement and return data as the
expected production we might see on average if escapement was fixed at a certain level (Figure
3). However, there are potential pitfalls with the statistical approach that have been discussed by
others in the literature and are relevant when exploitation rate is high (>50% per year) or there is
measurement error in estimates of escapement (Walters and Ludwig 1981, Kehler et al. 2002).
Specific statistical methods used in this report to estimate the parameters and biological
reference points are detailed in Appendix A.

FACTORS IN THE ESTIMATION OF REFERENCE POINTS

As stated above we use accepted statistical techniques to estimate the production curve and
biological reference points. From a practical standpoint, our ability to successfully estimate the
production curve and the reference points are linked directly back to the history of the fishery
and specifically, the range of historical escapements (Walters and Hilborn 1976, Clark et al. in
press). Measurement error is also a factor, where imprecision in estimates of escapement can bias
estimates of the reference points (Kehler et al. 2002).

The history of fishing on a salmon stock can determine where the production data we gather on
that stock lies on a plot of recruits against escapement (stock-recruit plot). This in turn affects
our ability to estimate carrying capacity and/or intrinsic rate of increase needed to estimate
reference points. Fisheries with a history of very low harvest rates (<15%) tend to have their
production data (recruits plotted against escapement) clumped close to the carrying capacity on
the right hand side of the plot. In this case we are likely to have very little knowledge of the
intrinsic rate of increase, but good knowledge of what the carrying capacity of the stock might be
(Figure 5; Walters and Hilborn 1976).

Conversely, fisheries with a history of high harvest rates (>50% harvested per year) tend to have
their production data clumped on the left hand side of the stock-recruit plot. In this case, we have
very little knowledge of carrying capacity, but good knowledge of the intrinsic rate of increase



(Figure 5). Fisheries with moderate or variable harvest rates can have production data spread
across the stock-recruit plot, resulting in good knowledge of both intrinsic rate of increase and
carrying capacity.

Measurement error, especially in estimates of escapement can be a factor in the estimation of
reference points. Imprecise estimates of escapement will cause bias in estimates of the reference
points (Kehler et al. 2002) and the direction of the bias changes as harvest rate increases. The
effect of measurement error is especially troublesome for fisheries with high harvest rates,
because the bias tends to result in biological reference points that are too low. Precise estimates
of escapement (from towers, weirs, sonars, and mark-recapture experiments) are therefore
important for fisheries with a history of high harvest rates.

We also use several alternative methods to estimate reference points for comparison with results
from spawner-recruit analyses. A tabular Markov approach is often used to compare yields at
various levels of spawner abundance (Hilborn and Walters 1992), but results can be sensitive to
how spawner abundances are grouped if data are sparse. When limnological data are available,
euphotic volume (Koenings and Burkett 1987) and zooplankton biomass (Koenings and Kyle
1997) models are used to estimate lake carrying capacity. The euphotic volume model is based
on lake area and the depth of light penetration sufficient to support net primary production. The
zooplankton biomass model utilizes seasonal mean total zooplankton biomass to predict smolt
production. Both limnological models are based on the assumption that lake carrying capacity is
reached when density-dependent growth causes age-1 smolts to emigrate at a threshold size of 60
mm (2 g). In systems that are thought to be spawning limited, a spawning habitat model has
been used (Nelson et al. 2005) to estimate the number of spawners at carrying capacity assuming
a mean density of one female per m* (Burgner 1991).

FACTORS IN THE DEVELOPMENT OF AN ESCAPEMENT GOAL

Although the estimation of reference points is the centerpiece of scientifically defensible
escapement goal analysis, many salmon stocks in Alaska lack sufficient information content on
them to estimate reference points or do not have production data. Yet, we would like to
recommend an escapement goal in these situations.

The Sustainable Escapement Goal (SEG) is used in these circumstances. SEGs are recommended
when we lack estimates of reference points for MSY management, but need a goal that preserves
the status quo of sustainable fishing practices observed for many years. Examples of these
situations occur below in the section Examples from Alaskan Sockeye Salmon. Methods of
determining SEGs are many although the common thread in these methods is that the
recommended goal must be based on evidence of producing yields that can be sustained into the
future.

Conversely, a Biological Escapement Goal (BEG) is used when the reference points can be
estimated and there is sufficient fishing power and inseason management capability to harvest
annual runs to achieve the BEG.

A REVIEW OF HYPOTHESES CONCERNING DENSITY DEPENDENCE
Short Term Effects of Overescapement — Single Brood

A general theory of salmon production developed by W.E Ricker and others states that survival
(e.g., return-per spawner) decreases with increasing spawner abundance, and stock size is limited
by the habitat’s carrying capacity. When the escapement goal range brackets Sysy, the biological



consequence of overescapement is a higher likelihood of lower future production due to
compensatory mortality. Different mechanisms cause compensatory mortality in sockeye salmon
populations at various life history stages mostly functioning when the fish reside in freshwater.
Much less is known about mechanisms causing mortality in the sea, but once these fish disperse
into the open ocean, mortality is likely density independent. Although, Ricker’s theory predicts
that compensatory mortality is the dominant process regulating salmon production, mortality at
various lifestages can also be depensatory. The terms compensatory and depensatory refer to the
effect of salmon density on their survival, but in the actual system many different factors interact
to cause mortality. Salmon density is only one modifying factor affecting the outcome.

During spawning and embryo development, several mechanisms cause compensatory mortality.
High spawner densities cause an increase in egg retention and spawning failure, but together
these effects reduce embryo deposition by <3% (West and Mason 1987; Quinn et al. 2007).
High spawner densities can also result in redd superimposition leading to an asymptotic relation
between spawner density and spawning success (McNeil 1964). Embryos displaced by
subsequent waves of spawners often die due to mechanical shock (prior to the eyed stage) and
predation mostly by various fishes (Selifonov 1987, Ward and Larkin, 1964, Morton 1982).
Once deposited in spawning beds, high embryo densities cause higher mortality due to excessive
oxygen demand and increases in fungal or parasite infestations (Hunter 1959, Selifonov 1987).

During juvenile lifestages, several different agents function to cause either depensatory or
compensatory mortality. The juvenile period can be divided into six distinct lifestages of various
lengths: emergent (1 to 7 days), littoral (1 to 2 months), pelagic feeding (5 to 6 months),
overwintering (3 to 4 months), smolt (1 to 2 weeks), and early marine (1 to 2 months). We will
next examine the mortality processes functioning within each lifestage.

In the emergent stage, fry mortality is likely size-dependent, depensatory, and buffered by the
presence of alternative prey. Many emergent fry migrate through streams to lake rearing habitats
suffering intense predation losses mostly to various small fishes (Semko 1954, Foerester 1968,
Stober and Hamalainen 1980). Mortality at this lifestage (range 13% to 91%) is likely
depensatory, because predator populations consume a relatively fixed number of prey causing a
greater proportion of fry to survive when their densities are high (Hunter 1959). However, the
presence of other prey fishes (pink and chum salmon fry), in systems where they exist, likely
buffers sockeye salmon losses (Semko 1954). Mortality at this lifestage is size-dependent (West
and Larkin 1987), but size at this lifestage is mostly determined by egg size (Bilton 1971)
because there is little time for growth.

In the littoral zone, fry mortality is likely size-dependent and buffered by the presence of
alternative prey. In this lifestage, predation and parasitism are likely important agents of
mortality. Starvation seems unlikely since emergent fry can survive up to 4 weeks without food
(Bilton and Robins 1973). Potential predators include Dolly Varden charr, rainbow trout, lake
trout, juvenile coho salmon, northern pike, Arctic terns and gulls (Hartman and Burgner 1972).
Predation on juvenile sockeye salmon fry is likely buffered in these habitats by the presence of
other prey fish species such as sticklebacks, cottids, trout fry (Burgner 1991), and large numbers
of sockeye salmon smolts which cause predators to aggregate near lake outlets (Ward and Larkin
1964). Parasitism by the cestode Fubothrium salvelini likely also causes significant mortality
among sockeye fry in littoral habitats, because small fry (<45 mm) are much more susceptible to
infection (Boyce 1974, West and Larkin 1987). Infected juveniles exhibit reduced growth and
impeded swimming performance making them more susceptible to predation (Boyce 1979, 1982,



Boyce and Clarke 1983). Since vulnerability to predators and parasites is size dependent, growth
becomes an important factor modifying mortality in this lifestage, because it determines the time
individuals spend in the vulnerable size range.

Mortality in the pelagic feeding stage is also likely size-dependent and buffered by the presence
of alternative prey, but growth at this time also largely determines survival in the next lifestage.
Salmon likely encounter fewer predators in the pelagic zone (Burgner 1991), because most of the
fish that feed on them tend to be benthic and inshore feeders (Arctic charr, trout, northern pike).
Since alternative prey are sometimes abundant (sticklebacks and whitefish), potential predators
often have few salmon in their stomachs (Hartman and Burgner 1972). Although predation rate
may be low, predation losses over the entire lifestage may still be substantial, because of its
relatively long duration. The various diel and seasonal feeding behaviors and depth preferences
exhibited by juvenile sockeye salmon (Burgner 1991) to avoid predation (Eggers 1982) support
the notion that predation is an important agent of mortality at this lifestage. Inter- and intra-
specific competition for food causes growth to be density dependent during this lifestage,
extending the time juveniles spend in vulnerable smaller sizes. Sticklebacks and whitefish are
also the primary competitors for food in sockeye salmon rearing lakes in Alaska (Burgner 1991).
In Babine Lake, fry mortality was strongly size-dependent (91% <median size; 36% >median
size) and greatest during the pelagic feeding period in late summer and autumn (West and Larkin
1987). Overall, salmon mortality during lake residence has ranged from 51-93% during 15 years
at Babine Lake (McDonald and Hume 1984).

Whether predation mortality in the littoral and pelagic stages is compensatory or depensatory
likely depends upon predator size and abundance and juvenile salmon density and growth. Ward
and Larkin (1964) proposed that cyclic dominance in Adams River sockeye salmon resulted
from depensatory predation caused by predator satiation. However, even in stocks exhibiting
cyclic dominance, mortality must become compensatory, because there exists an upper limit on
salmon population size. Modeling studies have revealed that juvenile salmon can achieve high
survival rates by forming high density aggregations to satiate predators, but this strategy can only
succeed if zooplankton densities are sufficient to support high salmon growth rates in high
density aggregations (Willette et al. 2001). When predators were satiated, simulated salmon
mortality increased when salmon biomass grew slower than predation rate. Conversely,
simulated salmon mortality decreased when salmon biomass grew faster than predation rate.
Eventually simulated salmon populations declined below the satiation threshold of predators
causing mortality to become compensatory. Thus, predation mortality can be depensatory when
predator abundance and size are properly scaled with salmon densities and growth rates, and
these conditions likely only exist for a relatively short time. In many rearing lakes, juvenile
sockeye salmon growth is density dependent (Goodlad et al. 1974, Rogers et al. 1980,
Edmundson and Mazumder 2001), indicating that competition for food limits growth, extending
the time individuals spend in the vulnerable smaller size range, causing mortality to be
compensatory.

During the overwintering stage, mortality is likely size-dependent and most often caused by
predation, but at times is caused by starvation when juveniles are very small. Since growth
during winter is negligible (Eggers 1978), mortality is likely compensatory and dependent on
growth during the previous lifestage. During winter, juvenile salmon likely remain deep in the
water column at low light intensities to avoid piscivore predation, living off stored energy
reserves (Eggers 1978). However, resumption of active feeding in late winter when zooplankton



densities are still low indicates a response to declining energy reserves (Eggers 1978) that likely
increases their predation risk. Edmundson et al. (2001) concluded that lipid reserves of juvenile
sockeye salmon rearing in Skilak Lake were very near the minimum required to survive the
winter fast. Comparison of salmon length distributions between fall 1993 and the following
spring indicated that juveniles <48 mm (0.8 g) did not survive the winter (Edmundson et al.
2001). This size threshold needed to survive over winter is similar to that found in other fish
species (Carlson and Kaeding 1991, Paul and Paul 1998). Modeling has demonstrated that the
fall distribution of sizes and energy contents of juveniles and the duration of winter likely
determine survival (Patrick 2000). The distribution of sizes and energy contents of juvenile
sockeye salmon in Skilak Lake indicates that the likelihood of surviving over winter declines for
individuals <0.5 g body weight, because more of the juveniles in this smallest size class have
energy reserves only slightly above the starvation-mortality threshold (Figure 6). We are
continuing research to better estimate the threshold size and energy content needed for sockeye
salmon to survive the winter and predict overwinter mortality. However in many rearing lakes,
juvenile sockeye salmon grow to mean sizes >1.0 g before winter (Kyle 1992b, Willette et al.
1993, Edmundson et al. 2001), so significant overwinter mortality may be rare among sockeye
salmon stocks.

During smolt emigrations and the early marine period, mortality is likely size dependent and
depensatory. The primary agent of mortality at this lifestage is most often predation. However,
small smolts (<50mm, 1.0g) may not be able to osmoregulate successfully in seawater, and this
effect is compounded for individuals that have been parasitized (Boyce and Clarke 1983).
Predation at this lifestage is often conspicuous as predators aggregate to feed on smolts at lake
outlets and river mouths (Hartman and Burgner 1972, Meacham and Clarke 1979, Ruggerone
and Rogers 1984). Estimated depensatory mortality rates due to predation have ranged from
95% at low smolt density to <10% at high smolt density (Ruggerone and Rogers 1984).
Individuals successfully transitioning into seawater then encounter a much greater abundance of
predators mostly fishes and birds (Willette et al. 2001). Since predation by fishes is often size
dependent (Willette 2001), smolt-to-adult survival of Alaskan sockeye salmon increases with
smolt size from about 10% at 60 mm to 35% at 90 mm (Figure 7; Koenings and Hasbrouck
1994). Although direct predation losses at this lifestage are depensatory, smolt size is the result
of compensatory growth during lake residence, so size-dependent smolt-to-adult survival tends to
reinforce compensatory effects.

High spawner (and progeny) abundances tend to force individuals into marginal habitats
increasing the level of responses to unfavorable environmental or ecological conditions leading
to higher variability in production. Spawners utilize less favorable habitat when densities are
high leading to greater embryo mortality due to desiccation and freezing if water levels drop
(Selifonov 1987). High juvenile densities may force individuals to migrate out of nearshore or
deep overwintering predation refugia leading to increased predation losses (Eggers 1978,
Willette 2001). Generally, high spawner abundances create a high production potential, which
may or may not be realized depending upon the conditions later encountered by offspring.

Long Term Effects of Overescapement — Delayed Density Dependence

Delayed density dependence has been proposed as one mechanism that could account for the
cyclic dominance observed in many sockeye salmon populations (Levy and Wood 1992).
However, maintenance of population cycles also requires that age at maturity be somewhat
constant (Levy and Wood 1992, Walters and Woodey 1992). The mechanisms causing delayed
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density dependence could function in populations with variable age at maturity leading to
delayed density dependent mortality without persistent population cycles. Population cycles can
also be maintained by depensatory fishing independent of depensatory mortality during the
freshwater period and delayed-density dependent mortality (Eggers and Rogers 1987). 1t is often
not possible to clearly separate single-brood effects from delayed density dependence, because
the two processes are highly confounded, particularly when high spawner abundances occur over
consecutive brood years.

Four hypotheses have been proposed to explain the ecological mechanisms causing delayed
density dependence in sockeye salmon populations:

(1) The delayed-embryo mortality hypothesis states that high salmon egg densities reduce
survival of embryos in subsequent years (Hunter 1959).

(2) The delayed-parasitism hypothesis states that large juvenile salmon populations cause
an increase in parasite infestations reducing survival of juveniles in subsequent years
(Ricker and Smith 1975).

(3) The delayed-predation hypothesis states that large juvenile salmon populations cause
an increase in the abundance of predators reducing survival of juveniles in subsequent
years (Ricker 1950).

(4) The delayed-food availability hypothesis states that heavy grazing on zooplankton by
juvenile salmon from an abundant year class diminishes the food supply available for
successive broods in nursery lakes reducing their survival (Koenings and Kyle 1997).

The delayed-embryo mortality hypothesis was first proposed by Hunter (1959) who investigated
instream survival of pink and chum salmon embryos and fry over 10 years. He observed that
infertile or dead eggs from large spawning populations persisted in spawning beds for 1-2 years.
Two very large spawning populations in 1945 and 1954 apparently reduced egg-to-fry survival
of subsequent broods for 2 years (Hunter 1959). He postulated that the high oxygen demand
from the residual mass of dead eggs reduced subsequent embryo survival, but residual fungal or
parasite infestations are other possible explanations.

Direct evidence supporting the delayed-parasitism hypothesis is weak, but this may be due more
to a lack of directed research than lack of functioning mechanisms. Ricker and Smith (1975)
documented that infestation by the cestode parasite Fubothrium salvelini in Skeena River
sockeye salmon smolts reduced mean size 18-35%. They postulated that high juvenile salmon
densities may lead to cestode infestations that persist for more than one year. But, a 12-year time
series showed no correlation between levels of cestode infestation in smolts and smolt abundance
in the current or previous years (Ricker and Smith (1975). However, the authors noted that lack
of a correlation at the smolt life stage could result if most infected fry died (Ricker and Smith
1975). Boyce (1974) concluded that shedding of eggs, essential to reproduction of L. salvelini,
occurred in spring when emergent sockeye salmon fry were most vulnerable to infection,
providing a plausible mechanism for transmission from smolts to emergent fry. The copepod
Cyclops, which is common in Alaskan lakes, was also identified as an intermediate host whereby
infections could be transmitted to sockeye salmon fry through feeding (Boyce 1974). West and
Larkin (1987) suggested that parasitism by F. salvelini was one mechanism that could account
for strong size-dependent mortality among emergent sockeye salmon fry in Babine Lake. Further
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studies are needed to examine whether levels of infestation in emergent fry are related to levels
of infestation in smolts and subsequent fry survival.

The delayed-predation hypothesis, first proposed by Ricker (1950), is strongly supported by
extensive field and modeling studies conducted by Ward and Larkin (1964) in Shuswap Lake,
British Columbia (Ricker 1997). The hypothesis involves depensatory predation on the dominant
broodline, and a delayed predator response affecting subsequent broods. Ward and Larkin (1964)
postulated that large juvenile sockeye salmon populations increased the reproductive success of
predacious fishes (primarily rainbow trout) increasing predation losses of subsequent juvenile
salmon populations. They documented that rainbow trout fed primarily on juvenile salmon from
egg deposition through smoltification, and that trout stomach fullness and condition was
correlated with juvenile salmon abundance. They documented a numerical response of trout
populations to the abundance of juvenile salmon prey, i.e. cyclic changes in trout abundance that
lagged salmon abundance. Levy and Wood (1992) suggested that depensatory predation must
occur on emergent fry populations to account for the variable cyclic dominance patterns
observed in the various stocks rearing in Shuswap Lake. Larkin (1971) developed a simulation
model incorporating a delayed-predation mechanism that successfully reproduced the observed
pattern of cyclic dominance in this stock. Ward and Larkin’s (1964) conceptual model had the
great merit of accounting for the fact that brood line 2 is usually much more abundant than brood
lines 3 or 4 due to the buffering effect of brood line 1 on their predation losses (Ricker 1997).
However, more recent estimates of juvenile salmon survival suggest that the overall mortality
caused by predators (mostly squawfish) in Shuswap Lake is compensatory not depensatory
(Williams et al. 1989). The extent to which this mechanism may function in other sockeye
salmon populations is unclear. Although some studies have examined functional responses of
fish predators to sockeye salmon abundance (Rogers et al. 1972, Morton 1982, Ruggerone and
Rogers 1982), none have provided data sufficient to support a delayed-predation hypothesis.

Whole lake experiments have produced strong evidence supporting the delayed-food availability
hypothesis (Koenings and Kyle 1997), but evidence of this mechanism in naturally-producing
sockeye salmon populations is limited. In whole-lake experiments, grazing by large juvenile
sockeye salmon populations reduced zooplankton biomass up to 90%, created predator-resistant
zooplankton communities, and reduced fry-to-smolt survival up to 75% (Koenings and Kyle
1997). Zooplankton communities became resistant to predation as the vulnerable Daphnia,
Diaptomus, and ovigerous Cyclops were virtually eliminated, and the more agile nonovigerous
Cyclops and smaller Bosmina became dominant (Koenings and Kyle 1997). The reduction in
zooplankton biomass and development of a predator-resistant community increased the second
year after initial treatment causing the greatest reduction in fry-to-smolt survival to also be
delayed (Koenings and Kyle 1997). Once restructured by excessive grazing, zooplankton
communities exhibiting the highest levels of restructuring were slowest to respond to either
reduced grazing or nutrient treatment (Koenings and Kyle 1997). These experiments revealed a
mechanism causing delayed density-dependent salmon survival when spawner abundances
exceed the carrying capacity of rearing lakes for 2 or more consecutive years.

One manifestation of diminished food availability is the tendency for smaller members of a year
class to migrate to sea a year later further increasing competition for food in subsequent years.
As juvenile densities increased at Leisure Lake, the size of age-1 smolts declined from 97 to 60
mm and the fraction of the population holding over to emigrate at age 2 increased from 3% to
76% (Koenings and Burkett 1987). In the Kvichak watershed, high escapements in the preceding
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brood year tended to reduce age-1 smolt size and survival in the current year perhaps through
exhaustion of the food supply (Burgner 1991). In Becharof Lake, high smolt abundances were
correlated with an increase in the proportion of holdover age-2 smolts in the subsequent year
class indicating that large juvenile populations reduced the food available for subsequent broods
causing them to extend their freshwater residence and increasing competition among broods
(Martin and Lloyd 1996).

EXAMPLES FROM ALASKAN SOCKEYE SALMON

The effects of overescapement on Alaskan sockeye salmon were examined by researching
existing fisheries and analyzing adult production data from around the state. We searched recent
escapement goal analyses for sockeye salmon stocks in Alaska and found published or readily
available brood tables for 40 stocks. With some minor exceptions, we attempted to use only
published production data (Table 1) so that the fishery descriptions and brood tables need not be
reproduced in this report. We coalesced return and escapement data from sockeye salmon stocks
from Southeast Alaska and Yakutat (11 stocks), Prince William Sound (3 stocks), upper Cook
Inlet (4 stocks), Kodiak (9 stocks), Chignik (2 stocks), the Alaska Peninsula (2 stocks), Bristol
Bay (8 stocks) and Kuskokwim Bay (1 stock). Run size for these 40 stocks range from less than
10,000 (Lost) to more than 55 million (Kvichak) fish and represent a wide range of life history
characteristics (differing freshwater and ocean ages at return), rearing lakes (stained, glacial, and
clear), and drainage area (small to very large drainages). Twenty of the stocks currently have
BEGs and 20 stocks have SEGs.

To better compare and describe the effects of overescapement, the same production model was
used and the same set of statistical analyses was performed on each stock. Note that the stock-
recruit analyses presented herein were only used for comparison purposes in the discussion of
overescapement, and may not match the case-specific analyses performed and models used
during the cycle of escapement goal reviews (see Table 1 for references to escapement goal
reviews by management area). In many cases, the case-specific analyses used a variety of
production models, statistical methods, and/or truncated production data sets. Moreover, these
case-specific analyses addressed issues such as model selection, changes in data quality over
time, and statistical versus practical considerations that could not be replicated in a single
analysis of the 40 stocks analyzed in this report.

Simple stock-recruitment analyses were performed on data from each stock to estimate
parameters and reference points (see Appendix A for analytical methods). From a long-term
biological perspective, we were most interested in estimating: 1) the exploitation rate at MSY or
LUmsy, 2) escapement at MSY or Susy, 3) MSY, and 4) the carrying capacity or Sgq. In our
analysis, a Ricker production model was used to estimate these parameters, although other
production models have been used to estimate reference points and set escapement goals for
some Alaskan sockeye salmon stocks (e.g., a gamma model for Ayakulik River and a brood-
interaction model for Kenai River). As an index of sampling error we calculated the non-
parametric coefficient of variation (NPCV) for each reference point. From the brood table we
also calculated the observed exploitation rate or Lops, and average yields when escapements were
within and above the current escapement goal. Note that the observed exploitation rate calculated
as in Appendix A is not strictly equivalent to the average harvest rate in the fishery. Observed
exploitation rate in this context is used to compare with exploitation rate at MSY in determining
the range of data available to estimate the biological reference points and should not be
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misconstrued as a parameter for management of the fishery. We also plotted returns on
escapement and return per spawner on escapement for each stock (Appendix B).

In addition, several metrics were developed to evaluate short-term fishery-related effects of
overescapement. We used these analyses to determine the percent occurrence of overescapement,
the average loss of harvest due to overescapement, and the percentage of the annual run foregone
to overescapement in the most recent 15 run years (see Appendix A for analytical methods). We
also plotted the annual run divided into harvest and escapement, and the percent difference
between the observed escapement and the upper bound of the goal for the most recent 15 run
years (Appendix B).

BIOLOGICAL ASPECTS OF OVERESCAPEMENT

The biological aspects of overescapement can be examined in relation to reliable estimates of the
reference points. Although other methods are available for calculating reference points, we used
a statistical approach to model production of adult sockeye salmon and based our definition of
“reliable” on the non-parametric coefficient of variation (NPCV) of the estimate of Sgq or
carrying capacity. We used the arbitrary criterion of NPCV less than 0.25 (similar to a CV of
25% or less) as our measure of reliability.

Based on this approach we could reliably estimate Sgq for 27 of the 40 stocks (Appendix C). In
general, we were able to reliably estimate Sg if the observed exploitation rate was less than or
equal to the exploitation rate at MSY (Figure 8). Similarly, 29 of the 40 stocks had observed
exploitation rates that were less than or equal to exploitation rate at MSY (Figure 8). Twenty
seven of these 29 stocks had a reliable estimate of Sgq, but two stocks did not (East Alsek and
Ugashik). Based on these results we ultimately chose the criterion of an observed exploitation
rate less than or equal to exploitation rate at MSY to differentiate those stocks with exploitation
rates near or below MSY (29 stocks) and those with exploitation rates above MSY (11 stocks).
All subsequent analyses were done using these two groups of stocks. Note that our Ricker model
estimates of the exploitation rate at MSY can differ from those estimated using other spawner-
recruit models. For example, the brood-interaction model used to set the escapement goal range
for Kenai River sockeye salmon estimated pysy at 0.81 (Carlson et al. 1999); whereas, the
Ricker model estimate of Liysy is 0.74.

OVERESCAPEMENT IN RELATION TO CARRYING CAPACITY

Next we examined whether overescapements, when they occur, are approaching or exceeding
carrying capacity. For the 29 stocks with an observed exploitation rate less than or equal to
exploitation rate at MSY we calculated the percentage of brood years where the escapement was
equal to or exceeded the estimate of Spo (Appendix B1). The percentage of time the observed
escapement was above Spg ranged from 0% to 25% and was a function of the observed
exploitation rate on the stock (Figure 9). Many of the stocks with higher rates (>10% of the time)
of escapements approaching carrying capacity are those with low fishery exploitation rates such
as Situk, Redoubt, Klukshu, Italio, Akwe, and Speel in Southeast Alaska; Buskin and Afognak
on Kodiak Island; Crescent in upper Cook Inlet; as well as Middle Fork Goodnews in
Kuskokwim Bay (Figure 9).

OVERESCAPEMENT IN RELATION TO PRODUCING MSY OR SUSTAINED YIELDS

For those stocks with an observed exploitation rate less than or equal to exploitation rate at
MSY, we can compare yields at differing levels of escapement to see if yields are reduced as
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escapement increases above that needed to produce MSY. As expected, a composite graph of the
29 stocks indicates that yields tend to be maximized as escapements approach that needed to
produce MSY (Figure 10). Conversely, yields tended to be reduced as escapements exceeded
that needed to produce MSY. Also, MSY was achieved at least part of the time over a wide range
of escapements until they exceeded 200% of escapement that produces MSY. This result is also
confirmed by inspection of the stock-recruitment relationships estimated from brood tables for
each stock (upper panels in Appendices B3-B40).

Similar results were obtained when we compared average yields when escapements fell within
the current escapement goal to average yields when overescapement occurred. Twenty-two of 29
stocks exhibited a decrease in average yield when overescapement occurred. Averaged across all
29 stocks, yields decreased 48% when overescapement occurred relative to when the current
escapement goal was met (Table 2). On average, variability in yields increased 278% as
overescapement occurred (Table 2).

Although we could not reliably estimate Syigy using a Ricker model for the 11 of 40 stocks
where observed exploitation rate is greater than the exploitation rate at MSY, we were able to
compare trends in yields as escapements increased above the upper end of the current
escapement goal. For these stocks, yields tended to continue to increase above the average as
overescapement occurred (Figure 11). Above average yields tended to occur over the entire
range of observed escapements indicating that yields are being sustained from these stocks.

A similar result was obtained when we compared average yields for escapements that fell within
the current escapement goal to average yields when overescapement occurred. Seven of 11
stocks exhibited an increase in average yield when overescapement occurred. Averaged across
all 11 stocks, yields increased 94% when overescapement occurred relative to when the current
escapement goal was met (Table 3). On average, variability in yields decreased 11% as
overescapement occurred (Table 3).

DELAYED DENSITY DEPENDENCE

Five examples of delayed-food availability responses can be found among sockeye salmon
rearing lakes in Alaska. However, single-brood and delayed-density dependent effects are highly
confounded when high spawner abundances occur over consecutive brood years.

In Frazer Lake, three consecutive overescapements (>2 times the upper bound of the escapement
goal range) in 1980-1982 resulted in a decline in production from subsequent broods in 1981 and
1982 when returns per spawner fell below replacement (Figure 12). Reduced sockeye salmon
production was associated with a decline in macrozooplankton density from 3,590m™ (1970-
1976) when escapements were within the current escapement goal range to 140m™ in 1981-1982
(Kyle et al. 1988). The average length of the smallest macrozooplankter (Bosmina) shifted
below the observed threshold size (0.40 mm) for juvenile sockeye salmon prey, and Bosmina
became the dominant macrozooplankton species in the lake (Kyle et al. 1988). These changes in
the macrozooplankton community were associated with a decline in smolt length from 90 to 70
mm that persisted for 4 years even after escapement levels declined (Kyle et al. 1988). A single
overescapement (3 times the upper bound of the escapement goal range) in 1985 resulted in a
return per spawner below replacement, but an escapement within the goal range the following
year resulted in record high production (Figure 12). Thus at Frazer Lake, consecutive
overescapements produced an apparent delayed-density dependent response, but a single
overescapement resulted in a single-brood response.
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In Afognak Lake, three consecutive overescapements (>2 times the upper bound of the
escapement goal range) in 1995-1997 resulted in a decline in production from subsequent broods
in 1996 and 1997 when returns per spawner fell below replacement (Figure 12). As in Frazer
Lake, reduced sockeye salmon production was associated with a decline in macrozooplankton
biomass from 670 mg m™ for brood year 1995 to 221 mg m™ for brood years 1996-1997 (Baer et
al. 2007). During this same time period, the biomass of Daphnia, a preferred sockeye salmon
prey, declined from 44 mg m™ to 15 mg m™, and the mean length of Daphnia declined from 0.78
to 0.57 mm (Baer et al. 2007). A similar overescapement (>2 times the upper bound of the
escapement goal range) in 1982 resulted in a return per spawner below replacement from the
1983 year class, but no limnological data is available from this time period. Several other
smaller overescapements (<2 times the upper bound of the escapement goal range) in 1984-1985
and 1989-1994 did not result in returns per spawner falling below replacement. However, the
production history of Afognak Lake sockeye salmon is confounded by lake fertilization (1990-
2000) and fry stocking programs (1992, 1994, 1996-1998).

In Coghill Lake, several consecutive years of overescapement in 1980-1982, 1985, and 1987 (>2
times the upper bound of the escapement goal range) were associated with a decline in
production from subsequent broods in 1985-1989 when returns per spawner fell below
replacement (Figure 12). Although, no limnological data were available for the period before the
overescapement events, Edmundson et al. (1997) postulated that the decline in production could
have been caused by overgrazing by large juvenile sockeye salmon populations as had been
previously documented in Frazer Lake. The small average size (1.5 g) of smolt emigrating from
Coghill Lake in the early 1990’s supported this hypothesis (Edmundson et al. 1997). After 1989,
escapements were maintained within the escapement goal range, the lake was fertilized for 4
years (1993-1996), and sockeye salmon production returned to normal levels (Figure 12).

In the Chignik watershed, overescapements have occurred in both early and late sockeye salmon
runs from 1998 through 2001, with the combined escapements for both runs nearly double the
upper range of the goals in 2001. The early run spawns in Black Lake (and tributaries) and the
late run spawns in Chignik Lake, but in recent years the juveniles from both runs have
overwintered in Chignik Lake. Limnological studies of Chignik Lake documented a threefold
decline in macrozooplankton biomass between 1991 (Kyle 1992a) and 2000-2002 (Bouwens and
Finkle 2003). During the later period, the zooplankton community was dominated by Bosmina
and Cyclops, both inefficient grazers on phytoplankton, and Daphnia, a preferred sockeye
salmon prey, was nearly absent (Bouwens and Finkle 2003). In addition, the mean size of
Bosmina was below the threshold size for juvenile sockeye salmon prey (Bouwens and Finkle
2003). Further, chlorophyll a levels were high but macrozooplankton biomass was low indicating
inefficient energy transfer from primary producers to primary consumers, attributable to top-
down grazing pressure (Bouwens and Finkle 2003). In 2003, only 6.75 million sockeye salmon
smolts emigrated from the system compared with an average of 20 million smolts per year from
1997-2002 (Bouwens and Finkle 2003). The adult return from brood year 2001 was about 1.6
million, about 43% below the recent 20-year average (1978-1997).

In the Kenai watershed, overescapements in 1987 through 1989 (~1.5 times the upper bound of
the escapement goal range) were associated with below average returns per spawner from brood
years 1988-1990 (Figure 12). About 75% of the juvenile sockeye salmon produced in this
system rear in glacially turbid Skilak Lake. Limnological studies of this lake documented a 50%
decline in spring (May-June) copepod biomass in 1988 and 1990 following these
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overescapements (Edmundson et al. 2003). These observations led to the hypothesis that grazing
by large fry populations reduced the biomass of copepods available for emergent fry the
following spring reducing their survival. This hypothesis was supported by a weak statistical
relationship between fall fry abundance and copepod biomass the following spring, and a
significant statistical relationship between spawner abundance, spring copepod biomass, and fall
fry abundance (Edmundson et al. 2003). Subsequently, a brood-interaction model was found to
provide the best fit to the spawner-recruit data for this stock (Carlson et al. 1999), and in 1999 a
brood-interaction simulation model was used to establish the current escapement goal range
(Fried 1999). Edmundson et al. (2003) also found that euphotic zone depths in Skilak Lake had
declined over the past 20 years due to increased glacial melt and attendant silt loading. Since
euphotic zone depth directly affects primary production, these changes were associated with a
50% reduction in zooplankton biomass and the size of sockeye salmon fry in the fall
(Edmundson et al. 2003).

More recent overescapements (~1.5 times the upper bound of the escapement goal range) in the
Kenai watershed in 2004-2006 have raised concerns about future production, because
productivity in Skilak Lake is currently about 35% lower than in the late 1980s, and the
overescapements have occurred consecutively. The 2004 year class produced the largest fall fry
population (DeCino and Willette 2004) and the smallest fall fry ever observed in Skilak Lake
(Table 4), raising concerns about overwinter mortality (Edmundson et al. 2003). The 2005 year
class produced the smallest fall fry population and the lowest egg-to-fry survival ever observed
in Skilak Lake (Table 4). Juvenile production data from the 2006 year class are not yet
available. The outcome of these overescapements will not be known until adults from these year
classes begin to return in 2009,

OVERESCAPEMENT AND JUVENILE SIZE

One manifestation of overescapement is changes in juvenile sockeye salmon size caused by
density-dependent growth. The overall relationship between smolt size and production can be
viewed within the context of the Beverton-Holt and Ricker production models (Figure 13). In
general, the Beverton-Holt model is appropriate when there is a ceiling of abundance imposed by
available food or habitat. Whereas, the Ricker model is appropriate when compensatory
mortality results from overseeding of spawning beds, or density-dependent growth extends the
time in a vulnerable size range (Ricker 1975). As spawner and juvenile abundances increase,
juvenile growth becomes density dependent due to competition for limited food resources. In
systems that are rearing limited (Beverton-Holt model), smolt size will reach a constant
minimum when juvenile abundance reaches a maximum (Figure 13). However, in systems that
are spawning limited (Ricker model), smolt size will increase at spawner densities greater than
the escapement that produces the maximum return, because juvenile abundance declines due to
compensatory mortality of embryos. When top-down effects reduce food available to juveniles
and intraspecific competition increases holdovers, age-1 smolt size will continue to decline as
spawner abundance increases even though age-1 smolt abundance declines. These top-down
effects may only be observed when spawner abundances are more than two times Sysy over
consecutive broods and may not be adequately described by a Ricker model (Koenings and Kyle
1997). At very high spawner and juvenile abundances, juveniles cannot sequester sufficient
energy reserves to survive over winter, causing smolt size to reach a constant minimum slightly
above the starvation-mortality threshold (Figure 6).
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FISHERY-RELATED ASPECTS OF OVERESCAPEMENT

The fishery-related aspects of overescapement can be examined for all 40 sockeye salmon stocks
and do not require that we know the production relationship or have a reliable estimate of the
biological reference points. When overescapement occurs, harvest is foregone and the additional
escapement can affect subsequent production and yield as we have shown in the previous section
of this report. In this section, we focus on the immediate loss of harvest due to overescapement
relative to the magnitude of the run. Plots of the annual run broken into harvest and escapement
by run year (lower left panel) and the percent difference between the upper bound of the
escapement goal and the observed escapement by run size (lower right panel) are in Appendices
B3-B40.

OVERESCAPEMENT IN RELATION TO FOREGONE HARVEST

The simplest metric of overescapement is the frequency of its occurrence. Only three of the 40
stocks did not experience overescapement in at least one year during the most recent 15 years of
published data and based on the current escapement goal range (Appendix B2). The percentage
of years where overescapement occurred ranged from 0% (Italio, East Alsek, and Upper Station
LR stocks) to 93% of the time or 14 out of the 15 years (Karluk ER, Frazer, and Chignik LR
stocks). The frequency of overescapement did not appear related to the observed exploitation rate
of each stock, although overescapement occurred more frequently in stocks where the observed
exploitation rate is less than the exploitation rate at MSY (Figure 14).

A better metric would be to look at the loss in harvest due to overescapement. By averaging the
number of fish forgone in the harvest due to overescapement in the most recent 15 years

(Hrosr) we see that some loss of harvest occurred in 37 of 40 stocks indicating that some

overescapement is occurring with regularity (Appendix B2). Many of the stocks that regularly
overescape have fairly low exploitation rates indicating a lack of fishing power, or unexpectedly
large runs, or the presence of management or economic constraints on the fishery.

The magnitude of foregone harvest should also be considered since this potentially affects the
total benefits (e.g., ex-vessel value, fishing-related employment, economic impact) of the harvest
to the fishery. Overescapements may occur more frequently when the run is large (lower right
panel of Appendices B3-B40). Moreover, the effect on benefits accrued to the fishery could be
significant if foregone harvest is a large percentage of the run. Eighteen of the 40 stocks had

average losses (%H rosT ) that were 5% or greater of the run (Appendix B2). Of these 18 stocks

seven had losses that exceeded 10% of the run on average (Speel, Redoubt, Akwe, Karluk ER,
Karluk LR, Saltery, and Afognak stocks). Eighteen of the 40 stocks had average losses during

the years that overescapement occurred (%H QVER) that were 10% or greater of the run
(Appendix B2). Of these 18 stocks, seven had losses that exceeded 20% of the run on average
(Speel, Redoubt, Lost, Akwe, Ayakulik, Saltery, and Afognak stocks). Foregone harvest was
related to fishing power, with stocks that do not achieve the exploitation rate at MSY showing
the greatest losses in harvest (Figure 15).

CONCLUSIONS

In this report, overescapement was defined as escapements that are above the range of the current
escapement goal. For most of the 40 Alaskan sockeye salmon stocks we reviewed,
overescapement occurred at least once in a recent 15 year period. Although overescapement was
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easy to detect, the biological and fishery-related effects of overescapement were more difficult to
detect and assess. Much of the difficulty is due to the life history characteristics of sockeye
salmon, with their variable freshwater and marine residence times, dependence on lakes for
rearing, and variable size at smoltification causing highly variable, often time-dependent, density
independent changes in survival from spawning adult to returning adult. Moreover, Alaska’s
fixed escapement goal policy and the precautionary nature of the sustainable salmon fisheries
management policy dictates that this high variability in survival is largely borne by the fishery as
variable harvests that may sometimes be forgone.

We found evidence of delayed density dependence in five Alaskan sockeye salmon stocks. In
three of these stocks, returns per spawner fell below replacement for 2 to 5 years following
consecutive overescapements that were greater than twice the upper escapement goal range.
These observations were consistent with results from whole lake experiments that have shown
that overgrazing by large fry populations for 2 or more consecutive years caused the highest
level of restructuring of zooplankton populations and the slowest recovery time (Koenings and
Kyle 1997).

However, as seen in the review of salmon stocks in British Columbia (Walters et al. 2004) we
did not observe long-term stock collapse of any of the 40 stocks that could be attributed to
overescapement. We did observe one stock that failed to produce sustained yields on average
(Italio, Appendix B7). The watershed that supports this stock (Italio River) has undergone
significant natural changes in habitat, leading to a loss of productive capacity and a closure of the
fishery.

We were able to assess the density dependent biological effects of overescapement for 29 of the
40 stocks. These are stocks where observed exploitation rate is less than or equal to exploitation
rate at MSY. As expected, yields increased as escapements approached the escapement that
produces MSY and then decreased as escapements exceeded this value. Although some stocks
exhibited increases in yields, when averaged across these 29 stocks, overescapement resulted in a
decrease in yields and an increase in the variability in yields.

This result is consistent with the generic theory of compensatory production, where spawning
efficiency decreases with increasing escapement levels and stocks are limited by the carrying
capacity of the habitat. Overescapement, in general, is not sustainable as it causes returns and
yields to decrease in the next generation, which also result in lower escapements. Lower
escapements then result in higher returns and yields in succeeding generations.

For the remaining 11 stocks where observed exploitation rate is greater than exploitation rate at
MSY, we found that yields tended to increase as escapements increased, even when
overescapement occurred. Although four stocks exhibited decreases in yield (McDonald, Kenai,
Ayakulik, and Upper Station ER), when averaged across all 11 stocks, overescapement resulted
in an increase in yields and a slight decrease in variability in yields.

This result is also consistent with the generic theory of compensatory production. As escapement
increases, but is below the level thought to produce MSY, returns and yields will increase even if
overescapement occurs. This is due to the high productivity of salmon across a wide range of
intermediate escapements so that the long term change in yield due to overescapement is small
when exploitation rate is high.
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Foregone harvest due to overescapement occurred in 37 of the 40 stocks we reviewed. In many
stocks these annual losses were a small percentage of run size, often less than 5% of the run
when averaged across all 15 years in the analysis. Seven of these 40 stocks exhibited average
annual losses in harvest due to overescapement that ranged from 10% to 21% of the run. When
we examined foregone harvest only during years that overescapement occurred, 18 stocks
exhibited losses greater than 10% of the run, and seven of these stocks exhibited losses greater
than 20% of the run. Lack of fishing power, especially during large runs appears to cause these
larger losses.

RECOMMENDATIONS

Although overescapement as defined is occurring on most of the 40 Alaskan sockeye salmon
stocks we reviewed, for some of these stocks more information is needed to understand the effect
overescapement may or may not have on production and the fishery. Salmon fisheries are not
controlled experiments and thus are not easily adapted to the basic tools of science such as
replication or the use of controls. However, there are some recommendations we can make to
look further into the effects of overescapement.

Alternative methods for determination of carrying capacity of sockeye salmon watersheds should
be developed and validated. Limnological methods of determining maximum smolt capacity
already exist (e.g., Koenings and Kyle 1997), but should be validated in systems that have
independently derived and reliable estimates of carrying capacity. Coring of lake bottoms and
measurement of proxies for marine derived nutrients in the sediments has shown considerable
promise in systems that support primarily sockeye salmon and have nearby fishless control lakes
(e.g., Schindler et al. 2005). Meta-analyses of existing sockeye salmon data should be conducted
to see if there are correlates to carrying capacity similar to those shown for Chinook salmon
Oncorhynchus tshawytscha and watershed area (Parken et al. 2004). The analyses presented
herein could form the basis of such a meta-analysis.

Along these same lines, a modeling effort could be attempted that incorporates all of the
previously discussed hypotheses concerning density dependence (e.g., predators, zooplankton,
spawner densities) as special cases. This model would be formulated as a hierarchical meta-
analysis that would produce an analysis of uncertainty in the model outputs such as changes in
yield from differing levels of escapement. Similarly, a statistical or graphical analysis of the
factors affecting and significance of delayed density dependence could be attempted.

Research focused on estimating carrying capacity in select watersheds should include efforts to
better define the threshold juvenile salmon densities that cause delayed density-dependent
responses in rearing lake ecosystems. A fundamental assumption of classical spawner-recruit
analyses is that productivity of the system does not change over time, processes causing a non-
linear response between spawner abundance and future productivity must be understood to
properly set escapement goals.

Further research is needed to better define the levels of spawner and fry abundances that can
significantly reduce zooplankton biomass, develop a predator-resistant zooplankton community,
and reduce sockeye salmon survival. Lack of consensus among salmon biologists regarding the
significance of these processes in sockeye salmon population dynamics has been due in part to
our lack of understanding of the threshold population densities needed to evoke an ecological
response. This has been further complicated by the fact that these threshold salmon densities
likely change over time as bottom-up influences change primary productivity. As a result, lack of
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a response at population densities thought to be sufficient has been interpreted as evidence
refuting the mechanism. A program monitoring limnological parameters, zooplankton biomass
and species composition, fry and smolt size and abundance should be implemented in sockeye
salmon rearing lakes that are likely to experience high escapement levels. These data are needed
to improve the efficacy of escapement goal analyses, since responses that only function above a
poorly understood threshold are not amenable to statistical time-series analyses typically used to
set salmon escapement goals.

From a fishery standpoint, better forecasts of salmon runs and improved inseason management
could reduce the incidence of overescapement in highly exploited stocks. Assessments would
improve with more accurate catch apportionments in mixed-stock fisheries through the use of
genetic stock identification techniques. Our understanding of the factors that affect density
independent survival could greatly improve forecasting ability and the management of fisheries
to attain escapement goals. Assessments of marine survival of smolts and enumeration of smolt
produced from varying levels of escapement would aid in an understanding of the effects of
process error in marine versus freshwater environments. In addition to foregone harvests, better
economic data from sockeye salmon fisheries statewide could help to determine the effect of
overescapement on benefits accrued to these fisheries.
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Table 1.-Sockeye salmon stocks, assessment methods, brood years available, goal type, escapement
goals, and source citations used in this report.

Area Stock Assessment  Brood yrs Goal Type Lower Upper  Citation®
Southeast Chilkat Weir/M-R 19 SEG 80,000 200,000 1
Chilkoot Weir/M-R 19 SEG 50,000 90,000 1
Speel Weir 14 BEG 4,000 13,000 1
McDonald  Foot survey 17 SEG 70,000 100,000 3
Yakutat Italio Peak aerial 26 BEG 5,000 14,000 1
Situk Weir 22 BEG 30,000 70,000 1
Redoubt Weir 15 BEG 10,000 25,000 1
East Alsek-  Peak aerial 26 BEG 26,000 57,000 1
Doame
Klukshu Weir 21 BEG 7,500 15,000 1
Lost Peak foot 14 BEG 1,538 3.538 2
Akwe Peak aerial 13 BEG 6,000 15,000 2
PWS Eshamy Weir 27 BEG 20,000 40,000 4
Coghill Weir 37 SEG 20,000 40,000 4
Copper Sonar 39 SEG 410,000 760,000 4
Upper Kenai Sonar 32 SEG 500,000 800,000 5
Cook Inlet
Kasilof Sonar 31 BEG 150,000 250,000 5
Crescent Sonar 31 BEG 30,000 70,000 5
Russian ER  Weir 33 SEG 14,000 37,000 5
Kodiak Karluk ER  Weir 16 BEG 100,000 210,000 6
Karluk LR  Weir 16 BEG 170,000 380,000 6
Ayakulik Weir 33 SEG 200,000 500,000 6
Upper Weir 29 SEG 30,000 65,000 6
Station ER
Upper Weir 29 BEG 120,000 265,000 6
Station LR
Frazer Weir 30 BEG 70,000 150,000 6
Saltery Weir 21 BEG 15,000 30,000 6
Buskin Weir 8 SEG 8,000 13,000 6
Afognak Weir 16 BEG 20,000 50,000 6
Chignik Chignik ER  Weir 46 SEG 350,000 400,000 7
Chignik LR Weir 46 SEG 200,000 250,000 7
- continued -
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Table 1. Page 2 of 2.

Area Stock Assessment  Broodyrs  Goal Type Lower Upper  Citation®

AK Nelson Weir 23 BEG 97,000 219,000 8

Peninsula
Bear LR Weir 16 SEG 117,000 195,000 8

Bristol Bay  Kvichak Tower 44 SEG 2,000,000 10,000,000 9
Naknek Tower 44 SEG 800,000 1,400,000 9
Egegik Tower 42 SEG 800,000 1,400,000 9
Ugashik Tower 42 SEG 500,000 1,200,000 9
Wood Tower 44 SEG 700,000 1,500,000 9
Igushik Tower 44 SEG 150,000 300,000 9
Nushagak Sonar 21 SEG 340,000 760,000 9
Togiak Tower 43 BEG 120,000 270,000 9

Kuskokwim Middle Fork Weir 18 BEG 18,000 40,000 10

Bay Goodnews

* Citations:

1. Geiger et al. 2004.

2. Clark et al. 1995.

3. Johnson et al. 2005.

4. Evenson et al. unpublished.

5. Hasbrouck and Edmundson 2007.

6. Nelson et al. 2005.

7.  Witteveen et al. 2005.

8. Nelson et al. 2006/

9. Bakeretal. 2006.

10. Molyneaux and Brannian 2006.
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Table 4.—Summary of limnological and juvenile production data for Kenai River late-run sockeye
salmon, brood years 1985-2006. Mean annual euphotic zone depth (EZD) in Skilak Lake is provided as
an index of interannual changes in primary production. Fry abundance was estimated from acoustic
surveys, and fry weight was estimated from trawl samples collected in Skilak Lake in September each
year. All abundance estimates are in thousands.

Brood Mainstem Potential Egg EZD Fall Fry Fall Fry Abundance  Egg_to-Fry
Year Spawners Deposition (m) Wt. (g) Skilak Total Survival
1985 234.28 486,196 9.0 1.7 17,877 22,217 0.046
1986 352.66 733,239 8.3 - 9,029 10,182 0.014
1987 1,268.33 3,430,362 124 0.9 30,883 37,071 0.011
1988 785.14 1,846,695 11.8 1.2 12,660 13,988 0.008
1989 1,187.54 2,451,806 57 1.3 21,850 24,601 0.010
1990 340.81 588,241 6.7 1.5 6,347 7,127 0.012
1991 295.12 553,800 9.6 1.8 8,427 9,541 0.017
1992 675.93 1,739,544 7.7 1.2 31,347 35,687 0.021
1993 565.63 1,260,616 59 1.4 8,354 11,159 0.009
1994 769.69 1,682,828 8.3 1.7 7,378 8,813 0.005
1995 452.82 899,797 34 1.6 4,830 5,582 0.006
1996 537.88 1,131,986 58 0.9 23,000 25,316 0.022
1997 795.73 1,642,865 5.1 0.7 15,332 21,194 0.013
1998 430.10 801,995 7.6 1.3 5,908 8,331 0.010
1999 426.28 857,051 6.9 1.2 18,663 19,950 0.023
2000 318.38 617,640 92 1.0 20,416 22,510 0.036
2001 364.36 781,874 8.7 1.0 6,802 8,749 0.011
2002 610.53 1,240,680 43 1.3 10,521 12,750 0.010
2003 775.61 1,727,567 6.0 0.6 20,390 22,908 0.013
2004 1,120.00 2,372,232 58 0.5 39,500 41,936 0.018
2005 1,113.00 2,357,405 73 0.7 4,238 4,478 0.002
2006 1,270.00 2,689,941 - - - - -
Mean 667.72 1,449,744 74 1.2 15,417 17,814 0.015
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Figure 1.-Map of Alaska with location of the 40 sockeye salmon stocks in this review.
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APPENDIX A
Stock-Recruitment Methodology
and Overescapement Metrics
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Appendix Al.-Stock-recruit analysis methodology and overescapement metrics.

Simple stock-recruitment analyses were performed on each brood table using the linearized form
of the Ricker relationship with multiplicative process error (Hilborn and Walters 1992) to
estimate parameters (Equation 1) and reference points (Equations 2 through 4). Beginning with
the familiar non-linear form of the stochastic Ricker equation,

R = oS exp(-BS)exple), (1a)

where S is the escapement and R is the resultant return. We then divide by S and take natural

logs to form the simple linear regression recipe (SLR)
R 2
lnE =lno—-BS+¢g e~ N0, 0¢ ) (1b)

A linear regression of In(R/S) on S will estimate the parameters Ina (y-intercept), 3 (slope), and
VAN
o§ (mean squared residual error). We then adjust In o for asymmetrical log-normal process error

(Hilborn 1985),
A A 6
Ina'=lno+ % (1c)

and estimate the relevant reference points for salmon management from the regression
parameters:

N

A Ino/
Spo =——. 2)
B
AN VAN AN
SMSY NSEQ 0.5-0.07Ina/ , and (3)
VAN AN AN
Wysy ~lna’l 0.5-0.07Ina’ |. 4)

In this formulation, the estimate of Sgq is the carrying capacity and the estimate of o is the
intrinsic rate of increase. The estimate of Gg is the process error. The estimate of Sygy 1s the

escapement that produces MSY and sy is the exploitation rate at MSY.

Statistical uncertainty about the parameters and reference points was assessed with a bootstrap
technique (Efron and Tibshirani 1993); resampling the residuals of the linear regression with
replacement, calculating all parameter estimates and reference points for each bootstrap
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replicate, omitting replicates with negative values of Ino. or B', and using percentiles of the
bootstrap values to obtain interval estimates. Here, for comparison among stocks we also
calculated a nonparametric analog of the coefficient of variation (NPCV) for each parameter and
reference point (Prager and Mohr 1999):

9.15" percentile — 30.85" percenlile) .

NPCY = (6 : (5)

median
where an NPCV of 0.250 (25%) or less was considered precise.

In addition, serial correlation in process error with a lag of one year was examined for each of
the stocks with a time series regression of the simple model in equation (1). In this model,
process errors are not independent, but serially dependent on the process error from the previous
brood year (Noakes et al. 1987). The linear form of the model is then (AR1):

ln[gJ =lnoa—-BS+ €pys Bhy = <|>18by—1 +dpy Of, (6a)
R Ry, _

n| 2 | = (1-dy)Ino+ ¢y In iy G1BSpy—1 —BSpy +apy, apy ~ Norm(O, 05) (60)
Sby Sby—l

The time series regression includes an additional parameter (¢;) that controls the strength of the
correlation between the process error in two adjacent brood years (by and by-/) and can range

AN
from -1 to 1. The adjustment to In o for asymmetric log-normal process error is then:

A A 62/
Ino'=Ino+ 4 n (6¢)
2(1 = ¢%)

The remaining reference points are then calculated as in equations 2 through 4. Statistical
uncertainty was handled with a model-based resampling bootstrap technique (Davison and
Hinckley 1997) and estimation of NPCV’s as above. Three stocks that were missing production
data from consecutive brood years (Lost, Akwe, Eshamy) were not included in the time series
analysis.

Several metrics were calculated to describe the difference in observed yield from expected yields
and the difference in observed escapements from the reference points where we could reliably
estimate Sysy and Spo (NPCV < 0.250). First, simple averages of annual escapement and yield
were calculated for each brood table. One metric of overescapement is the percentage of brood
years when the observed escapement was equal to or greater than the carrying capacity (Sgo):

! Negative values of Ino correspond to stocks with the intrinsic rate of increase less than one, and negative values of
B correspond to R/S increasing with increasing S. Since neither of these situations have biological analogs (they
cannot occur in nature), these replicates must be omitted before calculating interval estimates.
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N

A number of brood years§ = Spg

%2 Spp = x 100% (7)

number of brood years

N
We also compared L,y to observed exploitation rate in the brood table:

eld
MoBS = average yie . where (8a)
average return

n
> (return by —escapementy,, )

average yield = by=1 , and (8b)
n

n
zire furny,,

=1
average refurn = LUl S (8¢)
n

as a method of determining if the range of data in the brood table was sufficient to reliably
estimate the biological reference points. The more familiar average annual harvest rate was also
calculated for each stock from the annual harvest as a proportion of the annual run (7):

i (harvesV j
= run;

n

©)

Harvestrate =

Several metrics were calculated to describe the short-term loss of harvest when overescapement
occurs. Because escapement goals can change over time, only the most recent 15 years of run,
harvest, and escapement data for each stock were used and only the currently published
escapement goal was evaluated. Note that these calculations are for data from calendar year runs
and not the brood table of returns. One simple metric of overescapement is the percentage of
years (out of the 15 most recent years) that overescapement occurred:

number of run years that overescapement occurred

Y% Overescapement = x100% . (10)

15 years

However, overescapement can be very small in some years (i.e., a few fish over the escapement
goal) or very large. To account for this, the average harvest foregone was calculated for the most
recent 15 years:

g{Escapementl- —Upper bound of goal if Escapement; > Upper bound of goal

i=1

0 if Escapement; <Upper bound of goal (11)

ﬁ =
LOST 15
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so that zeros indicate that overescapement did not occur on average and positive values indicate
that overescapement occurred on average. Overescapement is more likely to occur during large
runs than small runs. To measure the effect of run size on overescapement, the average
percentage of the run foregone to overescapement was also calculated for the most recent 15
years:

{Escapementi —Upper bound of goal if Escapement; >Upper bound of goal

15 |0

Y%H LosT = 2,
i=1 Run;

if Escapement; < Upper bound of goal

x100% /15, (12)

so that percentages of zero indicate that overescapement did not occur on average and positive
percentages indicate that overescapement did occur on average.

An alternative method of examining foregone harvest due to overescapement was to average the
harvest foregone only in those years when overescapement occurred:

15
> Escapement; — Upper bound of goal,if Escapement; > Upper bound of goal

Hoyer == (13)
number of years overescapement occurred

Similar to equation 12, the average percentage of the run foregone to overescapement was
calculated, but only for those years when overescapement occurred:

125: Escapement; —Upper bound of goal,if Escapement; >Upper bound of goal « 100%
0

_ - Run;
%H oyrr = =1 ’ . (14
number of years overescapement occurred
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APPENDIX B
Summary of Reference Points,
Overescapement Metrics and Data Plots
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Appendix B3.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1976-1994 brood years and 1976-2002 run years for the Chilkat stock.
Bottom right panel depicts run data from the most recent 15 years (1988-2002).
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Appendix B4.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1976-1994 brood years and 1976-2002 run years for the Chilkoot stock.
Bottom right panel depicts run data from the most recent 15 years (1988-2002).
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Appendix B5.—Ricker stock-recruitment relation (top panels) and fishery performance data
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Bottom right panel depicts run data from the most recent 15 years (1987-2001).
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Appendix B6.—Ricker stock-recruitment relation (top panels) and fishery performance data
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McDonald stock. Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B7.—Ricker stock-recruitment relation (top panels) and fishery performance data
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Bottom right panel depicts run data from the most recent 15 years (1988-2002).
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Appendix B8.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1976-1997 brood years and 1976-2002 run years for the Situk stock.
Bottom right panel depicts run data from the most recent 15 years (1988-2002).
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Appendix B9.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1982-1996 brood years and 1982-2002 run years for the Redoubt stock.
Bottom right panel depicts run data from the most recent 15 years (1988-2002).
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Appendix B11.-Ricker stock-recruitment relation (top panels) and fishery performance data
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Appendix B12.-Ricker stock-recruitment relation (top panels) and fishery performance data
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1990-1991, 1994-1997 and 1999-2002 run years for the Lost stock. Bottom right panel depicts
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Appendix B13.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1973, 1974, 1976-1980 and 1982-1987 brood years and 1972, 1973, 1976-
1980, 1982-1987, 1991, 1993-1996 and 2001 run years for the Akwe stock. Bottom right panel
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Appendix B14.—-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1970-1986 and 1988-1997 brood years and 1968-1986, 1988-1997, and
1999-2004 run years for the Eshamy stock. Bottom right panel depicts run data from the most
recent 15 years (1989-1997 and 1999-2004).
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Appendix B15.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1962-1998 brood years and 1968-2004 run vears for the Coghill stock.
Bottom right panel depicts run data from the most recent 15 years (1990-2004).
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Appendix B16.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1961-1999 brood years and 1996-2005 run years for the Copper stock.
Bottom right panel depicts run data from the most recent 10 years (1996-2005).
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Bottom right panel depicts run data from the most recent 15 years (1992-2006).
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Appendix B18 —Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1969-1999 brood years and 1969-2006 run years for the Kasilof stock.
Bottom right panel depicts run data from the most recent 15 years (1992-2006).
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Appendix B19.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1968, 1969 and 1971-1999 brood years and 1972-2006 run years for the
Crescent stock. Bottom right panel depicts run data from the most recent 15 years (1992-2006).
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Appendix B20.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1965-1997 brood years and 1965-2003 run years for the Russian early run
(ER) stock. Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B21.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1981-1996 brood years and 1985-2003 run years for the Karluk ER stock.
Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B22.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1981-1996 brood years and 1985-2003 run years for the Karluk late run
(LR) stock. Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B23.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1966-1996 brood vears and 1969-2003 run years for the Ayakulik stock.
Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B24.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1969-1997 brood years and 1975-2002 run years for the Upper Station ER
stock. Bottom right panel depicts run data from the most recent 15 years (1988-2002).

81



1800000 4
1982
1600000
1400000
1200000

1000000

800000

Recruitment

0 1971 1988

600000 10789 b

In{Recruits/Spawner)

400000

9
200000 1448 Az

0 T T T 3
0 500000 1000000 1500000 0 500000 1000000 1500000

Escapement Escapement

1600000 5%

1400000 - 5% A

1991
1997 1996

1200000 1 1994 1989

-15%

§%s
L) 1990
1993

1000000 - -25%

2001 98

s
2 800000 - -35%

600000 - _45% - 2002

400000 - _55% -

200000 - -65% -

2001
-75% -

Difference between escapement and upper end of
goal

o -85%
Year 0 200000 400000 600000 800000 1000000

‘I Escapement B Harvest ‘ Run

Appendix B25.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1969-1997 brood years and 1975-2002 run years for the Upper Station LR
stock. Bottom right panel depicts run data from the most recent 15 years (1988-2002).
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Appendix B26.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1966-1995 brood years and 1969-2003 run years for the Frazer stock.
Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B27.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1976-1996 brood years and 1983-2003 run years for the Saltery stock.
Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B28.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1990-1997 brood years and 1996-2003 run years for the Buskin stock.
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Appendix B29.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1982-1997 brood years and 1988-2004 run years for the Afognak stock.
Bottom right panel depicts run data from the most recent 15 years (1990-2004).
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Appendix B30.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1952-1997 brood years and 1958-2003 run years for the Chignik ER
stock. Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B31.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1952-1997 brood years and 1958-2003 run years for the Chignik LR
stock. Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B 32—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1975-1997 brood years and 1975-2003 run years for the Nelson stock.
Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B33.—-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1980-1995 brood years and 1980-2003 run years for the Bear LR stock.
Bottom right panel depicts run data from the most recent 15 years (1989-2003).
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Appendix B34.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1999 brood years and 1962-2005 run years for the Kvichak stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B35.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1999 brood years and 1962-2005 run years for the Naknek stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B36.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1997 brood years and 1962-2005 run years for the Egegik stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B37.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1997 brood years and 1962-2005 run vears for the Ugashik stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B38.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1999 brood years and 1962-2005 run years for the Wood stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B39.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1999 brood years and 1962-2005 run years for the Igushik stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B40.—Ricker stock-recruitment relation (top panels) and fishery performance data
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Bottom right panel depicts run data from the most recent 15 years (1991-2005).
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Appendix B41.-Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1956-1998 brood years and 1962-2005 run years for the Togiak stock.
Bottom right panel depicts run data from the most recent 15 years (1991-2005).

98



100000 2
90000 - 1989 15 .
80000 -
1991 1A
70000 - -
1993 o 1a887° 2
£ 60000 198 z 051 Q1 1t
§ ‘% 198887 1994
El 50000 - 1988 7 912990 g 0 , Toe4 :
[
= 1982
& 40000 - 1982 g -05 -
198498784 €
30000 A bt 1906 £ N 1907 1996
20000 A
1997 i
10000 - 15
0 . . . . -2
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Escapement Escapement
90000 5 60%
80000 E 1006
[+
70000 g 40% | 2004 1904
-
o
60000 3
g 20% A 199959, 1998
g 50000 £ 2003
& 40000 £s 2000
28 o% ; — g ;
30000 2 1907
20000 g -20% A 1990
[
10000 = 199%993
g 0% 2001
0 s 2002
& £
° S so%
0 20000 40000 60000 80000 100000

Appendix B42.—Ricker stock-recruitment relation (top panels) and fishery performance data
(bottom panels) for the 1981-1998 brood years and 1981-2004 run years for the Middle Fork
Goodnews stock. Bottom right panel depicts run data from the most recent 15 years (1990-2004).
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